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Abstract This paper is focused on the multimodal analysis

of patient performance, carried out by means of robotic

technology and wearable sensors, and aims at providing

quantitative measure of biomechanical and motion planning

features of arm motor control following rehabilitation.

Upper-limb robotic therapy was administered to 24 com-

munity-dwelling persons with chronic stroke. Performance

indices on patient motor performance were computed from

data recorded with the InMotion2 robotic machine and a

magneto-inertial sensor. Motor planning issues were inves-

tigated by means of techniques of motion decomposition into

submovements. A linear regression analysis was carried out

to study correlation with clinical scales. Robotic outcome

measures showed a significant improvement of kinematic

motor performance; improvement of dynamic components

was more significant in resistive motion and highly corre-

lated with MP. The analysis of motion decomposition into

submovements showed an important change with recovery

of submovement number, amplitude and order, tending to

patterns measured in healthy subjects. Preliminary results

showed that arm biomechanical functions can be objectively

measured by means of the proposed set of performance

indices. Correlation with MP is high, while correlation with

FM is moderate. Features related to motion planning strat-

egies can be extracted from submovement analysis.

Keywords Robot-aided rehabilitation �
Motor assessment

1 Introduction

The use of robotic machines as a possible rehabilitation

strategy to achieve motor recovery can be justified by its

impact on better therapeutic treatment and motor learning.

Deeper knowledge on the mechanisms of neurogenesis,

stimulated by voluntary movements during motor training

[20, 22, 33], and neuroplasticity, underlying the motor

learning and the functional recovery after cerebral injury

[13, 41], points out the potential of robotic technologies to

create a real discontinuity in the clinical procedures of the

(neuro)rehabilitation treatment. Learning or re-learning is a

necessary condition for true recovery as well as for com-

pensation [23] and can be stimulated and shaped by reha-

bilitation [27, 28, 53].

Robotics can greatly contribute to produce novel and

cost-effective solutions able to significantly improve the

outcome of the rehabilitation process or assist in coping

with residual abilities after the rehabilitation process. The

benefit of using robotic machines is multiple [8, 15].

Robotic machines can contribute to: (i) Technological

evolution of machines for physical exercise as well as for

cognitive training [4, 16]. (ii) Significant reorganization of

the working procedures within the rehabilitation process.

Machines can take over most of unpleasant and physically

demanding tasks, leaving to the healthcare operators the

possibility to mainly concentrate on the quality of the
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Università Campus Bio-Medico, Rome, Italy

e-mail: l.zollo@unicampus.it

E. Guglielmelli

e-mail: e.guglielmelli@unicampus.it

L. Rossini

IRCCS San Raffaele Pisana, Rome, Italy

M. Bravi � G. Magrone � S. Sterzi

Clinic of Physical Medicine and Rehabilitation, Università
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therapy that is delivered. (iii) New therapeutic approaches,

based on a deep-and-long-lasting stimulation [32]. Robotic

machines can allow assisting also subjects with low

residual motor abilities, and help them start and complete

motor tasks when they are not able to do that, directly

monitoring their motion intention. (iv) Cortical reorgani-

zation in patients affected by stroke or other neuromotor

pathologies [41] and increased habitual use of the hemi-

paretic arm in activities of daily living [5]. Such an

approach is highly repetitive, intensive, structured, and

based on the central role of the patient all along the dif-

ferent phases of the motor exercise. (v) Evidence-based

rehabilitation. Robotic machines can also provide quanti-

tative and very accurate measurements of patient perfor-

mance during the execution of a motor task. Robot data can

be used for rigorous and objective assessment of the ther-

apeutic approach and provide an important empirical evi-

dence for basic research on neuroplasticity phenomena.

In spite of the wide literature on the first four issues,

mainly concerned with the design and development of

robotic devices and their validation in clinical settings,

current literature is still poor of works on the fundamental

role played by robotic technologies in evidence-based

medicine (see [5, 35, 42, 53] for a review). Modern med-

icine is based on objective evaluation and quantitative

comparative analysis of the impact of different therapeutic

approaches. Robotic technology provides accurate, precise,

and very sensitive tools for assessing and modeling human

behavior, well beyond the capability of a human observer.

This is of paramount importance for enabling appropriate

initial diagnosis and early adoption of corrective clinical

strategies, and for identifying verifiable milestones as well

as prognostic indicators of the recovery process.

Recently, the first examples of evaluation metrics based

on robot data were provided [3, 7] for quantifying motor

recovery of stroke patients undergone robot-aided reha-

bilitation. Moreover, studies on movement smoothness [17,

24, 45] were proposed in the last years, using kinematic

data recorded by the robot for analyzing motion charac-

teristics of unimpaired patients. However, they were both

limited to characterization of patient kinematics during

unperturbed point-to-point motion, where no active force

regulation was required and no other sensory system (in

addition to the robot) was used for assessment.

In this paper a preliminary study of multimodal analysis

of patient performance is proposed that combines robotic

technology with wearable sensors to provide a quantitative

measure of kinematic, dynamic, and motion planning fea-

tures of upper-limb motor control. To this purpose, a set of

indices originated from robot data and presented in our

pilot study in [57] on a limited number of patients is used

to characterize kinematic and dynamic performance of a

wider population of stroke patients in unperturbed motion

as well as resistive motion, where active force regulation is

required to successfully achieve the motor task. In addition,

a new assessment tool of subject planning functions is

proposed, which is grounded on the study of human

mechanisms of motion generation.

