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Abstract A growing awareness of the potential for

machine-mediated neurorehabilitation has led to several

novel concepts for delivering these therapies. To get from

laboratory demonstrators and prototypes to the point where

the concepts can be used by clinicians in practice still

requires significant additional effort, not least in the

requirement to assess and measure the impact of any pro-

posed solution. To be widely accepted a study is required to

use validated clinical measures but these tend to be sub-

jective, costly to administer and may be insensitive to the

effect of the treatment. Although this situation will not

change, there is good reason to consider both clinical and

mechanical assessments of recovery. This article outlines the

problems in measuring the impact of an intervention and

explores the concept of providing more mechanical assess-

ment techniques and ultimately the possibility of combining

the assessment process with aspects of the intervention.

Keywords Outcome assessment � Rehabilitation �
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1 Introduction

Strokes, transient ischemic attacks and traumatic brain

injuries are conditions that are all related in that there is

vascular damage that ultimately causes neuronal death in

the brain. Trends in the management of stroke as an

emergency condition have resulted in a better survivability,

but strokes still remain as the leading cause of disability in

the developed world [19, 35]. There is strong evidence that

early, intense and challenging neurorehabilitation pro-

grammes have a significant effect on the functional out-

come following a stroke [37], but the cost of administering

these treatments tends to be high. The full cost of the stroke

should consider the treatment cost combined with the

ongoing costs of caring for a person following a hospital

discharge; however, very few economic models consider

this link and the pressure remains to simply reduce the

treatment cost.

Intelligent machines and robotic systems may provide a

good method for reducing the hospitalisation costs as well

as providing new ways of delivering retraining therapies,

whilst monitoring and assessing recovery. A reduction in

cost may be possible by the simple expedient of ensuring

that neurorehabilitation therapists focus on specifying and

monitoring progress, and allowing machines to deliver

specific therapies to the individual [14, 29, 39]. It is

probable that the reduced staff cost will outweigh the

equipment costs but this will only be accepted if there is no

negative effect on patients. An additional justification for

introducing machine facilitation of therapies is the poten-

tial to replace aspects of treatment that are difficult, dan-

gerous or repetitive for the therapist. For example, if

machines provide partial body weight support in gait

retraining, then additional therapists are not needed to

guard the person against a fall. Likewise relearning gait
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often requires a therapist to do the difficult and repetitive

task of moving the patient’s foot in a specific pattern during

walking, a task that may be more readily handled by a

machine. These two functions are available in lower limb

retraining machines such as the Lokomat,1 although further

research is still needed to add higher levels of sensing and

intelligence into the control systems to allow monitoring

and adaptations to the patient whilst giving the therapist a

high level of confidence that the machine will respond in a

clinically appropriate way. A third advantage of machine

supported neurorehabilitation is that there may be therapy

or assessment actions that can only be achieved by fast and

sensate machines. Continuous quantitative monitoring,

adaptive control and the ability to impose large and short

perturbing forces onto the limb as a way of measuring

impedance are all examples.

Because of a growing pressure to reduce hospitalisation

costs it is reasonable to surmise that increasingly rehabil-

itation will move away from the hospital to specialised

units, the home and local medical health facilities. A

possible scenario is demonstrated in Fig. 1 where the

individual is treated at multiple sites, depending on their

level of health and needs. Thus, although treatment might

begin in a specialised unit in a general hospital, the long-

term rehabilitation needs are best met in a specialised

rehabilitation unit, or (if the person is responding well) as

an outpatient in a local hospital. This model is compatible

with the concept of early supported discharge where, if

sufficient care is available in the community, the patient

can be discharged early from the stroke unit thus realising a

direct financial gain for the healthcare funder [40]. New

methods of providing machine based interventions for

stroke treatment need to accommodate this trend by

increasing the levels of customisation of the treatment, and

by allowing the treatment to move seamlessly with the

patient through the health system. This can be combined

with the recognition that machine delivered therapies can

provide motivating and challenging therapies, and improve

the socialisation of the individual and their carers

throughout the recovery process [14, 26]. Not only must

the technologies that provide therapies be designed to

accommodate this trend, but also new high quality

assessment techniques are needed that can monitor the

impact of treatments.

