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Abstract This article presents an unsupervised method

for movement onset detection from electroencephalogra-

phy (EEG) signals recorded during self-paced real hand

movement. A Gaussian Mixture Model (GMM) is used to

model the movement and idle-related EEG data. The GMM

built along with appropriate classification and post pro-

cessing methods are used to detect movement onsets using

self-paced EEG signals recorded from five subjects,

achieving True–False rate difference between 63 and 98%.

The results show significant performance enhancement

using the proposed unsupervised method, both in the

sample-by-sample classification accuracy and the event-by-

event performance, in comparison with the state-of-the-art

supervised methods. The effectiveness of the proposed

method suggests its potential application in self-paced

Brain-Computer Interfaces (BCI).
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1 Introduction

Brain–Computer Interface (BCI) is a new approach to

communication between the human brain and the machine,

which translates brain signals into commands for commu-

nication and control (i.e. computer cursor control, wheel-

chair control, robotic control, etc.) [1, 2]. A BCI system

can be synchronous where the system timing is controlled

by the machine [3] or self-paced (asynchronous) [4] where

the system timing is controlled by the user. The user of a

BCI system can perform several well-studied mental tasks

to communicate and control. The machine must be able to

recognize these tasks from brain signals accordingly within

a suitable time window for control.

Motor imagery tasks are commonly used in BCI envi-

ronment [5], due to their good separability and the under-

standing of their neurological mechanisms. Previous

research on event-related desynchronization/synchroniza-

tion (ERD/ERS) showed that during real movements rele-

vant EEG activity can be found in both contralateral and

ipsilateral hemispheres, but in the case of imagined

movements only contralateral hemisphere gets activated

[6]. This justifies the use of real movements to test new

methods, because the experiments are easier to conduct and

the labelling is much more accurate in the self-paced

configuration.

One of the challenges in self-paced BCI is onset

detection of a mental task, which is about detecting when

the user shifts from the idle/non-control state (when he/she

is not executing any of the predefined mental tasks) to

execute a mental task. This is important for the following

reasons:

– Identifying the idle state: The identification of the idle

state is very important for control applications. In this

case, the false positive rate must be as low as possible,

to increase the reliability of the system especially when

safety is an issue.

– on/off switch: For a full self-paced BCI system the user

must be able to turn the system on and off when

needed. A robust onset detection system can be used as

an on/off switch for a self-paced BCI system.
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In [7], the difference between both applications is

discussed.

1.1 Motivation of using unsupervised methods

In motor imagery based self-paced BCIs true labels are

hard to obtain online. As what the BCI system needs to

know is the onset from baseline to movement, the recog-

nition of the transition phase between the two states/classes

is very important. The labels in these transition periods are

hardly correct because the change happens gradually

through preparation, execution and after-execution periods.

When using real movement instead of imagery one, the use

of electromyography (EMG) can give a very clear idea of

the true labels, but it is not actually accurate enough during

the transition phase.

Unsupervised learning provides a possible answer to

handle mislabelled and lowly separable data. In theory,

unsupervised methods are more able to handle uncertainty

in data labelling and to separate the data according to their

own structure without the need of labels to build the model.

This particular property of unsupervised learning methods

is very important to handle the onset detection problem as

it would be more robust and natural in modelling the

transition between the baseline and movement classes. This

will eventually lead to higher recognition rate and conse-

quently a faster and more reliable onset detection.

Classifying EEG data is usually challenging due to the

overlapping between the data of the different classes/

mental tasks. This is even a harder problem when working

on onset detection as what is looked at by an onset

detection algorithm is the overlapped area between the two

classes. Unsupervised learning can cope well with this

issue as the data modelling is independent from the labels

and rather based on the data itself. Statistical/probabilistic

unsupervised modelling is especially able to handle these

overlapped areas by using prior knowledge and soft defi-

nition of boundaries between the classes.