Several studies point out that human motion can be

decomposed in elementary units, named submovements

[43], probably originated by a ‘‘neural controller’’ in the

brain [1, 10, 12, 30, 36, 37, 39, 40, 55]. Like primitives in

natural and computer languages can be combined to gen-

erate a grammar of more complex constructs, the central

nervous system can combine these elementary units to

generate a manifold of more complex motor behaviors.

Our preliminary works on this topic [46, 56] provided

new insights into the existence of a neural controller

embedded in the brain that is discrete, works rhythmically,

and sequentially sends pulse signals (i.e., submovements)

at a specific sample rate to each limb segment, modulated

in accordance with limb intrinsic inertia and muscle

recruitment method. The change of submovement features

with stroke and with recovery can provide evidence of how

the neural controller embedded into the brain is affected by

the pathology and modifies with the therapy.

In this study, a robot-aided motor therapy of the upper

limb was administered to 24 chronic post-stroke patients.

Two robotic machines were used for delivering therapy:

the InMotion2 [18] and the InMotion3 [26]. Patients

underwent a double body functions evaluation: the first one

was based on Fugl-Meyer (FM) and Motor Power (MP)

clinical impairment scales; the second one was based on

the core set of kinematic and dynamic indices in [57],

extracted from the InMotion2 planar machine data, and a

new set of indices on motion planning features grounded

on the submovement composition theory and extracted

from acceleration data (which were measured by a mag-

neto-inertial sensor on the patient hand).

Results of the quantitative upper-limb assessment are

reported in the paper. Robot-based assessment was applied

to all 24 patients and a correlation analysis with clinical

scales was also carried out. The study on human motion

generation based on the rhythmic composition of sub-

movements was developed later. Consequently, it was

preliminarily applied to a comparison group of five healthy

subjects and to five post-stroke patients. An extension of

the study to the 24 post-stroke subjects is envisaged.

2 Methods

2.1 Subjects

The experimental protocol was approved by Local Ethical

Committee; experiments were performed according to the
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institutional guidelines for patient studies and with written

consent of the patients. Twenty-four community-dwelling

persons with chronic stroke (15 men, 9 women) met

inclusion criteria and volunteered to participate. Inclusion

criteria were the following: (1) diagnosis of a single, uni-

lateral stroke at least 6 months prior to enrollment verified

by brain imaging; (2) sufficient cognitive and language

abilities to understand and follow instructions (Mini-

Mental Status Score of 22 and higher); (3) stroke-related

impairments in muscle strength of the affected arm

between grades C1/5 and B3/5 on the MP scale (muscular

strength in the biceps, triceps, and anterior, and lateral

deltoids were measured); (4) stable condition in motor

impairment scale assessed by three consecutive evalua-

tions, 1 week apart, after baseline assessment.

Patients ranged in age from 35 to 84 years (mean ±

standard deviation, 55.9 ± 15.4 years) with an average

time post-stroke of 35.6 ± 26.1 months (Table 1). Eight

subjects had a history of right-hemisphere stroke; 16 had

left-hemisphere damage. None of the subjects were

engaged in conventional occupational or physical therapy

programs during the experimental trials, and none had

received robotic therapy before this research. All subjects

gave informed consent to take part in the study that was

approved by local scientific and ethical committees.

For the study on the submovement composition strategy,

due to the lack of previous works in the literature on the

same approach, a comparison group was required. Five

healthy volunteers (3 females, 2 males) with normal vision

capabilities or vision that was corrected to normal, ranging

in ages from 61 to 74 years (mean ± standard deviation,

65.2 ± 6.1 years) participated in the experiments. All the

subjects were right-handed and were naı̈ve to the purpose

of the protocol. Analogously, the study on pathological

subjects was preliminarily carried out on five chronic

stroke patients answering inclusion criteria described

above.

2.2 Robots and sensory system

The two robotic machines InMotion2 and InMotion3

(Interactive Motion Technologies, Inc.) were used to deli-

ver robotic therapy.

The InMotion2 robot (Fig. 1a) is based on a direct-drive

five-bar-linkage SCARA mechanism that provides two

translational degrees of freedom for shoulder and elbow

Table 1 Patients anamnestic

data and FM and MP scores at

admission and discharge

Subject no. Age Sex Type stroke Months

after stroke

Affected

side

FM/66

Adm

FM/66

Disch

MP

Adm

MP

Disch

1 57 M Ischemic 16 Right 9 14 29 32

2 53 M Ischemic 22 Left 8 12 28 31

3 37 F Ischemic 14 Left 24 34 35 42

4 74 M Ischemic 60 Left 32 39 36 41

5 63 F Ischemic 7 Left 36 43 38 44

6 45 F Ischemic 9 Left 13 21 37 42

7 62 M Ischemic 60 Left 20 25 38 43

8 46 M Ischemic 24 Right 9 13 23 26

9 84 F Ischemic 54 Right 35 42 32 36

10 68 M Ischemic 18 Left 19 26 33 38

11 70 M Ischemic 24 Right 36 44 36 43

12 68 M Ischemic 62 Left 9 13 26 29

13 36 M Ischemic 7 Right 16 24 39 45

14 66 M Ischemic 8 Right 31 39 40 46

15 36 F Ischemic 42 Left 19 25 38 43

16 35 M Ischemic 22 Left 24 31 39 45

17 48 F Ischemic 110 Left 32 39 36 41

18 83 M Ischemic 8 Left 21 27 32 37

19 63 F Ischemic 64 Left 17 23 33 39

20 36 F Ischemic 60 Right 35 43 38 44

21 36 F Ischemic 38 Left 21 28 39 46

22 38 M Ischemic 62 Left 23 30 42 48

23 50 M Ischemic 40 Right 33 40 42 50

24 59 M Ischemic 24 Left 11 16 35 40
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motion. Absolute encoders at each motor and a 6-axis

force/torque sensor at the end effector allow measuring

robot joint positions and interaction forces, respectively.

