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Abstract We compared the performance of 22 algo-

rithms for independent component analysis with the aim to

find suitable algorithms for applications in the field of

surface electrical brain activity analysis. The quality of the

separation is assessed with four performance measures: a

correlation coefficient based index, a signal-to-interference

ratio, a signal-to-distortion-ratio and the computational

demand. Artificial data are used consisting of typical

electroencephalogram and evoked potentials signal pat-

terns, e.g. spikes, polyspikes, sharp waves and spindles. We

evaluate different noise scenarios and the influence of pre-

whitening. The comparisons reveal considerable differ-

ences between the algorithms, especially concerning the

computational load. Algorithms based on the time structure

of the data set seem to have advantages in separation

quality especially for sine-shaped signals. Derivates of

FastICA and Infomax also attain good results. Our results

can serve as a reference for selecting a task-specific algo-

rithm to analyze a large number of signal patterns

occurring in the surface electrical brain activity.

Keywords Independent component analysis �
Electrical brain activity � EEG simulations �
EEG processing � Blind source separation

1 Introduction

The methodology of independent component analysis

(ICA) was first introduced in the early 1980s in the

context of neural networks [10]. Since then a large

number of methods were developed for application in,

e.g. feature extraction, brain imaging, telecommunications

and finance. Makeig et al. [3] utilized ICA as an impor-

tant method for brain signal analysis. The goal of ICA as

well as of the related blind source separation (BSS) is to

separate instantaneously mixed signals into their inde-

pendent sources without knowledge of the mixing

process. It is possible to recover original sources from

mixtures if they are independent of each other. There is

no straightforward mathematical principle available to

solve this problem. However, there are a large number of

different algorithmic approaches. Algorithms are either

based on higher order statistics or estimation of statistical

parameters like negentropy, maximum likelihood or

mutual information or rely on the temporal structure of

the signals. To achieve separation, nearly all algorithms

follow an iterative scheme until a stop criterion is

reached.

One practical application of ICA decomposition is the

electroencephalogram (EEG) and the evoked potential (EP)

analysis. The acquired EEG/EP can be considered to result
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from a number of different sources in the brain and various

artifact sources that simultaneously generate electrical

signals. Thus, appropriate source localization is not trivial.

The electrodes placed on the scalp measure a superposition

or mixture of the underlying original sources. However,

many clinical applications do not require a reconstruction

of these original sources but instead a decomposition of the

EEG/EP into spatio-temporal components (features). The

ICA is predestined for such decomposition with possible

applications for both feature extraction (selection of only

interesting sources, e.g. heartbeat detection in electrocar-

diogram (ECG) data [24] or automated classification of

epileptiform activity in EEG data [2]) and artifact removal

(elimination of disturbing sources, e.g. removal of eye

movement artifacts from the electroretinogram (ERG) [6]

or removal of motion artifacts from electrocardiographic

signals [17]).

The objective of our study is to determine the algorithms

best suited for extensive EEG/EP signal analysis.

2 Materials and methods

2.1 Simulation premises

The investigations, done, were performed under the fol-

lowing premises:

• All ICA algorithms available to us at the time of the

project were compared. Preconditions for algorithms

are free availability and to be written in Matlab (or

having a framework that allows integration into Mat-

lab) with the open source code. We studied the

following ICA algorithms (in no specific order):

FastICA, efficient FastICA (EFICA), WASOBI,

COMBI, MULTI-COMBI, JADE, SOBI, Acsobiro,

Kernel-ICA, TCA, RADICAL, MILCA, Infomax,

SNICA, OGWE, SHIBBS, TDSEP, CUBICA, EGLD,

Pearson-ICA, 1FICA and Block EFICA (see Supple-

mentary material for author and source, respectively,

reference information).

• Comparisons were made using a data set simulated,

close to the real characteristics, and consequently

consisting of signals with typically occurring groups

of EEG/EP patterns and artifacts.

• Two simulations were performed concerning the influ-

ence of different noise models. In addition, another

simulation was carried out concerning the influence of

whitening as preprocessing prior to application of the

ICA algorithms.

• ‘‘Sources’’ in the context of this paper refer to ICA

sources and not underlying EEG/EP sources.