In this article, we introduce for the first time a fully

unsupervised system for EEG onset detection in self-paced

BCIs. The system is based on feature extraction/selection

methods using power spectral density (PSD) and Davis–

Bouldin Index (DBI) and an unsupervised classification

method based on a well-known statistical model, Gaussian

Mixture Model (GMM). The experimental results show the

effectiveness of the proposed method for EEG onset

detection. Further study is required to study the potential of

these unsupervised methods for onset detection in self-

paced BCIs.

In [8], the authors argued that Fisher linear discriminant

analysis (FLDA) classifier along with bandpower features

was the best classifiers for the current state-of-art BCI, but

this study ignored the wide spectrum of unsupervised

machine learning methods that are potentially very useful

for EEG classification and hence better BCI performance.

2 Methods

Gaussian Mixture Model is a well-known statistical model

for data clustering. It has been repeatedly used for BCI data

[9, 10]. In this section, we briefly introduce the model with

two different training approaches: an unsupervised

approach where the data is modelled using one GMM, and

a supervised approach where a separate model is built for

each class. The supervised approach is presented here for

comparison purposes only.

2.1 Gaussian Mixture Model

In a GMM configuration, the data are assumed to be gen-

erated from a finite number of Gaussian distributions.

Gaussian mixture model then is simply a linear superpo-

sition of Gaussian components. The data is modelled by a

probability density function as follows:

pðxÞ ¼
XK

k¼1

pkNðxjlk;RkÞ ð1Þ

where K is the number of Gaussian components,

Nðxjlk;RkÞ is a Gaussian distribution with mean lk and

variance Rk; p1,…, pK are the mixing coefficients. pk

should satisfy the following conditions

0� pk� 1 ð2Þ

and

XK

k¼1

pk ¼ 1 ð3Þ

In [11], a formulation of Gaussian mixtures in terms of

discrete latent variables was introduced and deeply

discussed. Here, we use this formulation and extend it for

an unsupervised classification scheme.

Let us introduce a K-dimensional binary random vari-

able z having a 1-of-K representation, in which a particular

element zk is equal to 1 and all other elements are equal to

0. The values of zk therefore satisfy zk [ {0, 1} andP
k zk ¼ 1. There are K possible states for the vector z

according to which element is nonzero. We will define the

joint distribution p(x, z) in terms of a marginal distribution

p(z) and a conditional distribution p(x|z).

The marginal distribution over z is specified in terms of

the mixing coefficients pk, with p(zk = 1) = pk. pðzÞ ¼QK
k¼1 pzk

k : The conditional distribution of x given a partic-

ular value of z is pðxjzk ¼ 1Þ ¼ N ðxjlk;RkÞ and pðxjzÞ ¼QK
k¼1Nðxjlk;RkÞzk :
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The joint distribution is then given by p(z)p(x|z) and

pðxÞ ¼
X

z

pðzÞpðxjzÞ ¼
XK

k¼1

pkNðxjlk;RkÞ ð4Þ

The introduction of z helps in calculating the responsi-

bility of each component in the mixture: c(zk) = p(zk = 1|x).

We will use this presentation in the unsupervised training

method.

Expectation–Maximisation (EM) method [11] is used to

estimate the model parameters fp; l;Rg;where p = {p1,…,

pK}, l = {l1,…, lK} and R ¼fR1; . . .;RKg:And C-means

was used to initialize the model parameter values.

One issue to be considered when building GMMs is how

many components are optimal for a particular data set. In

this article, we used cross-validation method to select the

best number of components for each data set. More details

on how the hyper-parameters of the model were selected

are presented in Sect. 3.5.

In this article, we divide the data into training and testing

data, according to the cross-validation scheme. We assume

that the labels are available only for some offline/training

data. In the supervised training method, we use these labels

to separate the data into two training sets and then build a

separate model for each set, so the labels are directly used in

building the classification model. In the unsupervised

scheme, one model is built for the whole training data set

regardless of its class. The available labels are used here

only to calculate the probability of a certain component to

belong to one of the two classes. This use of labels offline in

the unsupervised scheme is justified as it is only used in

calculating the priors not in the model building itself. This

approach has been used in unsupervised neural networks,

e.g. SOM for speech recognition builds up clusters first

without using labels and then decides which class each

cluster corresponds to by using labels for classification

purpose [12]. The use of labels in this way suits the self-

paced BCI in particular as the labels are not reliable.