The InMotion3 (Fig. 1b) is a robotic device for the wrist

rehabilitation. A differential mechanism mounted on a

parallelogram linkage and driven by geared actuators pro-

vides wrist extension–flexion and abduction–adduction,

and pronation–supination.

One robotic machine (i.e., InMotion2) and one magneto-

inertial sensor (i.e., Xsens MTx-28A##G##) mounted at

the robot end effector were used for quantitative assess-

ment of patient motor control.

Robot-based evaluation was limited to the planar

machine because of the twofold motivation of (i) demon-

strating the feasibility and the validity of the proposed

approach, based on objective kinematic and dynamic

measures to assess patients body functions; (ii) comparing

our results with current literature, which still lacks of sig-

nificant clinical studies on distal upper-limb districts. An

extension of the work to distal movements is, however,

envisaged.

2.3 Experimental protocol and assessment

All subjects were administered with 6 weeks of shoulder–

elbow therapy and 6 weeks of wrist therapy, for 12 weeks

total of robot-aided therapy. Subjects were randomly

assigned partly to shoulder–elbow therapy first and partly

to wrist therapy first. They received approximately 1 h of

robotic therapy three times a week.

Training consisted of three games of 320 ‘‘assisted-as-

needed’’ point-to-point movements from the center to eight

outbound targets distributed along a circle at a distance of

0.14 m. Patients were required to move with a self-paced

speed in a maximum time slot of 3 s. The assistance was

tuned based on patient’s performance [25]. In wrist train-

ing, the first two assisted games trained wrist flexion/

extension, abduction/adduction, and combination of these

movements. The last assisted game exercised exclusively

pronation and supination [26].

A paired Student t test was used to verify that the two

groups were comparable at admission to as well as at

discharge from the robotic therapy (i.e., no statistical sig-

nificant difference between them), independently of the

specific training order. Due to the lack in the literature of a

systematic analysis of the possible set of motor measures

that can significantly describe kinematic and dynamic

changes of patients’ body functions following robotic

therapy, attention is mostly focused on demonstrating the

efficacy of the proposed assessment tools more than on the

clinical result on the order effect on patient recovery of

proximal vs distal training, which will be addressed in

future works. Accordingly, evaluation was carried out on

the 24 patients at admission to and discharge from the

robotic treatment, over a timeframe of 12 weeks, inde-

pendently of the training order. It consisted of three main

steps.

The first one was a traditional clinical impairment

assessment based on upper-limb FM [9] and MP [14, 34]

clinical scales.

The second step consisted of performing unperturbed

and resistive motion exercises with the InMotion2 robotic

machine. The robot was completely passive while position

and force sensors recorded subject kinematic and force

data. Each subject was asked to perform five blocks of

unassisted 16 point-to-point movements in the free space

(in the following shortly named unperturbed motion) and,

subsequently, one block of 16 point-to-point movements in

presence of a force field generated by the robot (in the

following shortly referred as resistive motion). The force

field can be modeled as a visco-elastic force field applied

against patient motion. It is generated by means of a pro-

portional-and-derivative control (with constant gains)

pushing robot end effector to the central position of the

workspace. The number of resistive movements was lower

than the unperturbed movements due to the major level of

Fig. 1 InMotion2 (a) and

InMotion3 (b) robotic machines
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fatigue required by the task, but high enough to have a

significant set of trials.

The third step (specifically addressed to study submov-

ement composition in reaching movements) consisted of

performing one block of 20 unassisted point-to-point

movements in one direction with the joint use of the In-

Motion2 robotic machine and the magneto-inertial sensor

mounted at the robot end effector. Subjects were asked to

accomplish the task as fast as possible.

The comparison group was required just to perform the

point-to-point exercises of the third step.

2.4 Data analysis

2.4.1 Indices related to biomechanical features

Hand position, velocity, and interaction force Cartesian

components were online recorded during each evaluation

session through robot sensory system.

Robot data were offline processed to compute the set of

five quantitative indicators, deriving from the linear

regression analysis performed in [57] on a set of 14

redundant indices describing different facets of biome-

chanical motor recovery. The five indicators are briefly

described in the following and are used to measure tem-

poral, spatial, and force features of motor skill recovery.

• Aiming angle synthesizing features related to motion

accuracy and direction. It is defined as the angular

difference between target direction and the direction of

travel from the starting point up to peak speed point

[49, 50]. The angular displacement is expected to

reduce with the therapy.

• Length ratio evaluating the improvement of the path

length. It is formally defined as the length ratio between

the actual patient curve and the desired straight line. An

improvement of patient motion capabilities makes the

actual path tend to the straight line and consequently

makes length ratio tend to one. The length ratio

provides a measure of patient ability to reach the

target, by means of a threshold value of 0.5; index

values under the threshold indicate patient inabilities to

achieve the final point.

• Jerk index measuring the change of motion smoothness

with recovery. It is calculated by dividing the mean jerk

magnitude by the trajectory length. Note that increases

in the jerk index correspond to decreases in smooth-

ness. A decrease of this index following robot training

is expected.

• Useful force synthesizing features related to force

regulation and direction. It measures the amount of

mean force directed towards the target. The useful force

is calculated by weighting the mean force value

(extracted by x, y, z force components) with the aiming

angle index normalized with respect to its maximum

(that is 90� in our case). It ranges between zero, when

the aiming angle is over 90�, and the mean force value,

when the aiming angle is zero. An increase with

recovery is expected.

