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Abstract In this work, we present a new method based

on electrocardiogram signal processing to distinguish

between the atrial fibrillation (AF) episodes that terminate

immediately and those that sustain. The spectrogram of the

atrial activity is computed and 12 numerical series of

spectral parameters are constructed. The sample entropy

(SampEn) of six series are relevant in the characterization

of AF termination (p \ 0.05). Furthermore, a combined

discriminant analysis in both time and frequency domains

is performed, which improves the univariant time–fre-

quency analysis. The discriminant analysis achieves opti-

mal combination of parameters so that the percentage

of correctly classified recordings reaches 100% for the

learning set and 93.33% for the test set. The main con-

clusion is that the combined analysis of time and frequency

series regularity might be used to predict spontaneous

termination of paroxysmal AF and could provide infor-

mation about the organization of atrial activation in AF.

Keywords Electrocardiogram � Atrial fibrillation �
Sample entropy � Time–frequency � Regularity

1 Introduction

Atrial fibrillation (AF) is the most common arrhythmia

encountered at advanced age. The prevalence of AF remains

lower than 1% among the general population, but increases

considerably from the age of 60 years [15]. Paroxysmal AF

(PAF) is often the precursor to sustained AF [20]. Given that

sustained AF increases the likelihood of suffering myocar-

dial infarctions and strokes [15], its accurate recognition by

means of non-invasive techniques is of great interest to

regular clinical practice. The prediction of PAF maintenance

can help to choose the appropriate intervention that may

terminate the arrythmia and prevent its chronification, given

that approximately 18% of patients who have intermittent

AF degenerate into permanent AF 4 years later [1]. Other-

wise, the prediction of the spontaneous termination of PAF

episodes could avoid unnecessary therapies and their asso-

ciated clinical costs [5].

The PhysioNet/Computers in Cardiology Challenge

2004 [25] marked the start of continuous attempts to pre-

dict the early termination of PAF episodes by using the

electrocardiogram (ECG). The challenge database will be

extensively explained later in Sect. 2. Several groups based

their study on the atrial activity (AA) overall peak fre-

quency plus additional spectral characteristics as the main

peak power [29] or time–frequency pattern [26]. Other

groups tried to predict the evolution of PAF episodes by

means of linear classifiers based on the main peak fre-

quency and the mean RR interval [9, 16]. In [28], the

fibrillation frequency, fibrillation amplitude and exponen-

tial decay are extracted from a frequency-shifted and

amplitude-scaled version of a log-spectral profile. The

challenge is approached in [24] from a clinician’s point

of view by using parameters such as the f-wave polarity,

the f-wave peak interval or the amplitude modulation of

AA, and a support vector machine is used as classifier.

A recent publication extends the work carried out in [9]

by including stepwise discriminant analysis and a greater

number of spectral parameters [12].
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In this work, an analysis of AA spectral parameters

organization is carried out with the aim of predicting PAF

episode termination. We centered our work on disclosing

the differences in spectral parameters organization

between terminating and non-terminating PAF episodes.

The used database was suitable for our objective, because

it allowed us to study the signals 1 s before the eventual

transition from PAF to normal sinus rhythm. Neverthe-

less, this study must be seen just as a starting point for

predicting the PAF evolution within several hours or

days, which would have greater clinical significance. The

analysis of spectral parameters is made in terms of

mathematical regularity of their series. The organization

is measured by using the entropy estimator sample

entropy (SampEn) [30, 32]. Entropy estimators have

already been used in the characterization of biomedical

signals different from ECG [17]. The promising innova-

tion of the present study is the application of SampEn to

a group of direct and derived spectral parameters with the

aim of predicting the termination of AF episodes with

notable accuracy.

The paper is organized as follows. In Sect. 2, we

describe the database used for the analysis. Sect. 3 presents

the global process and defines the spectral parameters. The

results obtained by the analysis are reported in Sect. 4. We

make a discussion on the results in Sect. 5. The limitations

of the study are explained in Sect. 6. Finally, the conclu-

sions of the study are drawn in Sect. 7.