This article considers assessment techniques for advanced

machine interventions that include robotics, and is structured

as follows: first the manuscript investigates the traditional

clinical evaluation of stroke treatment and considers new

techniques for assessment of clinical effect. It then goes on to

identify possible new methods that could be sensitive to

parameters relevant to stroke recovery, that is measures of

recovery attributes at the muscular-skeletal level, the pri-

mary reflexes, and central nervous system. These methods

rely on observing the imposed forces and velocities on the

individual. These observations can be correlated to exter-

nally imposed forces, torques, position perturbations, etc. A

framework is established to allow separation of measures at

sub-levels (muscular-skeletal recovery, recovery of reflex

loops, motor patterns and short term skills). The article

makes a further observation of the methods needed in addi-

tion to mechanical methods (in particular MRI and fMRI

based) to evaluate the abilities of a person to embed skills.

Ultimately, it is the combination of the classical clinical

measures, the mechanical measures and measures based on

brain imaging that will give the most complete picture of the

recovery process. Ultimately more precise knowledge will

allow therapies to be chosen that favour the best output for

each individual in this highly varying condition.

2 Challenges of assessing robots in neurorehabilitation

Most evaluations of robotic aided interventions in stroke

rehabilitation have tended to consider only a single inter-

vention group. It is thus difficult to distinguish between the

effects of the robot intervention, any other rehabilitation

treatments and any spontaneous recovery. The reason this

occurs is that often there is a high level of effort invested in

the engineering of the device, and with a consequent dif-

ficulty of producing sufficient systems for a reasonably

large study to take place. The cost of production of reha-

bilitation devices is significantly higher than the cost of

producing drug treatments so even if a controlled trial

occurs, the level of exposure and intensity is limited when

compared to a drug trial.

There are broadly two intervention methods that can be

practically considered in robot-assisted neurorehabilitation.

The first is to control the subject against themselves, that is

to submit half the subjects to a condition where they

receive robot treatment, along with any other treatments, in

Fig. 1 In the future stroke recovery management will probably

require managing patient transitions between different recovery

facilities while providing uninterrupted information and communica-

tion (ICT) support

1 Hocoma, Switzerland.
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the first phase followed by a second phase where only the

other treatments continue. The second group has this order

reversed. There are any number of variations on this model,

such as including measurements during a baseline and a

washout period.

The second controlled intervention is the classic ran-

domised control trial (RCT) where subjects are divided into

a treatment and a control group, often matched for

parameters such as age or severity of stroke. This is a

widely accepted method for evaluating the impact of a

treatment but in the case of robots for neurorehabilitation,

and is very costly to evaluate.

Both interventions suffer from the fact that the trial

subjects cannot be blinded to the intervention, that is to say

they are likely to know if they are receiving robot-assisted

treatments [10].

A recent multi-centred RCT study of one particular

robot intervention (MIT-manus) considered three compar-

ison groups, one receiving robot intervention (repetitive

proximal and distal arm therapies), one receiving intensive

comparison physiotherapies and the third receiving the

usual care [23]. The study provided 36 sessions of treat-

ment over 12 weeks for subjects who were at least

6 months after their original stroke. The conclusion was

that for this particular treatment, the robot intervention was

comparable with the intensive therapy and outperformed

usual care. Cramer [6], in the editorial for this journal

issue, observed that there were several unusual factors,

such as the high levels of depression in the subjects. In

addition, since this was a Veterans Affairs (VAs) sponsored

study, the reported results reflect recruitment of subjects

from within the VA hospital system rather than the general

stroke population. Cramer observes robot therapies have

great potential and can provide therapy modes not explored

by this study. Kwakkel et al. [21] review a number of RCT

studies in robot-assisted therapies on the upper limb with

inconclusive results, and argue for better measures to dis-

criminate between recovery of functional abilities (where

compensation techniques such as trunk movement might be

used) and the genuine recovery of motor skills.