• Useful work synthesizing features related to work

regulation and direction. It measures the amount of

total work directed towards the target and is calculated

by weighting the total work value with the aiming angle

index normalized with respect to its maximum (that is

90� in our case). The total work is the line integral of

force over the curve described by the patient. It will

vary between zero and total work. An increase with

recovery is foreseen in free motion as well as in

resistive motion.

2.4.2 Motion decomposition algorithm and indices related

to motion planning

Acceleration data were recorded through the magneto-

inertial unit. It provided global hand acceleration (includ-

ing gravity) and its orientation (in terms of rotation matrix)

with respect to a fixed reference frame, defined during

sensor calibration. The rotation matrix allowed calculating

the gravity contribution to be subtracted to the global hand

acceleration. Velocity signals from the robot were syn-

chronized with acceleration data from the magneto-inertial

unit by means of a square wave trigger signal (ranging

between 0 and 5 V), sent from the robot to the magneto-

inertial unit.

The recorded acceleration data were twice differentiated

to obtain jerk and snap signals. A Savitsky-Golay filter on a

250 ms window of acceleration data (4th order) was used

for differentiation. It is a low-pass filter with cutoff fre-

quency of 6.83 Hz [50].

Velocity signals from the robot were off-line processed

in order to extract submovements composing subject

overall motion. As reported in Eq. (1) and shown in Fig. 2,

minimum-jerk submovements can be uniquely described

by three parameters—the amplitude of the pulse signal, i.e.,

peak value A, the time at which the peak occurs t, and the

duration of the submovement w:

v sð Þ ¼ A

1:875
30

s� t þ w
2

w

� �2

�60
s� t þ w

2

w

� �3
 

þ30
s� t þ w

2

w

� �4
!

t � w

2
� s� t þ w

2

¼ 0 otherwise ð1Þ

Relying on the hypothesis delineated in Sect. 1 about the

existence of a rhythmic neurocontroller, sequentially
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sending to upper-limb pulse signals at a specific sample

rate, duration w and peak time t were kept constant whereas

amplitude A varied. This also entailed that, for each

subject, the initial part of the movement, not being

modified by overlapping with previous submovements,

contained all the constant information about the pulse

signals.

Accordingly, the approach presented in [10] based on

acceleration, jerk, and snap signals was followed to iden-

tify the beginning of the bell-shaped submovements and

the interpeak distance (related to peak time t), being a

constant among different trials. Interpeak distance (named

s1–j1 in Fig. 3) is the temporal distance from movement

beginning and the insurgence of the second submovement,

which is identified through the first inflection in the

acceleration profile. Duration w of a single submovement

can be calculated by multiplying the interpeak distance for

the constant fraction of the analytical curve that describes

the bell-shaped velocity profile (Fig. 3). Thus, the first

submovement has duration w starting from the beginning

of the movement, the second submovement is shifted in

time of the interpeak distance and has the same duration w,

and so on.

Given w and t, the amplitude of each submovement in

the sequence was determined by means of the branch and

bound optimization algorithm, described in detail in [43].

The optimizer finds the best velocity peak for each sub-

movement able to minimize the difference between the

recorded velocity profile and the reconstructed velocity

profile given by the superposition of the identified

submovements.

Subject motor behavior can be described in terms of

composition strategy applied by her/him to plan and gen-

erate the arm point-to-point motion. The following indices

are proposed to analyze such a strategy:

• Movement duration, later called total duration. It is

measured by means of the execution time, defined as

the time for performing a point-to-point movement,

elapsed from movement onset (i.e., time instant where

velocity exceeds a threshold of 10% of peak velocity

[49, 50]) and movement termination (i.e., time instant

where velocity goes below a threshold of 10% of peak

velocity). Movement duration is expected to reduce

with recovery.

• Temporal duration of each submovement w, later called

DT_submov. As shown in Fig. 2 it is one of the three

main features of submovements. It is highly dependent

on the subject and the limb inertia. Thus, each subject is

expected to have her/his own submovement duration,

which increases with the inertia of the moved body

district, but it is constant with the training. The

experimental trials allow investigating if DT_submov

is intrinsic in the patient, independently of the patho-

logical level, or if it varies with recovery.

Fig. 2 Main submovement features: duration, peak value, and

interpeak temporal distance (adapted from [44])

Fig. 3 One single submovement. The beginning of movement is

identified by a local max in the snap (s1), the first flex of the

acceleration corresponds to a max of the jerk and a zero of the snap

(j1), and the first peak of the acceleration corresponds to a zero in the

jerk and a min in the snap (a1). The first peak in the velocity profile

(v) corresponds to a zero in the acceleration, a min in the jerk, and a

zero in the snap. The temporal distance from s1 and j1 is a constant

fraction of the whole movement. (Adapted from [10])
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• Submovement frequency, called rate_submov. It is

defined as the inverse of interpeak distance and

represents the rate that the neurocontroller uses to

produce motion units in sequence. Coherently with

DT_submov, it is expected to keep constant with

training.

• Submovement numbers, i.e., N_submov, that is linked

to motion total duration, submovement duration and

submovement frequency. They are regarded as the

number of consecutive motion units to be gradually

produced to reach the target. Coherently with move-

ment duration, a reduction with training is expected.

• Peak speed: It is the peak value of patient velocity. An

increase of peak speed is expected, being subjects

required to move as fast as possible towards the target.