2.2 Comparison criteria

2.2.1 General considerations

To compare different ICA algorithms, characteristics and

criteria of interest have to be defined. The general decision

factors within this study are: separation quality and com-

putational demand. The separation quality is certainly of

top priority for the performance evaluation of the ICA

algorithms. The computational requirements may also be

an important criterion for algorithm selection, especially in

the case of ICA methods with comparable separation

quality, e.g. for conducting clinical studies with very large

data sets. Eventually, a compromise between separation

quality and computational demand has to be met.

2.2.2 Quality of source separation

In the context of this paper, quality is defined as the

accuracy of the algorithm in the demixing of the sources

in terms of the signal shape. The perhaps biggest problem

and thus most influential factor to quality is that the ICA

model does not entirely fulfill the assumption of inde-

pendence. In practice, sources are often not absolutely

statistically independent, prohibiting perfect separation.

Over-determination of the ICA model, i.e. more sensors

than sources, can pose another problem, however, this

issue can be solved by applying, e.g. principal component

analysis (PCA). If the opposite is the case and the ICA

model is under-determined, i.e. more sources than sen-

sors, only the strongest sources or superposition of

sources can be separated. Ultimately, quality is influenced

by noise since most ICA algorithms are designed and

tested for noiseless cases.

Since the order of the sources can be altered, the quality

quantification of an ICA algorithm is not trivial. An algo-

rithm matching the original source with corresponding

independent components is therefore necessary for direct

comparison of the original source and the demixed source.

This poses a difficult task as independent components

might be heavily distorted. An additional complication is

the loss of the original amplitude of the sources due to

varying values of the scaling factor between sources and

independent components.

2.2.2.1 Correlation based criterion The Spearman cor-

relation coefficient r [9] proves to be a good choice to

compare the original source and the independent compo-

nent because it is not dependent on the absolute amplitude

but instead on the (relative) shape of the signal and shows

normalized results between 0 and 1 (the sign is not of

importance here). The formula is:
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r � 1� 6
X d2

N N2 � 1ð Þ ð1Þ

whereby d is the difference in statistical rank of the corre-

sponding variables and N is the number of pairs of values.

We choose the nonparametric Spearman correlation

coefficient instead of the Pearson correlation coefficient [9]

since the latter shows correct results only for normal

(Gaussian) distributions which are not given in this case as

ICA requires nongausianity. Correlation coefficients are

calculated against all independent components for each

source. The independent component with the highest abso-

lute coefficient is the sought match. We refer to this quality

as ‘‘Correlation based Index’’ (CBI). It is computed for each

ICA algorithm by summing up the correlation coefficients

for each independent component and then computing its

mean value. To some extent, this allows compensation of

badly detected sources with very good separations. A

problem arises if an ‘‘independent component’’ is a mixture

of two or more sources. Consequently, the correlation

coefficient might turn out to be maximal at the same

‘‘independent component’’, thus compromising the CBI

since its value would be too high. This is prohibited by

removing matched independent components from the pool.

2.2.2.2 Criterion based on signal-to-interference ratio

Another measure for the separation quality of an ICA

algorithm is the signal-to-interference ratio. Based on Xu

et al. [25] we define the SIR for the kth original source as:

P ¼ W � B ð2Þ

SIRk ¼ 10 log10

max P :; kð Þð Þ2

P j; :ð Þ � P j; :ð ÞT�max P :; kð Þð Þ2

 !
ð3Þ

whereby B is the original mixing matrix and W is the

estimated demixing matrix. If B equals W-1 then P

becomes the identity matrix, otherwise P is roughly a

permutation matrix. Here j is the row where max P :; kð Þð Þ2
occurs. This SIR is the ratio of signal power of the esti-

mated source and total power of the interfering signals,

measured in decibels (dB).

The SIR criterion can only be used for theoretical

comparison, as the true mixing matrix is required for cal-

culation. On the other hand, the correlation based CBI

criterion is solely based on a comparison of true and esti-

mated sources. A similar approach is very often used in

practical ICA applications where one or more reference

signals are known and the corresponding estimated sources

should be determined, making our CBI criterion more

significant for an application oriented evaluation.