Whilst the randomised control trial is considered the

gold standard for the evaluation of new treatment inter-

ventions, the model presents a number of challenges for the

evaluation of novel interventions in stroke, for a number of

reasons.

1. The complexity of the brain and nervous system means

that it is impossible to identify ’similar’ strokes.

People who have had a stroke present with multiple

problems due to these damaged structures. The

impairment of function varies depending on the size,

location and nature of the cerebrovascular insult [16],

and is compounded by allied problems ranging from

speech impairment to emotional and psychological

difficulties. Hence the formation of a homogeneous

sample is substantially hindered.

2. A well-controlled RCT should ideally have a well

defined treatment, for example, a drug dosage that can

be related to age, gender, weight etc. The variability of

each individual’s post-stroke presentation will inform

the type and amount of exercise intervention that is

both appropriate and acceptable to the person with

stroke. If the intervention is too prescriptive, it runs the

risk of being incomprehensible, ineffective or insuffi-

ciently stimulating or engaging for the person with

stroke.

3. Re-learning motor skills after stroke requires repetition

of task-oriented, functional movements. The level of

repetition reached in routine intervention is likely to be

insufficient to optimise recovery and rehabilitation,

and additional therapy has been shown to be limited

unless it is in the region of 900–1200 min, i.e.

approximately 30 min daily for up to 6 weeks.

Compliance with augmented therapy programmes has

traditionally been low [9].

4. In general, it is not possible to blind the person with

stroke from the intervention hence the best that is

achievable is a randomised controlled trial where the

person doing the assessment measures is blinded to the

intervention but the subject is not.

5. A wide choice of clinical measures is available

(examples used in some studies on the impact of

robots in neurorehabilitation are given in Table 1) and

must be selected for sensitivity, ease of use, floor and

ceiling effects etc.

Table 1 A subset of available clinical scales for assessment of

parameters relevant to stroke recovery

Scale Time to administer

(mins)

Tardieu scale S

Modified Ashworth scale S

Orpington prognostic score ss 5

Stroke impact scale ss 15–20

Barthel index A 2–20

Functional independence measure A 30–45

Fugl-Meyer motor scale F 20

Action Research arm test F 7–10

Chedoke-McMaster stroke assessment scale F 45–60

Motor assessment scale F 15–60

Rivermead motor assessment F 45

Wolf motor function test F 30

ss stroke specific, S spasticity, F function, A activities of daily living
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6. Given the complexities and differences between and

within health services and systems, multi-centred trials

for rehabilitation interventions prove difficult at the

level of the control of the intervention and the

measurement of various outcome variables. Hence

the recruitment of sample sizes that are sufficiently

large is a challenge.

Recent experience by one of the authors (ES) has dem-

onstrated that a mixed method approach yields rewarding,

robust and relevant information for the evaluation of novel

ways of mediating exercise intervention after stroke [9, 10,

11]. Using the Medical Research Council’s framework for

the development of RCTs in the evaluation of complex

interventions, Galvin et al. used a variety of quantitative

and qualitative research methods to design and evaluate

‘family mediated exercise intervention after stroke’

(FAME). In a pre-clinical or theoretical phase, a systematic

review and meta-analysis was completed to understand the

research evidence about augmented exercise interventions

after stroke with a particular emphasis on which participants

were best suited, what dose was required and what com-

pliance issues emerged. In the second phase (modelling

phase), semi-structured interviews and focus groups were

carried out with the 100 family members/friends of people

with stroke, 75 people with stroke and 10 expert physio-

therapists. The combination of these studies resulted in the

design of a patient centred, evidence-based intervention that

was informed by the beneficiaries, that is people with stroke

and their families. The final phase was a multi-centred,

controlled trial where the person taking the measures was

blinded to the intervention, and followed the design shown

in Fig.2, with 20 subjects in each arm. Clinical measures

were made at baseline, 8 weeks and 3 months, the latter to

determine if the effects of the intervention were persistent.

The intervention consisted of 1200 min of exposure to the

treatment over the 8-week period, and with this level of

intensity the study was able to show a positive effect in the

chosen clinical measures.