2.2 Unsupervised training

Here, we adopt the approach that we suggested in [13].

One GMM is built for all training/offline data and then

the available labels are used to calculate the priors

p(c = classi|zk), i.e. the probability of the class to be classi

when the data point is generated from component zk.

In order to calculate the probability of the data point x

belonging to classi, p(c = classi|x) is calculated as follows:

pðc ¼ classijxÞ ¼
XK

k¼1

pðc ¼ classijzk; xÞpðzkjxÞ ð5Þ

where p(zk|x) (or p(zk = 1|x)) is the responsibility of

component zk to generate the point x. Assuming

p(c = classi|zk, x) is independent of x then

pðc ¼ classijxÞ ¼
XK

k¼1

pðc ¼ classijzkÞpðzkjxÞ ð6Þ

The probability p(c = classi|zk) is calculated by the

ratio:

pðc ¼ classijzkÞ ¼
Nki

Ni
ð7Þ

where Ni is the number of training samples that belong to

classi, Nki is the size of the subset {x:p(zk = 1|x) =

max(p(zj = 1|x)), j = 1 … K}, the training samples that

belong to classi and were generated from zk. p(zk = 1|x) is

calculated as follows:

pðzk ¼ 1jxÞ ¼ pkNðxjlk;RkÞ
PK

j¼1

pjNðxjlj;RjÞ
ð8Þ

In order to classify x in a two-class problem, p(c = class1|x)

and p(c = class2|x) are calculated and then the output class is

the one that equals

maxðpðc ¼ class1jxÞ; pðc ¼ class2jxÞÞ ð9Þ

when the following condition holds:

jðpðc ¼ class1jxÞ � pðc ¼ class2jxÞÞj � a ð10Þ

where a is a rejection threshold. The introduction of the

rejection criterion is important because of the overlapping

between the two classes. In some cases, when the over-

lapping is so severe one would want the classifier to give an

output only with high confidence. The rejection threshold a
is the minimum confidence the classifier must have of one

class to the other when classifying a new data point.

a takes a value in the range [0,1]. The selection of this

value is done using cross-validation scheme, which means

for different subjects and for different methods different

values can be selected.

The problem with the rejection criterion is when the

classifier is supposed to generate a continuous output.

When classifying a point with a classification confidence

less than a then usually one would not generate an output,

this is not allowed when you have a continuous output.

Here, we resolve this issue by simply replicating the output

of the last ‘‘good’’ output (an output with a confidence level

higher than a), the assumption here is that the classification

outputs have temporal relation and the confidence level

will drop in the area of moving from one class to another.

2.3 Supervised training

In this approach, the labelled offline data are separated into

two sets, one for baseline and the other for movement. A

separate GMM is built for each of these data sets. Each of

these models is a probability density function (pdf) that
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shapes the probability distribution of each class. Now we

can calculate the probability of any sample point to belong

to one of these models.

In order to classify a new data point the log likelihood of

each model given the data is calculated, log(p(x|Mi)),

where Mi ¼ fpi; li;Rig is the model built for classi. The

model with the highest likelihood is the one that has most

probably generated the data point.

In practice, we calculate the log likelihood value over a

small window and average the results:

lliðx1; . . .; xNÞ ¼
1

N

XN

j¼1

logðpðxjjMiÞÞ ð11Þ

where N is the size of the window.

One may also use a Bayesian classifier, but for the data

here the log likelihood comparison method gives better

results.