• Peak time%. It is defined as the ratio between the time

instant of the peak value of the velocity profile and the

total motion duration. It is expected that, contextually

with the increase of velocity, a time shift of the peak

speed to the middle of the motion time interval is

observed, in compliance with the motion constraint of

maximizing smoothness. Consequently, a value of Peak

time% tending to 0.5 is foreseen.

2.5 Statistics

Paired Student t tests were used to (i) verify that the pop-

ulation of subjects was homogenous at admission as well as

at discharge; (ii) measure the statistical significance of the

change of robot-based measurements from admission to

discharge.

A Wilcoxon signed-rank test was used to assess the

research hypothesis that changes in body functions between

admission and discharge evaluation scores would be sta-

tistically significant.

A linear regression analysis was performed with the

purpose of searching for a correlation between FM and MP

clinical scores and quantitative indicators. In the regression

analysis, the clinical scores were taken as dependent vari-

ables and the indicators were regarded as independent

variables. Pearson coefficient R was used to define the level

of correlation.1

3 Results

3.1 Clinical findings

Robot-aided motor therapy led to significant reduction in

motor impairment of the paretic limb from admission to

discharge. Statistically significant gains were found with

the Wilcoxon test on the FM (22.26 ± 9.841 (mean ± SD)

at admission and 28.83 ± 10.87 (mean ± SD) at dis-

charge, P \ 0.0001, z = -4.23) and the MP (35.00 ± 4.93

(mean ± SD) at admission and 40.22 ± 6.07

(mean ± SD) at discharge, P \ 0.0001, z = -4.23) clini-

cal scales.

3.2 Robot-based evaluation

Figure 4 reports the motion trajectories of one representa-

tive patient during a point-to-point evaluation task in pre-

treatment and post-treatment phases, respectively. It is

evident the improvement towards more linear trajectories

over the 80 trials and, mainly, the improved capability of

extending the arm towards the more distal targets, in the

top of the plot.

Tables 2 and 3 report the results of robot-based evalu-

ation during unperturbed and resistive motion, respec-

tively. Patients globally improved kinematic and dynamic

performance and all indices varied in the expected direc-

tion with statistically significant changes. In accordance

with [49, 50], indices related to motion velocity and

smoothness were not reported for resistive motion, being

meaningless for perturbed movements. As regards dynamic

performance, it can be observed that the amount of total

force and total work directed towards the target (namely

the useful force and the useful work) significantly

increased in unperturbed as well as in perturbed motion, as

a consequence of the combined improvement of motion

direction and force regulation.

3.3 Correlation analysis

Tables 4 and 5 report the results of the linear regression

analysis carried out to study correlation between clinical

measures (i.e., FM and MP scores) and quantitative indi-

cators, obtained by the robot data.

In the case of unperturbed motion (Table 4), aiming

angle and jerk index moderately correlated with statistical

significance with FM/66. Aiming angle correlation with

MP was stronger. Finally, neither length ratio index nor

force and work indices showed significant correlation with

the clinical scores.

Table 5 reports regression statistics for the case of

resistive motion. Results on kinematic indices were com-

parable to the case of unperturbed motion, with in general

weaker correlation coefficients. The main difference with

data in Table 4 is that force and work indices significantly

correlated with clinical scores, being the task addressed to

stimulate force control. Mainly for two indices, aiming

angle and useful force, correlation with MP was high,

while correlation with FM was moderate.

1 0 \ R B 0.3 indicates a weak correlation; 0.3 \ R B 0.7 indicates

a moderate correlation; R [ 0.7 indicates a strong correlation [19].

Med Biol Eng Comput (2011) 49:1131–1144 1137

123



3.4 Submovement-based evaluation

Figures 5 and 6 report hand trajectories and velocity pro-

files (recorded in red and reconstructed in blue) of a rep-

resentative subject from the comparison group, and a

representative stroke patient during a point-to-point eval-

uation task in pre-treatment and post-treatment phases,

respectively. It is evident the improvement towards more

symmetric bell-shaped velocity and, mainly, the improved

capability to move smoothly, with less corrective sub-

movements towards the target, in a way similar to the

healthy subjects.

The reconstructed velocity profile originates from the

composition of sequences of submovements. The fitting

Fig. 4 Plot of 80 trials of unperturbed motion for a representative subject. The reference straight line is in green and actual patient motion is in

blue. (Color figure online)

Table 2 Biomechanical indices

for unperturbed motion task
Kinematic index Admission (mean ± SD) Discharge (mean ± SD) t23 P R

Motion direction

Aiming angle (�) 23.81 ± 15.92 14.24 ± 10.25 5.88 \0.001 0.73

Path length

Length ratio 0.68 ± 0.13 0.76 ± 0.09 -3.85 \0.001 0.74

Motion smoothness

Jerk index (1/s3) 2.12 ± 0.19 1.96 ± 0.14 4.73 \0.001 0.75

Force exerted during motion

Useful force (N) 1.42 ± 0.53 1.64 ± 0.52 -2.47 0.021 0.42

Work expended during motion

Useful work (J) 0.15 ± 0.06 0.18 ± 0.06 -2.71 0.012 0.49

Table 3 Biomechanical indices

for resistive motion task
Kinematic index Admission (mean ± SD) Discharge (mean ± SD) t23 P R