2 Materials

For the present work, we used the database of PhysioNet/

Computers in Cardiology Challenge 2004. Each recording

in the database is a 1 min segment of AF that has been

extracted from a long-term ECG recording. Lead V1 was

chosen from each recording since previous works have

shown that AF is dominant in this lead [29]. The database

is divided into a learning set and a test set. The learning set

contains ten segments of non-terminating AF (group N)

and ten segments of AF that terminate within 1 s after the

end of the record (group T). The test set contains 30

records, approximately half of them belonging to group N

and the rest to group T.

Butterworth filtering of eight order and pass-band

from 1 to 50 Hz is applied to each recording. The ori-

ginal sampling rate (fs) of the Holter system was 128

samples per second, but the ECG recordings were

interpolated by a factor of 8 using cubic spline fitting, so

that a fs equal to 1,024 resulted. The resultant time-

domain higher resolution allowed us to obtain a better

cancellation of the QRS complex and a higher length of

parameter sequences.

3 Methods

3.1 Overall process

The ECG recording analysis is completed in five main

steps: extraction of the AA, computation of the spectro-

gram, curve fitting, construction of spectral parameter

series and SampEn computation. The SampEn values are

assessed by using univariate and discriminant analyses.

In order to use the ECG as a suitable tool for the analysis

of AF, we need to separate the AA from other cardio-

electric signals. The extraction of the AA during AF

requires nonlinear signal processing since spectra of atrial

and ventricular activities (VA) overlap and, in conse-

quence, they cannot be separated by simple linear filtering

[8]. One common approach to obtain the AA is average

beat substraction (ABS) [34], which relies on the fact that

AA and VA are uncoupled during AF episodes [8]. Aver-

age beat substraction (ABS) is the most extended and

accepted technique for AA extraction when, as in this

work, only one lead is used. Therefore, ABS was chosen

among other extraction techniques like independent com-

ponent analysis (ICA) [19, 33] or principal component

analysis (PCA) [11, 31].

After the extraction of the AA signal, its spectrogram [3]

is computed using Hamming windows of 1,024 samples in

length and 75% overlap. An example of AA spectrogram is

depicted in Fig. 1a. Then cubic spline fitting is applied to

each frequency slice that constitute the spectrogram. In

order to facilitate the spectral parameters extraction, the

cubic spline fitting curve is interpolated so that the result-

ing frequency increment is 0.01 Hz. In this way, the

spectral parameters of the spectrogram are obtained more

accurately. Next, the local maxima and minima of the

interpolated fitting curve are detected. Only singular points

from the main peak to the end of the spectrum are taken

into account. This is exemplified in Fig. 1b for a spectro-

gram slice at t = 50 s. Several mathematical series of

parameters, described in Sect. 3.2, are constructed from

these points. Finally, the SampEn of all aforementioned

series is obtained as an estimation of their mathematical

regularity. The size of series is around 600 elements, which

is large enough since the SampEn is meaningfully applied

to more than 100 data points [30]. All SampEn values were

computed with four significant digits. Given that the length

of the spectral parameter series is the same as the length of

database recording, i.e. 1 min, the resultant series time

resolution is 0.1 s.

The spectrogram was selected among a collection of

time–frequency distributions. We will elucidate this in

Sect. 3.3. On the other hand, the selection of the cubic

spline model is justified because in several preliminary

trials it provided the best fitting in comparison with
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Gaussian, polynomial, rational, Weibull, power and expo-

nential models. A cubic spline is a piecewise function of

third-order polynomials [4, 27].

The SampEn values are evaluated by the t test and by

discriminant analysis, the results of which are shown in

Sect. 4. The objective persued by the discriminant anal-

ysis is to know if the reliability of the decision can be

improved by any combination of the aforementioned

parameters. The discriminant analysis is carried out in

two stages. First, the discriminant function is obtained by

considering the learning data set. Then, this discriminant

line is applied to the test set in order to validate the

results.