The rejection method described in the previous section

is used here as well. In this case, the comparison is not

between the probabilities of the classes but rather between

the normalized log likelihoods (which can be considered

the probability/confidence of the classifier output):
���
ll1ðx1; . . .; xNÞ � ll2ðx1; . . .; xNÞ
ll1ðx1; . . .; xNÞ þ ll2ðx1; . . .; xNÞ

���� a ð12Þ

3 Experiments

Figure 1 shows a block diagram of the system built for this

study. Hereafter, we detail the motor tasks and the methods

used for pre-processing and onset detection.

3.1 Subjects and motor tasks

Five right-handed subjects (three males and two females)

were tested, who sit in an arm-chair with right arm resting

on the arm rest. They were asked to perform the same real

movements 40 times on their own pace in one session (The

session lasted 534, 338, 400, 303 and 337 s for subjects 1,

2, 3, 4 and 5, respectively). The subjects were asked to

leave at least 4 s between two movements. There was no

prior training session, and the subjects had no experience of

similar experiments. The designed movements were:

extending right wrist, holding for about 1–2 s and relaxing.

3.2 EEG and EMG acquisition

EEG signals were recorded with 64 electrodes placed

according to the International 10–20 Standard (ActiveTwo,

Biosemi, The Netherlands). We used EMG to record

muscle activities for establishing correct onset and offset

time points of self-paced movements. This allows training

data to be correctly labelled according to the real move-

ment activities. EMG was recorded bipolar, from extensor

carpi radialis muscle. Both EEG and EMG were sampled at

1,024 Hz, but were downsampled to 256 Hz for offline

analysis. No artefact rejection or EOG correction was

employed.

3.3 EEG data labelling

The continuous EEG data were labelled into two classes:

baseline and movement. The movement data is further

divided into three subclasses. Samples of 1.5 s prior to

EMG onset were labelled as ‘‘preparation’’, samples

between an EMG onset and offset of one movement as

‘‘execution’’, and samples of 1.5 s after an EMG offset as

‘‘after-execution’’. The rest of the samples were labelled

as ‘‘baseline’’, because these samples should indicate no

EEG activity with respect to the right wrist movement. The

motivation of this division is the nature of the EEG signal

itself during movement. Figure 2 shows an example of

labelling 27.5 s of data.

3.4 Feature extraction and selection

In [14], we have proposed a novel onset detection method

based on narrow band spectral analysis. The idea is to

divide the mu, beta and lower gamma bands into even finer

bands, so that feature selection method can be applied more

efficiently. Here, we used the same proposed method for

Fig. 1 Block diagram of the system built for this study
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Fig. 2 Data labelling: B for baseline, P for preparation, E for

execution and A for after-execution
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feature extraction and selection but we changed the clas-

sification scheme to use an unsupervised method. Follow-

ing is a detailed description of the feature extraction and

selection methods.

First, EEG data were filtered with common average

reference method. To extract features for narrow band

spectral analysis, the Thomson Multitaper Method was

used to estimate the PSD of each EEG channel over a 1 s

moving window with an overlap of 7/8 s (i.e. the moving

window is shifted 1/8 of a second each time). The PSD

over 8–45 Hz was sampled. Over 8–27 Hz it was sampled

and averaged every 2 Hz, and over 28–45 Hz it was sam-

pled and averaged every 3 Hz, resulting in a vector of 16

features. For 64 channels, there are 1,024 features in total.

Davis–Bouldin Index (DBI) [15] was used to select a

subset of the best features. DBI measures the similarity

between two clusters (classes) i and j by measuring the

within-class scatters (Sk) and inter-class distances (Mij) as

follows:

Rij ¼
Si þ Sj

Mij
ð13Þ

where

Mij ¼
Xn

k¼1

jaki � akjjp
( )1

p

ð14Þ

Si ¼
1

Ti

XTi

j¼1

k xj � aj kq
2

( )1
q

ð15Þ

where ai = [a1i,…, ani] is the centroid of cluster i, n is the

dimensionality of the data, and Ti is the number of data

points in cluster i. In this study p = 2 and q = 2. DBI is

then calculated as follows:

DBI ¼ 1

M

XM

I¼1

RI ð16Þ

where

RI ¼ maxfRij : i 6¼ jg ð17Þ

N features (with smallest DBI values) that maximise the

separability of ‘‘preparation’’ against other subclasses were

selected, and another N features that maximise the validity

of ‘‘execution’’ against other classes were also selected.