2.2.2.3 Criterion based on source-to-distortion

ratio Vincent et al. [22] introduced a number of measures

to evaluate blind audio source separation (BASS) algo-

rithms. One of the considered BASS methods is the

independent component analysis. Therefore, the perfor-

mance measures, described in their paper, can be applied

for the purposes of our study too. Vincent et al. imple-

mented their measures in a freely available Matlab toolbox,

which allows for a straightforward integration into our

benchmark framework. We compute performance criteria

in case that the only allowed distortions are time-invariant

gains and chose therefore the source-to-distortion ratio

(SDR) for our investigations.

The matching of original and estimated sources is done

similarly to the correlation based criterion. The BASS

criterions for each estimated source are computed against

all original sources. The one that gives the best results, is

the sought ‘‘true source’’ as described in [22].

Furthermore and differentially from [22] we compute

the SNR using the following definition:

SNR ¼ 20 log10

max ðsignalÞ �min ðsignalÞ
max ðnoiseÞ �min ðnoiseÞ

� �
ð4Þ

whereby with signal is the original source, and with noise

is the noise vector defined for the specific simulation,

denoted. To obtain the SNR for a complete dataset, the

SNR is computed for each source and averaged afterwards.

2.2.3 Computational demand

As stated above, the demand of computational resources is

another very important criterion for the application of an

ICA algorithm. Considering the present attributes of typical

computer systems we determine the required CPU time as

the only crucial factor of computational resource for

algorithms since all other aspects, like hard disk space or

size of random access memory (RAM), do not pose any

limitations in this study. The required execution time,

though, can vary by factors of more than one thousand for

the different algorithms. Measuring the execution time

proves to be the more realistic and useful measure for

practical application since counting the required floating

point operations per second (FLOPS) only shows part of

the computational resources an ICA algorithm consumes.

Memory bandwidth, for example, is another important

resource because ICA algorithms work on large data

matrices and typically perform a lot memory reading,

writing, allocation and de-allocation, etc. Operations may

require a considerable amount of execution time but not

many FLOPS. Furthermore execution time serves as an

estimate of required analysis time for comparable data sets.

Then again, FLOPS are a system independent measure

while measured execution time is only valid for the specific

test system. Tests with different Intel and AMD based

systems reveal no significant differences in relative
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execution times of algorithms. As expected, absolute exe-

cution times vary.

The required CPU time is of equal importance when

considering online application of algorithms. In this con-

text, ‘‘online’’ could stand for trial based signal processing

during the interval between recordings of particular trials.

This waiting time is typically short, i.e. a few seconds. A

classic procedure in EEG studies is to perform a fixed

number of trials for given paradigm to improve the signal-

to-noise ratio. If the SNR is determined in the very short

time between trials, recording can be stopped when a pre-

determined SNR is reached. This keeps the number of trials

as low as possible, reducing the stress on the test person and

verifying signal quality during measurement. Consequently,

an ICA algorithm suitable for online application has even

higher constraints concerning required execution time.

2.3 Data

True sources and mixing process of real EEG/EP data sets,

particularly in pathological cases, are unknown and not

very well suited for an objective comparison. Therefore,

we decide to create an artificial data set including known

test signals emphasizing the common structures of real

EEG/EP signals, e.g. a sine with phase shifts or phase

jumps, a number of graphoelements like spikes, polyspikes,

sharp waves as well as spindles and signals that represent

certain phenomena such as evoked potentials and event

related desynchronization or synchronization (ERD/ERS).

The amplitudes of typical EEG/EP signals are at rather

small values between 1 and 100 lV. The synthetic data set

for our investigations is shown in Fig. 1 and described

Table 1. The signals are supposed to correspond to typical,

underlying EEG ICA sources in terms of shape and

amplitude. The dataset consists of 16 channels, the mini-

mum required for practical EEG recordings. Parameters

and shapes of the test signals are based on Ebe et al. [5] and

Rodenbeck et al. [19]. We used an identical randomly

generated mixing matrix for each algorithm. Each element

of the mixing matrix is a double precision floating point

number between 0 (total dampening of the influence of a

certain source for the specific mixture/electrode channel)

and 1 (signal not dampened). The assumption of a random

and thereby unstructured mixing matrix leads to a very

abstract view of the mixing process. If the model should

have been more realistic from a neurophysiologic point of

view, the concurrent occurrence of certain sources would

have to be excluded. Moreover other sources would have to

be temporally and spatially aligned resulting in a structured

mixing matrix. Due to the random mixing matrix we model

a more challenging situation (or even the worst case), when

the sources may occur randomly, occasionally overlapping

in time and in close spatial proximity.