Given that the electrical remodeling present in the

heart when AF occurs is a far-from linear process [6],

the non-linear index SampEn was chosen to estimate the

regularity of the series. Other non-linear indices, such as

the approximate entropy (ApEn) [30], which has been

previously used in several biomedical applications [32],

were also tested. Nevertheless, the SampEn was the index

that achieved the higher percentage of correctly classified

AF episodes. The SampEn [32] measures the regularity

level of the series. That is, they quantify how predictable

series are depending on the number of times that repeti-

tive patterns are present in them. The SampEn appears as

a natural evolution of the ApEn with the aim of reducing

the bias of this estimator [32]. The SampEn is defined as

follows.

Let x[n] be a time series of length N. The distance

between any two patterns of the series, Xm(i), Xm(j), of

length m is defined as:

d½XmðiÞ;XmðjÞ� ¼ max
k¼0;...;m�1

ðjxðiþ kÞ � xðjþ kÞjÞ ð1Þ

Given a pattern Xm(i), we calculate Bi
m(r) as:

Bm
i ðrÞ ¼

1

N � m� 1
Bi ð2Þ

where Bi is the number of patterns of length m that fulfill

d[Xm(i), Xm(j)] \ r with 1 B i, j B N-m, j = i, and r is

the parameter that defines the criterion of similarity

between patterns [30]. Next Bm(r) is computed as:

BmðrÞ ¼ 1

N � m

XN�m

i¼1

Bm
i ðrÞ ð3Þ

Defining Ai
m(r) and Am(r) in the same way as Bi

m(r) but

considering now patterns of length m ? 1, the SampEn is

computed by the following expression:

SampEnðm; rÞ ¼ � ln
AmðrÞ
BmðrÞ

� �
ð4Þ

3.2 Spectral parameters

In this subsection, we define the parameters used in the

study. One relevant difference from other works, where

similar parameters are used, is the application of SampEn

(a) (b)

Fig. 1 Time–frequency plot of a typical AA signal. (a) AA spectrogram computed using Hamming windows of 1,024 samples in length and 75%

overlap. (b) Spectrogram slice at t = 50 s, interpolated fitting curve, local maxima and minima, and spectral parameters fp1, fp2, A1 and A2
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to their series as an estimation of mathematical regularity.

The first spectral parameter we consider is the main peak

frequency (fp1), which is known to be highly relevant in the

characterization of AF [7] (see Fig. 1). The second

parameter is the main peak magnitude, A1. The third and

fourth parameters are the second largest frequency peak

(fp2) and its related peak magnitude, A2. The extraction of

these four parameters can be visualized in Fig. 1. The fifth

parameter is the spectral concentration (SC) around fp1.

The SC is defined as [10]:

SC ¼
P1:17fp1

f¼0:82fp1
PAAðf Þ

P0:5fs
f¼0 PAAðf Þ

ð5Þ

where PAA is the power spectral density of the AA signal, f

is the frequencies vector, fs is the sampling rate (1,024 Hz),

and fp1 is the main peak frequency of the AA. The

bandwidth considered for the SC computation is of 2 Hz

for a typical fp1 of 6 Hz, which justifies the selection of the

lower and upper limits of the sum [10]. Other two

parameters related to the width of the spectrum main

lobe have been used: the 3-dB width of the peak, w3 dB,

and the power in the 3-dB band, pb3dB. These two last

parameters have been used in [12] to characterize AF. Two

derived parameters, Dfp and �A2 are referred to the spectral

shape of AA. Similar parameters are used in [35]. The first

derived parameter is the normalized distance between fp1

and fp2, which is expressed as:

Dfp ¼
ðfp1 � fp2Þ

fp1

ð6Þ

The second derived parameter is the normalized amplitude

of the second largest peak, which is defined as:

�A2 ¼
A2

A1

ð7Þ

The deviation of the main and second peak frequencies

from their respective mean values are also computed as a

dispersion measurement:

d1 ¼ fp1 � Eðfp1Þ ð8Þ

d2 ¼ fp2 � Eðfp2Þ ð9Þ

where E(�) represents the average value over the

periodogram. Finally, the median frequency (MF) is

obtained as the center of mass of the spectrum:

MF ¼
P0:5fs

f¼0 jFTAAðf Þj � f
P0:5fs

f¼0 f
ð10Þ

where FTAA is the Fourier transform of AA. This parameter

was previously used in other works to characterize the

ventricular fibrillation [13].