Therefore, 2N features were used for classification and

evaluation. These features were selected as they are the

most important for the onset/offset detection. In practice, N

may be set to 50. This is still a high-dimensional problem.

Directly using all the available features would affect

severely the performance and will cause overfitting

problems, which can be explained by the difficultly in

building accurate probabilistic models in such high-

dimensional space. To avoid these problems, we tested

the methods using different number of features (in the

range 2–100) and the number of features that gave the best

result was used.

3.5 Data modelling and hyper-parameters

GMMs were built to model the data using both supervised

and unsupervised methods discussed in Sect. 2. In order to

build these models the number of components involved and

the initial parameters are important factors in evaluating

the model.

As discussed earlier, C-means was used to build the

initial model and then EM was used to train the model.

C-means itself was initialized using random vectors in the

feature space. This initialization can affect severely the

built model. For this reason, 10 models were built and a

10-fold cross validation test was done to select the model

with the highest average classification accuracy.

The problem of using a suitable number of components

to model the data is solved in a similar way. From our

previous experience with BCI data, the number of com-

ponents is usually in the range 4–20. Cross validation test

was used to select the best number.

For the case of building two models (supervised train-

ing) a grid search like method was used, where the number

of components for each model ranges from 2 to 20. For

each number of components, 10 initialization values were

tested and the one with the highest training accuracy was

used.

Algorithm 1 shows the steps followed to select the

hyper-parameters required for the unsupervised training

method described in Sect. 2.2, where selectedFeat are the

features selected via DBI, SAMPLECROSSVALID is a

10-fold cross validation method where the result is the

average sample-by-sample classification accuracy, and

TASKCROSSVALID is a 10-fold cross validation method

where the result is the average TF (Sect. 3.8). In SAM-

PLECROSSVALID 10 different initializations of each

model were tried to insure better modelling of the data.

Algorithm 1 Hyper-parameters for unsupervised GMM training

1: for feat = 2 to 100 do

2: temp = data(:, selectedFeat(1 : feat))

3: for comps = 4 to 20 do

4: r(comps) = SAMPLECROSSVALID(comps,temp)

5: end for

6: bestComps = max(r);

7: tf(feat) = TASKCROSSVALID(bestComps,temp)

8: end for

9: [bestFeat, bestComps] = max(tf)
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3.6 Sample-by-sample classification

After the GMM models are built in a supervised or unsu-

pervised method as described in Sect. 2, classification is

carried out on a sample by sample basis on the test data.

The probability of each class is calculated and then the

rejection criterion discussed in Sect. 2.2 is applied. If the

output of the classifier is rejected, the predicted class is

assigned the value of the last known output with high

confidence. This is justified for EEG data due to its tem-

poral nature. In practice a value can be selected depending

on the subject and the training method. For unsupervised

training, its value ranges between 0.1 and 0.3 and for

supervised training its value ranges between 0 and 0.3. For

every subject and method the a value ( [ [0, 1]) was

selected manually by checking the sample-by-sample cross

validation result.

3.7 Onset detection

To find an EEG onset, a 1.375 s long (11 samples in feature

space) moving decision window was applied on the clas-

sification results. In the moving window, if there were four

predicted baseline samples, followed by four predicted

movement samples, then the current position of this win-

dow was recognised to be an EEG onset. A Debounce

window was applied after each recognition to reduce false

negative effect. In performance evaluation this predicted

EEG onset is considered correct, if there is a real move-

ment onset that occurs either 2 s before or after this pre-

dicted point. Figure 3 shows an example of the onset

detection method at work using the unsupervised training

GMM, in one fold of the cross-validation test. The first line

from top is the true labels, the second line is the predicted

labels, the third line is |p(class1|x) - p(class2|x)| and the

last line shows the detected onsets.