2.4 Computation

One of the intentions is to obtain representative results from

our simulations. An ICA algorithm is a statistical procedure,

which results may depend on its random initialization.

Therefore, the data set described in Sect. 2.2 is repetitively

generated and processed ten times by each algorithm. Those

iterations are not related to the generation of ensemble for

Fig. 1 Visualization of the test

data set. The histograms of each

source of our artificial data set

are shown on the right. Each

histogram consists of 8 bins.

The corresponding short

description of each signal is

given in Table 1
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subsequent epoch averaging, e.g. in case of evoked poten-

tials with negative SNR, but to attain characteristic results

for each ICA algorithm. Because of the time constraints and

the very long runtimes Kernel-ICA, TCA and both MILCA

implementations processed the data set only twice. Finally

we averaged the repetition results for the four defined cri-

teria (Sect. 2.1), whereby CBI, SIR and SDR serve as the

quality criteria and the required computation time as the

computational demand benchmark. The CPU time is

obtained with Matlab’s built-in function that shows the

consumed CPU time and not the actual running time so

possible influences of simultaneously running external

processes are virtually eliminated. Unfortunately, this pro-

cedure is not possible with the algorithms MILCA and

SNICA because the main part of their implementations is

written in C and executed as an external process. The

computation time for these cases has to be measured by

using the system clock. The recorded CPU times are still

very accurate as the running times of both algorithms are

relatively long and the test system used is a dual processor

system. Hence, possible influences by other programs run-

ning in the background are very small. No other processes

were started during the benchmark. The C programs of

MILCA and SNICA are not able to utilize the second CPU

core of the test system. This would have shortened the

recorded running time. The measured CPU time is solely

the computation time of the specific ICA algorithm. Prep-

aration of the data, possible preprocessing- or display-

operations have no influence on the recorded time. MILCA

and SNICA did not work under Windows Vista SP1 64 bit

(32 bit version was not tested).

The computer system utilized is equipped with an Intel

Core2 E6600 processor (dual-core CPU, 2 9 2.4 GHz,

4 MB L2 Cache), 2,048 MB of DDR2 memory (533 MHz)

running Windows XP SP2 (32 bit version) and Matlab

R2007b (Version 7.5.0342). The multithreaded computa-

tion was disabled, because our goal was not to benchmark

Matlab’s capability to distribute the ICA workload onto

multiple CPUs, but the actual computational demand of the

algorithms. By using the Microsoft Windows Task Man-

ager, we verified that the amount of RAM memory did not

pose a limitation to any of the ICA algorithms for the

utilized data set. The parameters for each algorithm are

listed in the Supplementary material.

3 Results

For sensor noise simulations, a method adding a zero-

mean Gaussian random vector to each synthetic source is

chosen. This is a deliberate violation of the requirement

to apply ICA. We want to investigate how the ICA

algorithms deal with more than one source with Gaussian

signal components (only one Gaussian source is allowed

for ICA per definition [10]). Thus three simulations with a

standard deviation of 0.1 lV (mean SNR: 36.51 dB),

0.2 lV (mean SNR: 30.43 dB) and 0.4 lV (mean SNR:

24.57 dB) for the additive noise were performed. A

standard deviation of 0.2 lV is a typical value obtained

by in-house measurements of sensor noise. As mentioned

in Sect. 2.2 typical EEG amplitudes are of much larger

values at about 1–100 lV. Although the amplitude of the

additional noise vector is quite low, this scenario with

many Gaussian noise sources is rather extreme for an ICA

algorithm. However, in addition to the sensor noise there

might be a lot of different noise sources under real life

conditions as well. No PCA or whitening is done as a

preprocessing step. The CBIs for each algorithm and

source for the simulation with a standard deviation of

0.2 lV for the noise vectors are shown in Fig. 2. This

visualization allows an investigation of the performance

of each algorithm for different sources. The required CPU

times as the results of the simulation for the computa-

tional demand criterion are given in Table 2. The CBIs in

Fig. 2 and Table 2 make evident that SNICA achieves the

lowest average results. TDSEP and Acsobiro also achieve

low results. Kernel-ICA and EGLD perform better than

SNICA, TDSEP and Acsobiro but are still significantly

worse compared to the remaining algorithms. SOBI and

WASOBI deliver the best separation quality for the CBI

criterion.

Table 1 Test data set characteristics

Signal Description Kurtosis

1 Delta-band sinus wave (2 Hz) -1.500

2 Theta-band sinus wave (6 Hz) -1.500

3 Alpha-band sinus wave (10 Hz) -1.500

4 Beta-band sinus wave (20 Hz) -1.500

5 Ramp (electrode drift) -1.200

6 Contingent negative variation

(CNV)-shaped

-1.834

7 Sleep spindles (13 Hz base

frequency, 0.5 Hz modulation

frequency)

-0.750

8 Spikes 47.687

9 Spike-wave-complex 3.079

10 Polyspikes -1.260

11 Sharp-waves 19.421

12 Slow-sharp-waves 15.439

13 Event related desynchronization

(ERD)-shaped

99.623

14 Weak evoked potential 45.291

15 Saw tooth wave -1.200

16 Strong Gaussian noise 0.016

The kurtosis of a Gaussian distribution is 0

Med Biol Eng Comput (2009) 47:413–423 417
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Figure 3 displays the simulation results for the SIR

criterion. WASOBI achieves the best average SIR of all

algorithms (18.1 dB). For SNICA the SIR computation

fails because of a bad demixing matrix.

Figure 4 graphs the results for the SDR performance

measure. The findings are similar to the SIR results

whereby SOBI attains the highest average SDR of 18.2 dB.

Furthermore the influence of power-law noise was

examined. In contrast to the previous simulations, no noise

is added to the sources before mixing, leaving source

number 16 as the only noise origin in this case. Here, the

distribution of the noise is not Gaussian but power-law (1/f)

with mean SNR of -25.3 dB. Since the noise amplitude

can be raised significantly without much of an effect, this

simulation appears to be somewhat easy for the ICA.

Again, the SNICA algorithm achieves the lowest average

values for CBI, SIR and SDR; SOBI and WASOBI deliver

the best separation quality (Table 2).

Additionally, the effect of PCA and whitening as pre-

processing were studied in this simulation. Here, PCA does

not effect dimension reduction since there are no redundant

mixtures which can be removed. The dataset and simula-

tion parameters of the previous simulation were used. This

is the only simulation in which TDSEP and Acsobiro

generate better results. Both algorithms seem to be the only

ones in the test field which rely on PCA and whitening

applied to the data set. The Pearson-ICA algorithm gains a

computational speed increase of about 30% from the

additional preprocessing while MULTI-COMBI, Kernel-

ICA, Infomax, TCA, CUBICA and EGLD attain slightly

lower results in terms of CBI, SIR and SDR.

To evaluate the influence of power-law distributed noise

in comparison to Gaussian noise we repeated the last

simulation using a Gaussian noise source. This corresponds

to the very often applied assumption that all Gaussian noise

sources can be merged into a single source. The COMBI

algorithm seems to benefit from this modification as it

achieves for all three quality criterions the best results.

The results of the different simulations are summarized

in Tables 2 and 3.

4 Discussion

4.1 Literature evaluation

A large number of different ICA algorithms have been

developed. Several papers on comparisons of ICA algo-

rithms have been published.

Usability for artifact removal from multi-channel EEG

was evaluated for the ICA algorithms FastICA and

Infomax in a publication by Glass et al. [8]. A stream of

blinks with known spatial and temporal characteristics

(blink template) was added to manually selected blink free

segments. The estimated source with the largest correlation

coefficient for the blink template was removed and the

cleaned data sets were compared to the contaminated sets

using correlation coefficients. However, this study did not

take into consideration the computational requirements of

the algorithms.