Motion direction

Aiming angle (�) 28.51 ± 23.81 17.29 ± 18.80 3.78 0.001 0.53

Path length

Length ratio 0.57 ± 0.19 0.64 ± 0.13 -2.86 0.009 0.47

Force exerted during motion

Useful force (N) 8.25 ± 4.00 10.13 ± 3.51 -2.35 0.028 0.51

Work expended during motion

Useful work (J) 0.80 ± 0.58 1.08 ± 0.66 -2.69 0.007 0.47

1138 Med Biol Eng Comput (2011) 49:1131–1144

123



Table 4 Correlation between

robot-based indicators and

clinical scores for unperturbed

motion

Performance index FM/66 MP

R (Pearson

coefficient)

P (\0.05) R (Pearson

coefficient)

P (\0.05)

Movement direction

Aiming angle (�) 0.69 0.0002 0.79 \0.001

Path length

Length ratio 0.34 0.1 0.53 0.008

Motion smoothness

Jerk index (1/s3) -0.53 0.008 -0.49 0.014

Force exerted during motion

Useful force (N) -0.12 0.58 0.24 0.26

Work expended during motion

Useful work (J) -0.11 0.60 0.26 0.21

Table 5 Correlation between

robot-based indicators and

clinical scores for resistive

motion

Performance index FM/66 MP

R (Pearson

coefficient)

P (\0.05) R (Pearson

coefficient)

P (\0.05)

Movement direction

Aiming angle (�) -0.57 0.005 -0.72 \0.001

Path length

Length ratio 0.37 0.08 0.49 0.02

Force exerted during motion

Useful force (N) 0.49 0.017 0.77 \0.001

Work expended during motion

Useful work (J) 0.57 0.005 0.58 0.004

Fig. 5 Hand trajectory and

velocity profile for one

representative healthy subject

(recorded velocity is in red,

reconstructed velocity is in

blue). The resultant vector of

hand position and velocity is

reported over time. (Color figure

online)
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error, i.e., the mean squared error between recorded and

reconstructed velocity profiles, is 1.43e-4 m/s.

Table 6 reports submovement features for the compar-

ison group, whereas Table 7 shows the same features for

five stroke patients. Future analysis on a wider number of

subjects will be carried out to study intra-subject and inter-

subject variability. Although considering that data on

stroke subjects are very preliminary due to the poor number

of subjects, the following features can be observed:

– A quite constant value for submovement duration and

rate, thus confirming the hypothesized subject-specific

features;

– A progressive reduction of motion total duration

accompanied by a reduction of submovement number,

which tend to the average value observed in the

comparison group (i.e., 883 ms and 15 submovements);

– An increase of peak speed, as a result of training;

– A shift of the velocity peak to the center of the time

interval, thus tending to approximate a symmetric bell-

shaped velocity profile. This is perfectly aligned with

the optimization minimum-jerk strategy of maximizing

smoothness.

4 Discussion

Clinical evidence in physical medicine and rehabilitation

clearly demonstrates that there is an important and

increasing demand for innovative therapeutic solutions to

address a wide variety of pathologies; for instance, patients

experiencing severe stroke events have a high probability,

in most cases higher than 50%, to retain severe disabilities

for the rest of their lives. The positive correlation of the

prevalence of many neuromotor diseases with age can give

a good idea of the social relevance of this research area.

Many industrialized societies predict that in the near future

20–35% of their population will be over the age of 65 and

in need of rehabilitation support.

Robotics can greatly contribute to physical medicine and

rehabilitation from a twofold perspective: assisting therapy

Fig. 6 Hand trajectory and reconstructed velocity profile (in blue) for one representative stroke patient at admission (a) and discharge (b). In red
the recorded velocity profile is shown. (Color figure online)

Table 6 Submovement-related performance indices in healthy subjects

Subject

no.

DT_submov (ms)

(mean ± SD)

Rate_submov (Hz)

(mean ± SD)

Total duration (ms)

(mean ± SD)

N_submov

(mean ± SD)

Peak speed (m/s)

(mean ± SD)

Peak_time%

(mean ± SD)

1 290 ± 42 20.83 ± 4.17 775 ± 95.74 15 ± 2 0.39 ± 0.03 0.49 ± 0.05

2 285 ± 60 21.03 ± 4.20 725 ± 28.87 12 ± 1 0.34 ± 0.02 0.58 ± 0.04

3 255 ± 60 23.25 ± 6.95 1153 ± 49.24 23 ± 3 0.24 ± 0.01 0.42 ± 0.03

4 240 ± 25 25.01 ± 6.74 950 ± 57.74 20 ± 3 0.29 ± 0.09 0.46 ± 0.10

5 300 ± 48 20.1 ± 4.19 813 ± 47.87 13 ± 2 0.40 ± 0.07 0.47 ± 0.02
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administration and providing objective patient assessment.

However, nevertheless therapy is performed through

robotic machines, body functions, and structures assess-

ment is typically carried out by means of traditional clin-

ical impairment scales [31], which can suffer from being

subjective, operator-dependent, qualitative. On the other

hand, robots can measure position and force with high

accuracy and frequency [5]. In this perspective, the robot

sensory system (possibly in addition to other sources of

information) plays a fundamental role. Data from the

patient (such as kinematic, dynamic and physiological

data) could be processed for a continuous analysis of her/

his motion intentions and physiological state. These

information could be used to (1) online update robot con-

trol during the execution of a motor exercise in order to

guide, help or force the patient limb toward the target in

accordance to his/her residual motion capabilities; (2)

apply corrective actions in case of incorrect motion; (3)

provide therapists with objective, accurate measurements

of subject’s body functions, thus enabling therapists to

track subject progress in therapy, evaluate the efficacy of

various interventions and customize the machine for each

particular user.