3.8 Evaluation

The evaluation was conducted by 10-fold cross-validation.

Each fold had 4 trials for testing and 36 trials for training.

The number of true-positive (TP) detections and the

number of false-positive (FP) detections from all the folds

were combined to produce true-false difference (TF),

which is an event-by-event measurement. Given that E is

the total number of movements or events, TF is defined by

TF ¼ ðTP

E
� FP

E þ FP
Þ � 100 ð18Þ

This measure was defined for practical asynchronous BCI

evaluation in [16].

3.9 Results

The results of onset detection using the proposed method

are presented in Table 1, where Ave refers to the sample by

sample 10-fold cross-validation result, Max refers to the

maximum sample by sample accuracy achieved, and Dev

refers to the average time deviation in seconds of the

detected onset time. The table also contains the average

and standard deviation of the TF results over all the sub-

jects. Table 2 shows the different parameters used to

achieve these results on different subjects, where K is the

number of components in the built GMM model, Features

is the number of features selected for this subject, a is the

0 50 100 150 200 250
−6

−5
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−3

−2

−1

0

1

2

3

4

Fig. 3 An example of onset detection

Table 2 Unsupervised (GMM) onset detection parameters

Subject K Features a Debounce

Subject 1 8 5 0.1 6

Subject 2 8 5 0.1 6

Subject 3 8 22 0.3 5

Subject 4 8 19 0.3 5

Subject 5 10 12 0.2 6

Table 1 Unsupervised (GMM) onset detection results

Subject TF TP FP Ave. Max. Dev.

Subject 1 97.56 40 1 86.23 90.43 0.50

Subject 2 87.74 37 2 71.53 87.70 1.18

Subject 3 64.07 36 14 67.42 76.51 1.05

Subject 4 92.56 38 1 79.10 94.64 0.82

Subject 5 63.02 28 3 70.41 80.58 1.11

Average 80.99

Std. 16.30
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rejection threshold, and Debounce is the size of the Deb-

ounce window in seconds. Tables 3 and 4 contain the

results and parameters for supervised trained GMM mod-

els. Here, K contains the number of components selected

for each class, where the first value is the number of

components for baseline and the second is the number of

components for movement.

The results clearly show that the unsupervised approach

outperforms the supervised one, with higher TP and lower

FP within smaller Debounce window for subjects 3 and 4.

In general unsupervised GMM requires lower dimen-

sions to give a better performance than the supervised one.

Subjects 1–3 require as low as 5, 5 and 22 features for

unsupervised GMM while the supervised method requires

16, 10 and 28, respectively. Subjects 4 and 5 require the

same number of features for both methods.

The sample-by-sample accuracy is similar between the

two methods, and it is even higher for the supervised

method for subjects 1, 3 and 5, but that clearly does not

mean a better event-by-event (TF) accuracy. This is

because of the overlapping problem between the two

classes and the fluctuations in the classifier output as a

result. It is clear that the unsupervised model is able to

handle this issue much better than the supervised one. More

discussion about sample-by-sample and event-by-event

evaluation can be found in [16].

4 Discussion and conclusion

Onset detection is an important step in building real-life self-

paced BCI systems. The switch design named low-frequency

asynchronous switch design (LF-ASD) [7, 17] is one of the

first few self-paced BCI systems. This 2-state self-paced

system was later extended to 3-state system in [18]. This

system uses supervised methods for classification (LDA,

KNN). In [19] a 4-class BCI system is built, which uses

Common Spatial Patterns (CSP) for feature extraction and

LDA, SVM and MDA classifiers for combination purposes.

In [20] onset detection based on the changes in average PSD

features is used to enhance classification in continuous EEG

problem. In [21] separate SVM classifiers were built for ERD

and ERS to detect onset in cued BCI data of foot movement,

an onset is detected when ERS is found after ERD. Receiver

operating characteristics (ROC) was used to balance TP and

FP, dwell time and refractory(debounce) window were also

used for post-processing. The authors in [22] proposed a new

BCI method, where users perform either sustaining or stop-

ping a motor task with time locking to a predefined time

window, they however worked on synchronous protocol and

used supervised methods for classification. EEG onset

detection was also studied in the field of seizure detection, in

[23] SVM was used for this purpose.