Another study was undertaken by Nicolaou et al. [18].

The focus of this study was to compare temporal and

common ICA algorithms, using both real and simulated

data sets. The data set was comprised of two EEG chan-

nels, an electromyogram (EMG) and an electrocardiogram

(ECG). The only criterion for comparison used, was the

signal-to-interference ratio (SIR) index as the computa-

tional demand was not investigated.

Krishnaveni et al. [14, 15] compared in two papers a

large number of ICA algorithms on the basis of a mutual

information estimator, using EEG data sets containing

ocular artifacts but did not examine the computational

demand. The algorithms Infomax, Extended Infomax,

Fig. 2 Source–algorithm plot of the CBI criterion averaged, over the

simulation trials with additive noise (0.2 lV standard deviation). The

white color of a rectangle for a specific source (horizontal axis) and

algorithm (vertical axis) reflect the maximum CBI of 1.0 and thus the

perfectly matching of the original and the estimated source. Oppo-

sitely, the black color stands for the minimum CBI of 0.0, i.e. the ICA

algorithm totally failed to extract the specific source. For example, the

SOBI algorithm delivers very good results for sources 1–5, 7 and 15
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FastICA, SOBI, TDSEP, JADE, OGWE, MS-ICA, SHIB-

BS, Kernel-ICA, RADICAL and MILCA were analyzed.

A topical review of James et al. [11] describes the

technique of ICA as a method performing BSS in the

context of biomedical signal processing. Although the

scope of this article is not a comparison of ICA algorithms,

it contains helpful information on various approaches

applicable to solve the BSS problem in the field of bio-

medical signals. No part of this article solely investigates

the application of ICA on other biomedical signals, e.g.

magnetoencephalogram (MEG) data [7], sound data [16]

and magnetocardiogram (MCG) data [4].

Though all the above mentioned studies show valuable

results, none were carried out with the objective of finding

outcomes for practical biomedical signal processing,

especially for the analysis of huge amount EEG/EP data.

Often, the few cases which investigated physiological EEG

signals used very small data sets or a small number of

channels. Furthermore, evaluation of algorithms with real

EEG data sets was based on subjective criteria since the

original sources were unknown. Only very few algorithms

(very popular algorithms like FastICA and Infomax) were

compared in most papers and none provided a widespread

overview on available implementations considering the

latest developments.

4.2 Result evaluation

In the following section the results of the simulations are

being analyzed. The good performance of the SOBI-algo-

rithms is most probably due to the fact that these

algorithms rely on the time structure of the signals. Given

the fact that test signals used in this study focused on

typical time characteristics, implementation of this

approach proved to be of advantage here. Performance

results should be applicable in a practical EEG analysis as

well. Likewise, OGWE, RADICAL, EFICA, COMBI, In-

fomax and CUBICA are only slightly inferior to SOBI and

WASOBI by a difference of about 0.05 or less for the CBI

criterion. Figures 2, 3 and 4 depict those specific sources

Fig. 3 Source–algorithm plot of the SIR criterion in dB, averaged

over the simulation trials with additive noise (0.2 lV standard

deviation). Analog to Fig. 2 and analog to the well known SNR, black
represents a very low ratio of wanted source signal to unwanted

interference. White stands for a high SIR, indicating good separation

quality. For example, the WASOBI algorithm delivers very good

results for sources 1–4, 8, 13 and 14

Fig. 4 Source–algorithm plot of the SDR criterion in dB, averaged

over simulation trials with additive noise (0.2 lV standard deviation).

Similar to Fig. 3 black represents a very low ratio of wanted source

signal to unwanted distortion. White stands for a high SDR, indicating

good separation quality. Again the SOBI algorithm achieves good

results for sources 1–5 and 7
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for which SOBI and WASOBI achieve better separation

than the remaining algorithms and thus could be used by

researchers requiring a suitable algorithm for a given signal

decomposition problem (e.g. epileptic spikes). Sources 1–

3, sine waves at dissimilar frequencies, illustrate this case.