3.3 Selection of the time–frequency distribution

Although time–frequency distributions had been previously

used in forecasting the evolution of AF episodes [12, 26],

the SampEn was for the first time applied to series of

spectral parameters in the present work. Given that the

optimal time–frequency distribution for the proposed

method was a priori unknown, a preliminary study with the

aim of choosing it was advisable. This preliminary study

was made by considering several time–frequency distri-

butions and a reduced number of spectral parameters. The

parameters chosen to do this prior survey were fp1 and SC.

The fp1 was chosen because it is known from previous

works that fp1 contains information on the AF termination

[26, 29]. More detailed results of this preliminary study can

be found in [37]. The SC was selected because it is a

significant feature of real AF recordings [10]. Once the

optimal time–frequency distribution was identified, the

number of spectral parameters was extended to 12.

The computed time–frequency distributions, all of them

belonging to the Cohen’s class [3, 14], were the spectro-

gram (SP), Wigner–Ville (WV), pseudo-Wigner–Ville

(PWV), Margeneau–Hill (MH), pseudo-Margeneau–Hill

(PMH), Page (PG), pseudo-Page (PPG), Zhao–Atlas–

Marks (ZAM) and Choi–Williams (CW). All these distri-

butions were obtained with the same resolution of 1 s in

time and 1 Hz in frequency. In Table 1, we present the t

test SampEn bilateral significance for fp1 and SC computed

for these nine time–frequency distributions. The spectro-

gram was the one that reached the least bilateral signifi-

cance in both fp1 and SC cases, remaining lower than 0.001.

Table 1 SampEn bilateral significance for fp1 and SC between groups N and T computed for nine time–frequency distributions: spectrogram

(SP), Wigner–Ville (WV), pseudo–Wigner–Ville (PWV), Margeneau–Hill (MH), pseudo-Margeneau–Hill (PMH), Page (PG), pseudo-Page

(PPG), Zhao–Atlas–Marks (ZAM) and Choi–Williams (CW)

SP WV PWV MH PMH PG PPG ZAM CW

SC \0.001 0.142 0.390 0.904 0.024 0.904 0.024 0.484 0.368

fp1 \0.001 0.239 0.394 0.533 0.003 0.533 0.003 0.727 0.576
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In view of the significance values obtained, the spectro-

gram was chosen among the studied time-frequency

distributions.

4 Results

The results of the t test applied to the SampEn of the

numerical series for the learning set are summarized in

Fig. 2. These results reveal that it is possible to distinguish

between terminating and non-terminating AF in 6 of the 12

parameters, considering a parameter to be relevant when its

bilateral significance is lower than 0.05. These six relevant

parameters are fp1, fp2, Dfp, A1, d1 and SC, the bilateral

significances of which are, respectively, 0.001, 0.005,

0.003, 0.004, 0.015 and 0.001. These results were com-

puted for m = 2 and r = 0.25 because the optimal classi-

fication was reached with these values. In order to choose

m and r, we compared the bilateral significance of every

spectral parameter for m = 1 or m = 2 and r between 0.1

and 0.25 times the standard deviation of the time series, as

suggested by Pincus [30]. As an example, the SampEn of

fp1 bilateral significance for the tested values of m and r is

presented in Table 2, which justifies the aforementioned

choice of m and r. For the rest of the spectral parameters,

the best outcomes were also achieved for m = 2 and

r = 0.25. A more generic strategy for optimal selection of

m and r is developed in [23].