The RCT was combined with a nested qualitative

analysis with in-depth semi-structured interviews carried

out with the participants with stroke and the family mem-

bers. The quantitative output of the RCT demonstrated

clinical effectiveness however the output from the quali-

tative research revealed an impact that would not be cap-

tured by simply using clinical outcome measures [11].

3 Machine-based measures

A principal advantage of machine-based measures of

stroke recovery is that they are objective. The challenge is

to identify a set of measures that are able to give infor-

mation about the recovery state that has high specificity

and low noise. Practical considerations include the time a

test takes to be set up and administered as well as the

disruption it may cause. The intervention therapies con-

sidered are directed to retraining the motor skills associated

with upper and lower limb movements so the measures will

be considered in this context.

This article considers assessing recovery of intentional

movements in four ways that loosely correlate to the levels

of recovered skill, that is

• Monitoring force and position parameters during the

execution of a predefined task

• Imposing a short duration force or position perturbation

either in isolation or during a task

• Imposing a learnable force perturbation

• Assessing long-term skill learning

To succeed as a clinical measure any mechanical mea-

surement method must (a) demonstrate clinical validity,

Fig. 2 Flow diagram used in the FAME project [43]
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(b) be easy to administer and (c) reflect the true underlying

biomechanical and neural systems [17]. If the test is suf-

ficiently well considered, there is potential to distinguish

the mechanical parameters of the joint, and use these to

distinguish between the pure mechanical response, the

reflex mediated response and higher centres of the brain.

3.1 Monitoring force and position during a task

When considering a person performing an action such as

inserting a key into a lock the parameters can be considered

in several ways. The forces and torques on the key due to

the hand and the lock can be considered. The same action is

the result of the combinations of torques and forces on the

joint from the muscles and the forces transmitted from the

world through the bones and other tissues. In the same way

forces and torques can be considered at the endpoint (key)

or joint space, the velocities, positions and accelerations of

individual muscles, must relate to those at the joints, and

the end point. Knowledge of any space such as the joint can

help to determine the state in another space such as the end

point. These relationships allow knowledge of parameters

in one space (such as that of the key) to inform us of

parameters in another space (such as the joint) [33]. This

discussion assumes a set of forces are applied to a kine-

matic linkage (that is the bones within the skeletal frame)

from both internal (muscles) and external sources, resulting

in movement of that linkage. A useful simplification is

often made when considering arm movement, the elbow

and shoulder can be modelled as a simple pin and a simple

spherical joint, respectively. Further simplifications might

then restrict movements to a plane further reducing the

unknown variables describing the movements of the person

allowing a simple relationship to be expressed between the

different spaces (muscle and joint endpoint).

Any machine using feedback control requires measure-

ments from a set of sensors. Information from these sensors

allows an estimate of the forces and velocities of the

machine at the point(s) of contact with the person. There

may be a potential to process this information to give a

metric for the performance of the person. This concept was

used by Mak et al. [27] to get measures of ’work’ or energy

expended or absorbed by the individual using the Gentle/s

rehabilitation robot [24, 25] although the idea can be

applied more generally.

The method described above was used to estimate the

mechanical work done by the elbow and shoulder joints

during reaching movements whilst the person was using the

Gentle/s robot. A number of modes were available on

Gentle/s, all imposing forces via a wrist-hand orthosis onto

the individual [1]. These external forces were designed to

assist intentional movements towards a goal and could be

imposed for all or part of the individual’s movement. The

haptic device was admittance controlled, and therefore

transmitted forces via a 3 axis force sensor that could

deliver an estimate of the endpoint force in Cartesian

space, f; to the logging software. This was coupled with the

intrinsic joint sensors on the haptic device as well as a set

of passive measurement sensors to give a fully resolved

position and orientation state of the point on the wrist

where the forces were applied, x: An additional measure-

ment of the flexion angle of the elbow, a, was needed to

fully resolve the estimated joint parameters, h.

The arm was modelled as a two-link serial chain with

five degrees of freedom. The vector of joint angles,

h, consisted of three shoulder angles and two elbow angles.