SOBI and WASOBI can be used for a near perfect esti-

mation. One reason for the inferior performance of the

other algorithms might be the chosen nonlinearity (source

prior). Sine waves have multimodal probability density

functions (see Fig. 1, histograms on the right side) while

for ICA typically high-kurtosis source priors are used, as

pointed out by Knuth [12].

Required CPU times differ greatly. Surprisingly, one of

the two C implementations (MILCA) belongs to the

slowest algorithms in the test-field, performing slower than

most other algorithms of comparable quality (roughly by a

factor of ten thousand). Therefore, we recompiled the

source code using Microsoft Visual Studio.NET 2005 and

the latest Intel C(??) compiler with all optimization flags

turned on and also utilizing SSE2 processor instructions.

The source code was not altered. We wanted to briefly

investigate achievable performance improvements of those

very easily attainable optimizations. We refer to the

recompiled version of the MILCA algorithm as ‘‘MILCA-

optimized’’. Compared to the original binary, our recom-

piled binary performed up to 100% faster but is still too

slow to be considered for practical application in EEG.

Kernel-ICA’s separation results (average CBI of about

0.5–0.6) and especially the required CPU time (about

1900s) make this ICA variant rather inapplicable for our

purposes. A relatively slow algorithm is RADICAL (about

200 s). It delivers good results in terms of quality but the

execution time is too long to be of use for biomedical

signal processing of large data sets. Virtually the same is

the case with Infomax which is considerably faster than

RADICAL (less than 15 s execution time), but still roughly

ten to fifty times slower than other algorithms. OGWE is

able to accomplish separation on par with most algorithms

of the test-field and is even quicker than the already very

fast SOBI algorithm (0.16 vs. 0.38 s). The fastest algorithm

in all three simulations is TDSEP (about 0.01 s). However,

achieved separation quality is comparatively low (at best

an achieved CBI of 0.5) and this algorithm can only be

recommended if the computational demand is of top pri-

ority and PCA and whitening are applied as preprocessing.

The degree of correspondence between the rankings,

based on the three separation quality criteria, calculated

using the Kendall tau coefficient [1] is strong (Table 3).

The only exception is the correspondence between CBI and

SDR in the simulation of separated noise and without

preprocessing. The high decision correspondence can be

interpreted as verification of the performance results of the

different ICA algorithms.

Figure 5 shows the results of the SOBI ICA algorithm

for simulation with a separated noise source. It indicates

that signals are very close to original source signals

(Fig. 1). The signs of some signals are reversed and some

signals have minimal influences from other sources. As

already mentioned, SOBI performs particularly well in

separating sine waves of dissimilar frequencies. Most other

ICA algorithms are not as successful.

It also becomes clear that the order of the signals is

different in both figures, i.e. the estimated sources are

permuted. The question is how successfully the estimated

sources are matched to the corresponding original sources

by the different separation quality criterions as each cri-

terion uses its own methodology. An inspection of the

detected matches confirmed that all performance measures

found the correct sources in this example.

4.3 Limitations of the simulations

It is important to point out that the evaluations consider

only the special case of scalp-recorded EEG and EP. We

are not considering intracranial EEG or magnetoencepha-

lography data as the signal-levels, noise-levels and noise

features are distinctly different in these recording modali-

ties. Further on, the physical layout of the acquirement

arrays compared to the physical distribution of the neural

sources is distinctly different between scalp-recordings and

intracranial EEG.

A compromise between a pure statistical comparison of

ICA algorithms and a comparison based on real EEG data

using our approach of simulation and an artificial dataset

was sought. As already stated, the problem with the former

is the difficult predictability and validation of the actual

outcome for practical applications. The problem with the

latter is that the true sources and the mixing process are

unknown so that the results of the comparison cannot be

objectively evaluated. This compromise also proved to be a

Table 3 Kendall’s tau for the

quality measures

A tau of 1.0 indicates a strong

correlation between the

measures while 0 denotes their

independency

Kendall’s tau Additive noise Separated noise source With preprocessing

Gaussian noise standard

deviation: 0.2 lV

1/f noise standard

deviation: 100 lV

1/f noise standard

deviation: 100 lV

CBI–SIR 0.76 0.61 0.63

CBI–SDR 0.83 0.49 0.71

SIR–SDR 0.74 0.67 0.73
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limitation of our evaluation. Furthermore, real EEG is more

complex than test signals used in this study and consists of

more than 16 sources.