The area under the receiver operative characteristic

(ROC) curve for the relevant parameters are, expressed in

the same order, 89.7, 76.3, 77.7, 79.9, 76.3 and 72.8%,

where SampEn of fp1 stands out because of its highest

value. In the rest of the parameters the bilateral significance

(a) (b)
Fig. 2 Results of the t test for

the SampEn of all the spectral

parameters. (a) Mean and

standard deviation of SampEn

for groups N and T, (b) SampEn

bilateral significance between

groups. A parameter is

considered relevant when its

bilateral significance is lower

than 0.05

Table 2 SampEn of fp1 bilateral significance for different tested

values of m and r

r = 0.1 r = 0.15 r = 0.2 r = 0.25

m = 1 0.0058 0.0050 0.0097 0.0094

m = 2 0.0075 0.0061 0.0040 0.0010

Values m = 2 and r = 0.25 are used in the study for SampEn of fp1

with respect to the minimum associated bilateral significance
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obtained is higher than 0.05, and thus they are considered

mathematically irrelevant. Subsequently, only the relevant

parameters are considered for the discriminant analysis.

The mean SampEn in type N recordings is higher than in

type T recordings for all these relevant parameters. This

means that spectral parameters of N recordings are less

regular than those of T recordings. An example of this can

be seen in Fig. 3 for parameter fp1.

The learning set ROC curve for the SampEn of fp1 is

depicted in Fig. 4, which has been fitted using the one-term

exponential model. A decision threshold of 0.1173 was

chosen to optimize the result for the learning test. By

considering this value of threshold, 19 of 20 learning

recordings were classified correctly. This decision thresh-

old results from the smoothed ROC curve in a sensitivity of

91% and 1-specificity of 14%. Taking the same threshold

for the test set, 26 of 30 recordings were classified cor-

rectly. This resulted in a percentage of recordings properly

classified equal to 95% for the learning set and equal to

86.67% for the test set. The results obtained by this clas-

sification are presented in Fig. 5 for every recording. A

higher dispersion of results is observed for the test set than

for the learning set. Therefore, despite the difference in

dispersion between learning and test sets, the decision

threshold of 0.1173 was correctly chosen.

The previous analysis revealed that the SampEn of the

spectral parameters fp1, fp2, Dfp, A1, d1 and SC have a

bilateral significance lower than 0.05 and, in consequence,

all of them are suitable for use in discriminant analysis,

which was the next step taken. Furthermore, the SampEn of

the AA was also computed and a mean difference of

0.2508, with the greatest mean value for the N group, and a

bilateral significance equal to 0.004 were figured out by the

t test. This fact suggested the inclusion of this parameter in

the discriminant analysis along with the spectral parame-

ters. This made it possible, in addition, to combine the

information obtained from both time and frequency

domains.

The cross-correlations for the SampEn of spectral sig-

nificant parameters and AA are depicted in Fig. 6. The

highest cross-correlation, 0.902, occurs between the Sam-

pEn of fp2 and Dfp. Also the pairs of variables fp1 and SC,

A1 and d1 present high values of cross-correlation; thus, it

is reasonable to expect in advance that these pairs of

variables do not appear in the resultant discriminant model.

The homogeneity of covariance matrices was checked

by the Box’s M test [18]. Since the significance of this test

was low, 0.013, separate groups of covariance matrices

were considered for the analysis. The variable selection

was performed by forward stepwise analysis and minimi-

zation of the Mahalanobis’ distance [22]. The statistic F

(a)

(b)