An inverse kinematic model was then generated to give an

estimate of the five joint angles. That is

h ¼ f ðx; aÞ

The internal joint torques can be estimated from the arm

Jacobian—now computable from h. External forces in this

case consisted of the forces applied by the wrist attachment

to the haptic device, f; a vector of gravity terms, g; and a

vector of the external wire supports used to compensate the

arm against gravity, w: From this combined force vector

and the computed Jacobian the internal joint torque, s, is

estimated as

s ¼ JT
f
g
w

2
4

3
5 ð1Þ

s must represent the combination of muscle forces, passive

tissues, joint friction forces and torques, etc. associated with

movement. The results for a single individual using a mode

(mode 1) where the haptic device could provide all external

energy are shown in Fig. 3. Clockwise arrow directions

indicate that the person is doing work on the haptic device

whereas counter-clockwise directions indicate the joint is

absorbing energy. Thus, in this example, it is readily seen that

the person is expending energy through elbow flexion but is

absorbing energy in all three degrees of freedom associated

with the shoulder. The area contained within the curve is then a

measure of energy expended or absorbed.

Although this technique is quantitative and may be

valuable, the measure of energy expended or absorbed in

the joint does not give an insight into the internal condi-

tions of the limb. However, it is possible to construct

simple linear and non-linear models of internal joint

dynamics that may provide a better measure of the causes

of joint movement and hence the level of recovery.

3.2 Short duration force or position perturbations

Force or position perturbations can be used to estimate an

impedance ðf ¼ Zðx; . . .; €xÞ where force is a function of
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position states such as velocity) or admittance, ðx ¼ AðfÞ
where position (or a derivative) is a function of force

states). Linear functions are often expressed in a state-

space form or as functions of the Laplace domain variable,

s. Typically these would be referred to either the joint

space or a convenient Cartesian frame for the end point. A

linear mass-spring-damper model is often used to charac-

terise the admittance or impedance at joint or Cartesian

endpoint level f = (ms2 ? bs ? k)x or f = (ms ? b ? k/s)v.

Conversion between these two frames is straightforward so

long as a Jacobian can be calculated. Thus if the joint

admittance matrix is given by Dh ¼ A
j

s (where the super-

script j indicates that the admittance relates joint torque to

joint angle).

f ¼ ðJA
j

JTÞ�1Dx ð2Þ

Tsuji et al. [45] imposes a position perturbation over

approximately 400 ms so it can be assumed that the figures

for hand and hence joint impedance include both the

mechanical response and an additional component due to

the mono-synaptic and other reflexes. Tsuji considered

impedance in a Cartesian framework and produced highly

visual stiffness and viscosity maps in a subject’s arms

reachable workspace.

Bennett et al. [2] used perturbations from a pseudo-

random air-jet to create torque perturbations that enabled

an estimate of elbow stiffness changed during cyclical

voluntary movements. Similar work by Zhang and Rymer

[47] examined how elbow reflex-generated stiffness and

viscosity contributed to the total stiffness of the joint. Their

conclusion was that joint impedance is characterised by

non-linearity and time-variance in healthy adults. Missing

in all these studies is any concept of what causes these

impedance changes. It is clear that there is both a

mechanical and a neurological element but there has been

little attempt to relate knowledge of the neuromuscular

structures to the measurable impedance.

Impedance has been investigated in post-stroke subjects

mainly in the absence of voluntary movements. McCrea

et al. [28] measured a constant passive stiffness in chronic

post-stroke subjects, thus gathering evidence in favour of a

linear relation between torque and position. These results

were similar to those obtained by Given et al. [13] for

control subjects. McCrea also found a strong correlation

between Modified Ashworth Scale indications of hyperto-

nia and passive stiffness and damping, using a linear vis-

coelastic model.

Levin and Dimov [22] tested a step-unloading event on a

control group and chronic post-stroke group, showing that

stroke patients lacked agonist and antagonist muscle

co-contraction immediately after releasing the load,

pointing to a defective control of impedance. These results

offer insight into some of the mechanism that are at the

basis of motor control in hemiparetic subjects. They,

however, lack longitudinal perspective and since they focus

on chronic subjects (minimum 1 year after stroke) do not

possess information on the mechanisms involved during

the early stages of stroke recovery (first 5 months after

stroke), when the majority of progress is made.