In a previous study [14] we showed the potential of the

usage of narrow band spectral analysis for onset detection

in self-paced ongoing EEG. Tsui [24] showed for this data

the highest separability is achieved between the preparation

and execution tasks. In this article, we used the same

approach for feature extraction and selection but different

Table 3 Supervised (GMM) onset detection results

Subject TF TP FP Ave. Max. Dev.

Subject 1 97.56 40 1 87.58 92.26 0.37

Subject 2 69.46 33 6 70.81 85.24 0.96

Subject 3 38.97 28 18 69.54 85.04 0.81

Subject 4 85.24 36 2 73.44 81.61 0.70

Subject 5 75.91 34 4 76.32 88.67 1.02

Average 73.43

Std 21.97

Table 4 Supervised (GMM) onset detection parameters

Subject K Features a Debounce

Subject 1 [8,6] 16 0.0 6

Subject 2 [8,6] 10 0.3 6

Subject 3 [8,6] 28 0.3 6

Subject 4 [8,6] 19 0.1 6

Subject 5 [8,8] 12 0.0 6

Table 6 Supervised (naive Bayesian) onset detection results

Subject TF TP FP Dev. Features

Subject 1 95.24 40 2 0.325 16

Subject 2 69.13 35 9 0.788 10

Subject 3 59.46 29 6 0.688 28

Subject 4 40.06 17 1 0.450 33

Subject 5 39.07 26 14 0.782 9

Average 60.59

Std 23.23

Table 5 Supervised (LDA) onset detection results

Subject TF TP FP Dev. Features

Subject 1 70.93 37 11 0.450 68

Subject 2 49.13 27 9 0.653 8

Subject 3 61.92 34 12 0.632 10

Subject 4 53.02 24 3 0.425 13

Subject 5 38.49 30 23 0.910 14

Average 54.70

Std 12.37
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classification and postprocessing schemes. The unsuper-

vised method presented here shows promising results for

onset detection. Compared to the supervised methods with

GMM, the unsupervised GMM is significantly better (more

than 7% enhancement on average).

Tables 5 and 6 show the results of using LDA and naive

Bayesian classifiers (which are standard methods to use

with BCI) on the same data sets. The results show clearly

the superiority of the proposed unsupervised method in

sample-by-sample classification rate and the TF measure. It

is clear that supervised LDA and naive Bayesian are unable

to handle the last two subjects’ data very well. Figure 4

provides a box plot view of the results for a comparison

among the methods.

The GMM model is able to better present the shifts

between the idle and movement states, as it is able to model

the structure of the data when the labels are not reliable. It

is clear that even when using a supervised training method

for GMM it is still able to give better results than the ones

with LDA or naive Bayesian, which means that the GMM

model is able to capture better the statistics of EEG data.

Although the supervised and unsupervised GMMs give

similar sample-by-sample results, the True–False differ-

ence using unsupervised trained models is significantly

better than the supervised trained ones. This is because the

unsupervised trained classifier is able to generate more

stable results, while the supervised trained classifier suffers

from fluctuations in the output. These fluctuations can be

explained by the overlapping between the two classes.

Unsupervised trained model is clearly able to model better

these areas in the feature space.

Another advantage of using unsupervised training can

be seen in the number of features required to get better

results. The results suggest that unsupervised trained

GMMs need lower dimensions than the supervised trained

models. This is important for building online system as this

will require less processing time online.

Using this approach the time deviation is larger than the

one presented in [14], but it is still in an acceptable window

(mostly within 1 s). This is acceptable in BCI applications

as the response time is not expected to be very fast.

The study here focused on the onset detection, but the

same approach can be taken for offset detection as well.
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