Fig. 3 (a) Type T and (b) type

N fp1 series example with

respective SampEn values

0.0153 and 0.1556. Higher

SampEn indicates lower

regularity of the signal

Fig. 4 Learning set ROC curve fitted using the one-term exponential

model for the SampEn of fp1. Decision point chosen for sensitivity

91% and 1-specificity 14%

Fig. 5 Classification of type N and T episodes using a threshold

value for the SampEn of fp1 equal to 0.1173. 95% of the learning set

and 86.67% of the test set recordings were classified correctly
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indicates which variable must be added to the model in

each step. This variable must have the largest statistic F

[18], with a minimum value that was set to 3.84 corre-

sponding to a significance level of 0.054. The process was

completed in three steps. The SampEn of fp1, Dfp and AA

were added to the model by the discriminant analysis, the

rest of the parameters being discarded because of their

low F. As expected, none of the aforementioned pairs of

variables with high cross-correlation appears in the final

discriminant model.

The discriminant function is a plane given by the

equation x3 = -0.0355 � x1 - 0.338 � x2 ? 0.4653, where

x1, x2 and x3 represent the SampEn of fp1, Dfp and the AA,

respectively. The standardized canonical coefficients of the

discriminant function are 1.880 for x1, 0.816 for x2, and

1.662 for x3. This function is depicted in Fig. 7. Only two

of the recordings were misclassified by this function. A

small value of Wilk’s lambda test [18] significance

(p \ 0.001) was obtained, which indicates the great dis-

criminatory ability of the function. All of the cases used to

create the model, i.e. the learning set, were correctly

classified. Regarding the test set, 15 of 16 type N cases and

13 of 14 type T cases were correctly classified (see

Table 3). Expressing this results in percentages, 100% of

the learning set recordings were classified correctly. In the

test test, 93.75 % of N recordings and 92.85% of T

recordings were classified correctly. The global percentage

of test recordings properly classified was 93.33%.

The method was also tested when the SampEn of AA

was excluded from the discriminant analysis. Under these

conditions, the discriminant analysis did not improve the t

test results, which suggested the combination of the time

and frequency domains.

5 Discussion

In this paper, we introduced a new method to predict the

spontaneous termination of AF episodes. This method is

Fig. 6 Cross-correlations for the SampEn of the spectral significant

parameters and AA. Pairs of variables with high cross-correlation do

not contribute to the resultant discriminant model

(a)

(c) (d)

(b)Fig. 7 Two-dimensional

representations of the results

taken by SampEn pairs of (a)

AA and fp1, (b) AA and Dfp,

(c) fp1 and Dfp, and 3D plot

showing the hyperplane defined

by the discriminant function. As

much as 100% of the learning

set recordings were classified

correctly. In the test set, 93.75%

of N recordings and 92.85% of

T recordings were classified

correctly
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based on the mathematical regularity of spectral parame-

ters. The t test has revealed the existence of significant

differences in group means for six of the studied spec-

tral parameters. Consequently, the selection of spectral

parameters for the study, based on previous works on AF,

can be considered appropriate. This test discloses that the

mean SampEn of the relevant parameters is higher in the

non-terminating than in the terminating AF episodes.

Consequently, the non-terminating recordings seem to

present more complex dynamics than the terminating ones.

This corroborates the physiological organization increase

of AA prior to AF termination, which was previously

reported through invasive atrial electrograms [21, 36].

Furthermore, results indicate that clinically relevant infor-

mation on AF organization can be obtained from the

spectral parameters of the surface ECG. A further inter-

esting challenge could be in finding a suitable relation

between the SampEn of spectral parameters and the

pathophysiological mechanisms of AF.

Additionally, t test revealed that the SampEn of fp1 has

the highest predictive power among all the studied spectral

parameters. In previous studies of the AF termination [9,

16, 29], fp1 has been also revealed as a good predictor of

AF termination. The main difference between our work and

those studies is that we consider the mathematical regu-

larity of spectral parameters in opposition to direct mean

values.

The major relevancy of SampEn for parameter fp1 is

confirmed by the discriminant analysis. The canonical

coefficient for SampEn of fp1 (1.880) is the highest; thus,

it is the variable that contributes the most to the dis-

criminant function. A slightly lower canonical coefficient

is associated with the SampEn of AA (1.662), which

indicates that both variables, and consequently both time

and frequency domains, have a similar weight in the

prediction of AF termination. A smaller value of the

canonical coefficients is related to SampEn of Dfp (0.816).