A technique with good specificity in identifying sub-

systems of arm movement is the concept of the parallel

cascade model (Fig. 4 left) that considers a linear system to

represent intrinsic dynamics and a parallel Hammerstein

model2 with delay to represent the reflex and higher neural

elements [18]. Typically this is used in an impedance form

but an equivalent admittance form is possible (Fig. 4 right).

This second form is similar to the simulation studies done

by Prochazka et al. [38].

The parallel cascade model was demonstrated by Mir-

bagheri [31] for the ankle, and relies on the fact that during

the first 50–80 ms following a torque perturbation the

response cannot have any conscious influence and hence

represents underlying neuromuscular characteristics that

can be compared to conventional clinical rehabilitation

measurements. Achieving a measurable response in this

time period is difficult, requiring either a well controlled

and fast step position perturbation, or a large and short

duration torque perturbation to produce a short position

perturbation.

Fig. 3 Use of torque–position curves as an estimate of energy

transfer in each joint (reproduced with permission)[27]. Arrows
indicate direction of increasing time. Clockwise curves (elbow flex/

ext) indicate the joint is expending energy to assist movement

whereas anti-clockwise curves (shoulder) indicate that the joint is not

contributing energy to the movement

2 A Hammerstein model is a simple non-linear model that consists of

a static non-linear element that shapes the input variable, followed by

a linear dynamic element.
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Mirbagheri et al. [31] also described chronic post-stroke

intrinsic and reflex stiffness of the elbow at different

angular positions in the presence of perturbation but in the

absence of movement. Using the parallel cascade model

they were able to conclude that although intrinsic stiffness

does not change between normal and post-stroke subjects

(as observed in the linear pathway), reflex stiffness tends to

increase in post-stroke individuals (as observed in the

Hammerstein model of the reflex). In a further study they

observe that it is possible to identify two groups from their

data on elbow stiffness measurements of individuals in the

1 to 12-month period following their stroke. In the first

group, the reflex stiffness and intrinsic gains increase

consistently over the recovery period compared with the

second group where these gains decrease [32]. The sepa-

ration into these two groups remains somewhat arbitrary

and the result can only be considered speculative at this

stage.

Research by Burdet et al. [5] confirmed that stabilisation

of the hand derives from stiffness adaptation during

movements in the presence of a force field. These studies,

although demonstrating that stiffness and viscosity are non-

linear and time-varying for voluntary movements, do not

however provide evidence on how the impedance of the

individual joints of the arm changed during the reaching

action, nor allow an insight into the parameters of key

elements in an arm model.

3.3 Imposing learnable force perturbations

There are many theories as to how the brain controls

movements, but a concept that has some validity is that in

some circumstances the brain has the ability to encode a

forward model—possibly in the cerebellum—and thereaf-

ter operates in essentially an open loop fashion [3, 30]. The

signal sent by the motor cortex initiates the movements

whilst proprioceptive signals are returned back to the motor

cortex via the cerebellum in the course of the action

(Fig. 5). The forward model theory then implicates the

cerebellum in calculating the error between planned and

actual sensory information using a pre-constituted dynamic

model and sends this information to the motor cortex only

where there is a discrepancy between computed and actual

performance of the movement.

Evaluation of the brain’s ability to encode these forward

models is commonly done by investigating arm reaching

movements in the presence of an external force field. One

common form of force field is the so called ’curl’ field. The

usual methodology is to arrange a subject in front of a two

axis manipulandum able to apply in the region of 3–15 N

through a handle. The subject then makes a reaching

movement towards a target and a perturbation force is

applied. If the end point velocity of a manipulandum is _x

then the force f that is applied through the handle or

attachment point is computed as

f ¼ 0 �k
k 0

� �
_x ð3Þ

and tends to distort movement in an anticlockwise direction

(where k is a scalar that dictates the level of distortion).

Work by Shadmehr and Mussa-Ivaldi [42], Wolpert [46]

and others has shown that the internal model required to

compensate for this external environment can be learned in

a relatively small number of movements (typically 10–15),

and evidence that the model persists comes from the hand

trajectory that occurs if the force perturbation is removed.