This paper presents a preliminary study of quantitative

assessment of biomechanical and planning functions of

stroke patients treated with upper-limb robot-aided motor

therapy. A clinical study on 24 chronic post-stroke patients

was carried out. The InMotion2 and InMotion3 robotic

machines were used to deliver therapy. A double evalua-

tion of subject motor performance following robotic

training was carried out. The first one was based on tra-

ditional clinical impairment scales, in order to assess short-

term changes in chronic stroke patients and compare them

with the literature. The second one consisted of biome-

chanical analysis of motor functions, grounded on robot-

based kinematic and dynamic evaluation during unper-

turbed and perturbed point-to-point motion, and analysis of

planning functions, based on acceleration data from a

magneto-inertial sensor and submovement identification.

The analysis of planning functions relies on our pre-

liminary studies on the existence of a neural controller,

embedded in the brain, that is discrete, works rhythmically,

and sequentially sends pulse signals (i.e., submovements)

at a specific sample rate to each limb segment [46, 56].

The concept of discrete neural controller is not new in

the literature. Most models of neuro-controllers responsible

for controlling upper-limb movements with signal-depen-

dent neuromuscular noise are grounded on the concept of

‘‘discrete controller’’, intermittently sending discrete cor-

rections [1, 10, 12, 30, 36, 37, 39, 40, 55]. This theory is

still controversial and a number of works state that sub-

movements are actually the result of a single continuous

neuro-controller [2, 21, 48]. However, it is quite implau-

sible that a continuous control mechanism could produce

velocity profiles that can be decomposed in sub-elements

all equally shaped. Moreover, it is worth observing that a

continuous control process should predict a relatively fixed

correction latency, which is determined by the sensori-

motor delay [47]. As recently demonstrated in monkeys by

Fishback et al. [10, 11] there is not such fixed correction

latency, but rather a wide range of correction latencies. The

data reported in the literature so far seem to be more

consistent with a mechanism of intermittent control rather

than with a continuous control process.

Table 7 Submovement-related performance indices in stroke subjects

FM/66 MP Adm DT_submov

(ms)

Rate_submov

(Hz)

Total duration

(ms)

N_submov Peak speed

(m/s)

Peak_time%

Subject 1

Admission 20 38 240 ± 48 25 ± 4.3 3250 ± 108 77 ± 1 0.09 ± 0.02 0.14 ± 0.06

Discharge 25 43 260 ± 66 23 ± 4.7 2200 ± 283 48 ± 7 0.17 ± 0.013 0.29 ± 0.029

Subject 2

Admission 29 43 250 ± 54 25 ± 6.7 1575 ± 189 31 ± 2 0.22 ± 0.013 0.30 ± 0.062

Discharge 35 50 240 ± 42 25 ± 3.9 1025 ± 126 23 ± 3 0.29 ± 0.046 0.43 ± 0.044

Subject 3

Admission 10 23 240 ± 42 25 ± 2.9 1975 ± 238 53 ± 2 0.15 ± 0.029 0.40 ± 0.065

Discharge 19 27 220 ± 36 28 ± 2.8 1507 ± 92.9 41 ± 3 0.20 ± 0.026 0.52 ± 0.058

Subject 4

Admission 27 41 300 ± 48 20 ± 4.2 1485 ± 38.7 27 ± 4 0.21 ± 0.022 0.33 ± 0.022

Discharge 34 46 260 ± 78 23 ± 3.9 765 ± 46.5 16 ± 2 0.35 ± 0.023 0.46 ± 0.021

Subject 5

Admission 33 43 280 ± 42 23 ± 3.9 1525 ± 125 30 ± 3 0.22 ± 0.046 0.33 ± 0.044

Discharge 39 47 300 ± 48 20 ± 4.2 925 ± 38.9 15 ± 2 0.30 ± 0.022 0.51 ± 0.008
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On the other hand, as regards the generation of pulse

signals with specific sample rate, it can be observed in the

experimental trials reported in a number of studies [10, 30,

54] that submovements appear to be characterized by

constant behavior in terms of duration, frequency, and

mutual overlapping and a properly optimized scaling of

amplitude and number. Accordingly, for each subject, the

pulse signals are supposed to have the same shape (i.e.,

‘‘bell-shaped’’ velocity commands [38]), duration and

mutual overlapping, and differ in their velocity peak value.

Moreover, these bell-shaped velocity profiles can be ana-

lytically expressed through three parameters, i.e., duration,

overlapping, and peak value, in order to satisfy the mini-

mum-jerk constraint [1, 12, 30].

The study of the mechanisms involved in motor plan-

ning and control in chronic stroke through the analysis of

the change of submovement features is new in the litera-

ture. Consequently, it required carrying out a preliminary

analysis on a comparison group, which is reported in this

paper.

Globally, the results of this study reinforced earlier

findings that short-term, goal-directed robotic therapy

could significantly improve functions and structures of the

exercised limb segments in persons with chronic stroke [5,

42, 52]. An average increase of FM scores by 9.9% and MP

scores by 7.4% from admission to discharge were elicited.

Biomechanical assessment of motor functions was car-

ried out through a core set of five performance indicators

extracted in a pilot study in [57] over a set of fourteen

redundant biomechanical indices, by means of a multi-

variate regression analysis. They resulted to be the mini-

mum set of indices able to quantitatively describe facets of

motor recovery related to kinematic and dynamic changes

in chronic stroke patients. In this paper they are further

investigated and validated on a larger number of patients,

thus contributing to enforce their validity and statistical

significance.