Another limitation of the benchmark is related to the CBI

criterion but not exclusively. Sources with large parts of

zero activity (e.g. sources 8, 11, 12, 13 and 14 in Fig. 1) are

problematic for computing the correlation coefficient. Very

small deviations of the estimated sources in those zero

valued signal parts cause a low correlation coefficient

although relevant (non-zero) parts of the signal are esti-

mated accurately. Figures 2, 3 and 4 illustrate this effect.

All algorithms attain quite low results for these mentioned

sources. The problem is further revealed when comparing

an original source, e.g. source 8 in Fig. 1 and the corre-

sponding estimated source of the SOBI algorithm in Fig. 5

(source 12). Although both sources match quite well visu-

ally, the achieved correlation coefficient is only about 0.26.

Due to the facts that the performance measures rely on

averaged statistical information and our simulations are

epoch-oriented, shorter epochs would probably improve the

values of the measures in the case of short-time sources with

seldom occurrence. Overall, this limitation does not lead to

false results. However, sensitivity of the measures for spe-

cific sources is lowered. Conclusively, inter-algorithm

differences are crucial for comparison, not absolute values.

In accordance with Giannakopoulos et al. [7], we found

that fixed-point algorithms (e.g. FastICA and its derivates)

deliver good performance. We can also confirm that

algorithms based on a temporal structure, such as the SOBI

and WASOBI algorithms as well as TDSEP used in our

study, are beneficial for EEG analysis [18].

Krishnaveni et al. [14, 15] compared ICA algorithms on

the basis of mutual information [23], an approach that does

not make assumptions about data used, to measure the

dependence of components of a random vector. This makes

mutual information a perhaps suitable measure for sepa-

ration quality, provided that independence of source signals

is assumed.

There are a number of estimators available to help

obtain mutual information, e.g. Stogbauer et al. [20].

Unfortunately, there are remarkable differences between

the results of the different findings. This made it difficult to

choose a single estimator for our study and also compli-

cated interpretation of the results. Since the aim of this

paper is not the comparison of mutual information esti-

mators and due to imposed time constraints, we decided

not to implement mutual information as a quality criterion.

Finally, specialized source separation algorithms, e.g.

dVCA [13, 21] as it relies on multiple (non-averaged

epochs) of single-trial data, are beyond the scope of this

article.

5 Conclusion

Despite the limitations discussed above, the study carried

out shows that certain ICA algorithms appear to be more

applicable for EEG/EP analysis than others.

SOBI and WASOBI showed the best results for sepa-

ration quality in most cases. EFICA, which is an improved

version of FastICA, nearly matched the performance of

SOBI and is clearly superior to its original version in our

Fig. 5 Visualization of

estimated sources from the

SOBI algorithm. The result is

very good as all original sources

(Fig. 1) can be clearly

recognized. Two limitations of

the ICA become evident: the

order and the absolute

amplitude (including the sign)

of the sources are lost. Similar

to Fig. 1, the histograms of each

source of our artificial data set

are shown on the right side of

this figure. Eight bins were used

to create the histograms
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simulations. OGWE and CUBICA, both fourth order sta-

tistics based algorithms, also attain good results. COMBI,

an approach to unite EFICA and WASOBI, should com-

bine the advantages of FastICA and a SOBI derivate and

thus extend its field of applications. Although the algorithm

falls slightly behind in terms of quality and computational

demand (the algorithm is nevertheless very fast), it should

be considered for practical application, and especially since

the combination approach might show advantages in select

cases. RADICAL and Infomax delivered very good results

but might be too slow for many applications. Both algo-

rithms might be an option if required computation time is

not a factor of consideration.

The detailed results for the spectrum of EEG/EP signal

patterns can serve as a reference when selecting a particular

algorithm for a specific purpose, such as the identification

of certain artifact types.
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