Osu et al. showed that subjects were able to switch rapidly

between models to compensate for a clockwise and a

counter clockwise force perturbation [34].

The strength of this experimental scenario for stroke

assessment is that it provides a method to observe through

the ’curl’ field both the mechanical processes needed to

Fig. 4 Parallel cascade model (left) and Prochazka model structure

(right). P1 is considered to model the effects of muscle, joint and

surrounding tissue, and is represented as a linear model. P2 is

considered to model the combination of reflexes and central nervous

system, and is represented by a Hammerstein model
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make a reaching movement and the ability to use a forward

model to compensate for the environment. It is clear that it

will only be relevant to individuals who have made sig-

nificant progress in recovering motor skills, and may not

ever be relevant for people who have no potential to relearn

movements, but its strength is the direct measurement in an

unobtrusive way to make this assessment, potentially using

the robot that is also delivering movement therapies.

Takahashi and Reinkensmeyer [44] considered such an

assessment and noted that subjects had a decreased ability

to learn the compensatory movements on their stroke

effected side. They also observed that the inability to adapt

to the curl field was well correlated to the severity of the

stroke as assessed with the Chedoke-McMaster score.

Patton and Mussa-Ivaldi [36] used a similar approach to

compare individuals with a stroke to age-matched controls.

They did not find a correlation between the ability to learn

an internal model and the Chedoke score, but observed that

there was a correlation between the strength of the per-

turbing force and the ability to learn the model, and thus

hypothesised that error-enhancing therapy may be more

effective than constraining movement to a ’correct’ path.

There were significant differences between these two

studies that might account for the different conclusions,

and in both cases the subjects were people with chronic

stroke where less recovery is expected. This highlights the

need for further research in the area, both to assess the

sensitivity of a ’curl’ field to a measure of limb recovery

and to establish whether it can be used in a practical

rehabilitation robot to both deliver treatment and as an

assessment of recovery.

3.4 Assessing long-term skill learning

The force-based measurements described give some indi-

cation of neural activities but currently cannot be used to

investigate long-term changes to the brain as a skill is

acquired or relearned. Since stroke rehabilitation can be

considered as a relearning process, knowledge of structural

or connective changes in the brain will give an insight into

this aspect of recovery. Techniques from brain imaging are

able to show areas of the brain where structural (white/grey

matter) changes occur. However, connectivity changes are

almost impossible to determine in vitro, and only an indi-

cation is possible using brain imaging techniques that are

sensitive to blood oxygenation levels that imply an

increased metabolism of the neuronal cells.

Draganski et al. [7] and Scholz et al. [41] looked at skill

acquisition using magnetic resonance imaging (MRI)

studies to show that there is a long-term change to the grey

and white matter in the brain that can be attributed to the

acquisition of a motor skill [7, 41]. In both cases the

acquired skill was cascade juggling and the intervention

group were given 3 months (2004 a study on grey matter

changes), or 6 weeks (2009 a study on white matter

changes) to learn this new manual skill. These studies

reported changes in the structure of the brain. Draganski’s

study of grey matter showed a change of mass in the mid-

temporal area (hMT/V5) and left posterior intraparietal

sulcus that could be attributed to the learned skill. Schultz

reported a change of white matter in several areas including

the right posterior intraparietal sulcus. Thus, the acquisition

of a motor skill can be directly correlated to structural

changes in the brain and it is these structural changes that

must also occur when a person is re-acquiring motor skills

during rehabilitation. A separate study by Boyke et al. [4]

also looked at acquiring the skill of juggling, but in an

elderly population . They experienced a high drop out rate

and from the initial 93 subjects, they report data for a

training group of 25 (age range 50–67 years) and a control

group of 25 (age range 55–67 years). They reported

changes to the grey matter in the middle temporal area of

the visual cortex (hMT/V5).