Nonetheless, we must not underestimate any of the vari-

ables. Since Dfp is a description of the spectral shape, we

can confirm that the variability of this shape along time

contributes to the resultant discriminant function. On the

other hand, all these three canonical coefficients have

the same positive sign, which points out that the loss of

mathematical regularity is an indicator of more likely

maintenance of AF.

The discriminant analysis has provided an improvement

in the results with respect to the classification by threshold

(5% for the learning set and 6.66% for the test set). For that

reason, it is worth considering the discriminant analysis in

predicting the evolution of AF, because this improvement

in the classification of AF could be of great importance in

routine clinical practice. Finally, Fig. 6 shows that vari-

ables of the resultant discriminant function have cross-

correlations between them that are not negligible. This

means that these variables share information, that is, they

are not totally independent. This would explain, to some

extent, the high percentage of correctly classified episodes

by the SampEn of fp1 and the additional percentage due to

the discriminant analysis.

In comparison with previous classifiers of the challenge,

only the winner team [29] classified correctly more

recordings than our method, one in the learning set. The

results of the rest of the classifiers were enhanced by our

method. Furthermore, this new strategy provides an

assessment of spectral parameters regularity that is not

present in previous works.

6 Study limitations

The study presents several limitations. First, the database

contains a reduced number of short recordings. A wider

database would be advisable in order to validate the

method’s performance over a larger population. Longer

recordings, which comprise AF onset and offset, would

allow to study the AA organization evolution during the

complete AF episode. Second, no information on the

medication of patients is provided in the database. Differ-

ent drugs could have different effects on the registered

wave form and consequently the results could be altered.

Third, although Holter recordings were oversampled to

1,024 Hz, we must take this with caution, since this over-

sampling cannot be considered to be strictly the same as an

original sampling rate of 1,024 Hz. Finally, the limited

number of leads from Holter ECG compelled us to use

ABS to extract the AA. A 12-lead ECG database of AF

episodes would make the application of ICA suitable. Since

Table 3 Type N and T correctly classified recordings for both

learning and test sets by using the discriminant analysis

Type Predicted group Total

N T

Learning cases

Count N 10 0 10

T 0 10 10

% N 100 0 100

T 0 100 100

Test cases

Count N 15 1 16

T 1 13 14

% N 93.75 6.25 100

T 7.14 92.86 100
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ICA provides a unified AA that does not depend on the

lead, this might help to improve the results.

7 Conclusions

A new method based on the mathematical regularity of

spectral parameters has been introduced as an original and

improved way to predict the evolution of paroxysmal AF

episodes. From the results we can deduce, first, that the

future evolution of AF affects not only the values of

spectral parameters, but also their variability in time.

Second, the SampEn of the spectral parameters is higher

for the non-terminating than for the terminating episodes.

Furthermore, the spectral parameters mathematical regu-

larity might be used to predict spontaneous paroxysmal AF

termination and could provide information on the organi-

zation of atrial activation in AF. The good results obtained

make this new method a useful tool that can help clinicians

in the management of AF. Future research will center on

assessing results by using a wider database and studying

the organization evolution of AA during long-term AF

recordings. This would help to make a decision on whether

to cardiovert the patient or not depending on the expected

evolution of the arrhythmia. In addition, a minor adjust-

ment of the method for its real-time application could be

interesting too. This would certainly require a deeper study

of its robustness to noise, given that the degrading influ-

ence of noise has been proved in other applications where

SampEn was used as a regularity estimator [2].

From the good results of the method, we can expect that

the application of this method would not merely be limited

to the prediction of PAF termination in the future. It could

also be applied to any biomedical signal in which regularity

of spectral parameters can help to differentiate among

patient groups. Nonetheless, its performance in other

environments can be checked only by using the method in

the specific application.
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