The analysis of biomechanical data in unperturbed and

perturbed tasks of reaching (Tables 2, 3) showed that all

the performance indicators changed in the expected

direction. It can be regarded as a result of the re-learning

process, which improved subject capabilities of moving

and coordinating the degrees of freedom of the upper limb,

with main effect on elbow extension. As regards force and

work indices, as expected, higher changes were obtained in

the resistive tasks; however, their variation was always

significant, being the result of two components, one

dynamic (i.e., force) and the latter kinematic (i.e., direc-

tion). It is worth noticing that useful force variation, which

resulted slightly above the significance threshold in [57],

are now widely significant because of the increased number

of subjects. The choice of using useful force and useful

work (instead of pure force or work) as significant indices

for describing dynamic features was due to the type of

robotic training consisting of assisted kinematic-goal-

directed exercises, which stimulated the improvement of

motion kinematics more than force control. In fact, given

the evidence in the literature on patient behavior prone to

manage many independent elements in reaching move-

ments by means of compensatory actions [6, 29, 51], we

supposed that, when the patient was required to reach only

kinematic targets, she/he also applied compensatory strat-

egies which avoided him/her to control other independent

elements, such as force.

The linear regression analysis between FM and MP

scores and performance indices showed that the two clin-

ical scales correlated with the same indices, even if mod-

erately in most cases. Correlation was weak for useful force

and useful work calculated for unperturbed motion. The

achieved results confirmed and enforced our preliminary

findings in [57]. Correlation with MP was generally

stronger than correlation with FM. This difference accen-

tuated in the resistive motion task. Pearson coefficients

between force and work variables and MP scores ranged

between 0.58 and 0.77 (Table 5). Correlation with FM

measures was still present but it was moderate. In addition,

it is worth observing in Table 4 that correlation coefficients

with path length index (i.e., length ratio) and smoothness

index (i.e., jerk index) were very low for both clinical

scales. This demonstrates that neither FM nor MP accounts

for performance related to motion velocity and path length,

and weakly accounts for motion features related to

smoothness.

The analysis of features involved in motor planning

pointed out important results, even if preliminary. Firstly,

all the results were consistent with the theory on the

existence of a discrete neuro-controller rhythmically pro-

ducing bell-shaped velocity pulses during motion planning.

The analysis on the comparison group (Table 6) showed

that for each subject, constant values of submovement

duration and frequency can be identified and that they can

be regarded as subject invariances.

On the other hand, modifications in planning strategies

can be only related to changes in submovement amplitude,

number and order. Similar results were observed in the five

stroke patients (Table 7). They were able to plan upper-

limb motion as sequences of submovements with constant

duration and frequency at the pre-treatment as well as the

post-treatment phases. However, for a given task, the

planning strategy modified with training in terms of num-

ber of submovements, order and corresponding amplitude,

and time of application of the peak speed, by tending to

approximate the behavior observed in the age-matched

healthy subjects. For instance, from admission to dis-

charge, for patient 1 the number of submovements reduced

of 29, motion duration decreased of 1050 ms, peak speed
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increased of 0.08 m/s and peak time changed of 15%; on

the other hand, for patient 2 the number of submovements

reduced of 9, motion duration decreased of 550 ms, peak

speed increased of 0.07 m/s, and peak time changed of

13%. It is also worth noticing that the two patients had two

different levels of disability, being patient 1 more severe

than patient 2. Correspondingly, submovement features of

patient 2 were closer to healthy subjects than the other one.

From the literature it can be observed that, in healthy

subjects, slower movements aimed to higher accuracy are

characterized by more submovements than faster move-

ments, as an indirect measure of the major involvement of

feedback control with respect to feedforward. On the other

hand, this study shows that in stroke patients slow move-

ments are conditioned by their reduced motor capabilities

more than by the search for accuracy. Therefore, slow

movements have more submovements and lower accuracy

than faster movements. The number of submovements can

still be regarded as an indirect measure of a continuous

feedback control action, which tries to apply long sequences

of corrective actions to reach the target. However, along

with recovery, motor capabilities for a given task improves

together with the efficiency of the feedback control, thus

resulting in the reduction of total motion duration and,

contextually, in the reduction of the number of submove-

ments with an increase of the accuracy.

This study was limited to proximal upper-limb evalua-

tion of a chronic stroke population and to a very pre-

liminary analysis of the modification of patient planning

and control strategy over training. However, it lies the

foundations for important studies on patient motor control

and provides a set of indices related to biomechanical and

planning facets of motor recovery potentially applicable to

other body districts, and to acute and subacute stroke

population as well as to other pathologies. Thus, relying on

the preliminary achieved results, future efforts will be

addressed to (i) provide a clinical interpretation of the

defined set of indices; (ii) extend the study on submove-

ment composition strategy to a higher number of patients,

in order to provide a statistical evidence of the achieved

results; (iii) extend the study to distal upper-limb districts,

starting from the same set of 24 patients already trained

with the InMotion3 robotic machine; (iv) correlate accel-

eration data with EMG signals for retrieving the origin of

submovements in the muscular activity; (v) further inves-

tigate basic mechanisms of sensory-motor recovery, in

combination with brain imaging technologies.

In conclusion, a preliminary study of multimodal anal-

ysis of human functions undergoing upper-limb robot-

aided therapy was presented in this paper. The two major

contributions provided by this study consist of (i) analyzing

upper-limb biomechanical features by means of a novel

core set of robot-based indices assessing kinematic and

dynamic performance; (ii) studying motor planning func-

tions by means of submovement decomposition algorithms.

The use of performance indicators grounded on submove-

ment features is completely new in the literature and pro-

vides promising insights into recovery assessment of both

motor planning functions and control in stroke patients.
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