Other skills also manifest structural changes, and Engvig

[8] observed changes in cortical thickness (distance

between the grey/white matter boundary and the pial sur-

face) in elderly people (age range 42–77) following an

8 week training program designed to improve serial verbal

recollection memory. Whether these techniques can be

adapted to a specific measure of recovery, especially given

the often non-localised damage to the brain, remains to be

seen.

MRI measurements give no indication of the short term

dynamics, so techniques such as near infra red spectros-

copy (NIRS) and functional magnetic resonance imaging

(fMRI) have emerged to measure changes in oxygenated

blood flow. Both NIRS and fMRI can only be considered as

an indication of neural activity since in both cases the

signals are an ensemble of spatial and temporal activity

from a large number of individual neurons. A further dif-

ficulty with fMRI based studies in movement is that it is

difficult to gather valid data from subjects whilst they are in

Fig. 5 Concept of forward models in the brain, e.g. [3]
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the coils. Problems are associated with the slow response of

the signals, the corruption of the signals caused as a result

of the subject moving and from the distortion of the

magnetic fields produced by most metals. This has not

prevented several attempts at producing haptic devices that

are compatible with MRI and fMRI measurements [12, 15,

20]. Resolving this difficulty would allow a much greater

correlation of the cognitive process to those that generate

the motor patterns for volitional movements.

4 Discussion

For the foreseeable future validated clinical measures are

likely to remain the only accepted method for evaluating

the benefits of an intervention intended to retrain move-

ments following a stroke. However, there is a second

purpose for validated clinical measures, that is as a way to

monitor the recovery of an individual and make decisions

about appropriate treatments. Just as machine mediated

stroke interventions are required to show a value in either

saving costs or enhancing treatment, any measurements of

the recovery progress must be easy to administer and

produce useful information for clinical decision making.

Although there is large literature on assessment techniques,

it is not appropriate to simply adapt these so they can be

delivered mechanically, rather the opportunity exists to use

knowledge from human motor control to attempt to get at

more fundamental processes associated with relearning or

retraining movements. There are unique advantages for

machine-based assessment techniques. The first is the

ability to collect large quantities of data. However, data do

not always translate to information and further work is

needed to identify what measurements will compute useful,

consistent and reliable metrics of recovery. The second

advantage is that machine-based measures will be objective

and quantitative. Where the measure is only for clinical

assessment this can be considered an advantage, but there

is interest in investigating reward systems for people

undergoing stroke rehabilitation. A therapist who has

access to a clinical measure can use discretion in deciding

whether or not to pass this information on to the patient.

Likewise the same therapist may be better able to judge if a

metric is incorrect, based on a more complete knowledge

of the person.

If the machine-assisted intervention therapy can be

integrated with methods to make mechanical assessment of

recovery, an additional advantage will be that a measure-

ment can be taken at almost any time. This is akin to the

’catch trials’ used when assessing the learning of a per-

turbation model, the force perturbation is turned off and the

response in this condition measured. Likewise at appro-

priate points in an intervention therapy it would be possible

to reduce the levels of assistance and insert the forces or

position perturbations needed to assess the recovery.

Further study is needed to develop strategies for gath-

ering useful data for machine measures. The relatively

straight forward estimation of energy transfers used by

Mak et al. [27] should transfer readily across a range of

devices. It is more complex to design rehabilitation robots

that can deliver consistent force or position perturbations

across the different configurations of device, in particular

given that differing levels and durations of force pertur-

bation were conjectured by Patton and Mussa-Ivaldi [36] to

have different learning effects on the individual. However,

the potential of embedding the necessary hardware, control

and processing into rehabilitation equipment to allow

consistent measurement of features that have a clinical

relevance will strengthen the case for the introduction of

intelligent machines in neurorehabilitation.

Robots and intelligent machines clearly have a contri-

bution to make in stroke rehabilitation but these benefits

should not be confined simply to delivering therapies, but

should be used to enhance the abilities of the therapist as

well as to make a more precise assessment of recovery. The

best techniques for assessment still need to be determined,

but will work most effectively if they are reliable,

open,verifiable and independent of any particular stroke

rehabilitation product. Combining information from clini-

cal, mechanical and brain imagery measurements will then

allow all aspects of stroke recovery to be considered.
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