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Abstract The measurement of anesthetic depth is

important in anesthesiology. Although heart rate variability

(HRV) is profoundly affected by general anesthesia, it has

not yet been commonly used in this field. One of the rea-

sons is the lack of suitable parameters of HRV for short-

term observations. In this study, we designed a time

domain parameter of HRV named the similarity index. It

was based on observing the trend of the distribution of

instantaneous heart rates as time moved. Taking epochs of

ECG data as short as 64 s can derive the index. We

observed the values of this index of 30 patients when they

were awake and under isoflurane anesthesia. The values

had very little overlapping between the two states and the

prediction probability to distinguish the two states was

0.91. We suggest that HRV, if suitably treated, can play

more roles in the monitoring of anesthetic depth.
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1 Introduction

The measurement of anesthetic depth is an important topic

since the invention of modern anesthetic techniques. To

distinguish consciousness from unconsciousness states,

many clinical observations and electrophysiological

parameters have been studied. Clinical changes of heart rate,

blood pressure, respiratory rate, lacrimation and sweating

have been the basic observations for anesthetic status in daily

practice, but these signs are inconsistent and nonspecific. A

group of physiologic parameters highly correlated with

anesthetic depth were derived from EEG and auditory

evoked potential [4, 11]. The BIS index is derived from

adjusted weight on the power spectrum, the burst suppres-

sion pattern and the bispectrum of the EEG data [19]. The

AEP index is derived from auditory evoked potential, which

is highly sensitive to anesthetic states [13]. Both indices are

normalized to a score from 0 to 100 and have been widely

used on the investigation of the depth of anesthesia [20]. The

entropy, which measures the randomness of a time series, has

also been investigated [14]. However, the signal-to-noise

ratio of EEG is low and the monitoring based on it needs

specific machines and expensive electrodes. Moreover, there

have been reports that BIS value has some overlapping

between awake and deep sedative status [8].

Heart rate variability (HRV) also changed significantly

from awake to unconscious state [6, 10]. HRV is related to

autonomic regulation [1], which is highly affected by

general anesthesia. Thus theoretically, HRV is a potential

indicator of anesthetic depth. However, the currently used

parameters of HRV need relatively longer observed data to

calculate. The time domain parameters are used mainly for

the long-term measurements [22]. The spectral analysis

was used as a ‘‘short-term’’ measurement of HRV, but it

still needs data of 5-min length to get reliable results, and
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its calculation is relatively complex. Moreover, there are

large inter-individual variations of conventional HRV

parameters, especially the spectral powers [9]. Hence, it is

difficult to derive an ideal parameter of HRV with a BIS-

like score of 0–100 from these HRV observations.

However, it is worthwhile to investigate more HRV-

based anesthetic depth indicator because ECG monitoring

is easy and cheap. In this study, we derived an HRV

parameter called similarity index (SI) and observed its

value at both conscious and anesthetized state during iso-

flurane anesthesia. This time domain parameter is derived

by measuring the similarity of the statistical distribution of

R–R interval measurements in consecutive data segments.

The data length of ECG needed to calculate this parameter

is as short as 1 min. The parameter was found to have high

predictive power between consciousness and anesthetic

states. Some other HRV parameters were also calculated

for comparison.

2 Materials and methods

2.1 The similarity index of HRV

2.1.1 Computation of the similarity index

The derivation of the similarity index from ECG recording

is described below and also illustrated in Fig. 1.

Step 1 The instantaneous heart rates, which are the

reciprocals of the R–R intervals, are derived from the ECG

recordings. This is resampled by the commonly used

algorithm of Berger to 4 Hz [3].

Step 2 Let the instantaneous heart rates be r(1), r(2),

r(3),… The differences between consecutive heartbeats

were calculated:

dðnÞ ¼ rðnÞ � rðn� 1Þ

Step 3 At any observation time t, we compare the

statistical distribution of the two consecutive blocks of

the d(n) data, one block from d(t-2M + 1) to d(t-M) and

the other from d(t-M + 1) to d(t), both have M data

values. We set M = 128. The histograms (i.e., statistical

distribution) of d(n) in both data blocks were generated.

The determination of the cell number in the histogram is

described later. The probability of the d(n) values falling in

the ith cell of the histogram was denoted as P1(i) in the first

data block and denoted as P2(i) in the second data block.

For example, between the range of -0.4 and 0.4 min-1 if

we choose the cell width in the histogram as 0.002 min-1,

then in the first data block, P1(1) = Probability(-0.4 B

d(n) \ -0.398), and P1(2) = Probability(-0.398 B

d(n) \ -0.396), and so on.

Step 4 The similarity index was calculated by multiplying

the probability of d(n) of the corresponding cells in the

histograms of the two data blocks, followed by summing

the product value in all the cells:

SI ¼
Xh

i¼1

½P1ðiÞ � P2ðiÞ�
" #

� 100

where SI is the similarity index at the observation time and

h is the number of cells in the histograms. The summation

results in a value between 0 and 1 and is multiplied by 100

to get a score from 0 to 100.

Fig. 1 The outline of the derivation of the similarity index from R–R

interval data
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2.1.2 Selection of the parameters in the computation

The number and width of the cells in the histograms in

the step 3 were selected empirically. The values of d(n)

basically fall between -0.4 and 0.4 min-1 so we took this

as the range of values in our histogram. We tested the cell

number in the histogram from 100, 200, etc., till 1,000

and selected the number with the best performance, which

was 400 cells. To divide the data range of -0.4 to

0.4 min-1 into 400 cells, the width of each cell was

0.002 min-1.

2.1.3 Meaning of the similarity index

Mathematically the SI is a measure of the similarity

between the statistical distribution (or histogram) between

two consecutive data blocks. The rationale of this mea-

surement to be an HRV parameter is that, if the heart

rate is more variable, then the consecutive data segments

will be less similar. If the patterns of the heart rates are

less variable, which means the distribution of the two

data blocks are similar, then the two histograms will

‘‘match’’ better, that is, at many values of i, P1(i) and

P2(i) are simultaneously high. Because we compute the

SI by multiplying P1(i) and P2(i) for all values of i, the

resulted SI will be higher under this condition. Thus

conceptually a higher SI can reflect lower HRV and vise

versa.

2.1.4 Data requirement of the similarity index

The sampling frequency of d(n) was 4 Hz, so data block

of 128 points was equal to 32 s of data. In other word, by

observing the data of the past 64 s (two 128 point blocks)

we can get the similarity index at the observation time.

The above calculation can be performed on a beat-to-beat

basis.

2.1.5 Error properties of the similarity index measurement

The main sources of error are ectopic or artifact peaks. A

spurious R peak will separate a normal R–R interval into

two shorter intervals. This results in erroneous count in

some histogram cells. For data length of 128, the resulted

error in the probability P1(i) for each related cell will be 1/

128. In the worst case when P2(i) = 1.0, the total error of

SI will be 100/128, or about 0.8. For an average value of

similarity index at about 20, this represents an error of less

than 5%. And in the real cases it is very unlikely that all

d(n) fall into a small number of cells, so the error will be

much less than this level. Thus the data length we used was

enough to avoid significant error if the ECG signal is

reasonably good.

2.2 Patients and data acquisition

After institutional ethical approval and getting informed

consent, we recorded the electrocardiogram of 30 ASA

class I, II patients proposed to receive general anesthesia

for various surgical operations. None of the patients have

history or clinical manifestations of cardiovascular or

neurological diseases. The electrocardiogram recording

started when the patient arrived the operation room and

was awake. After at least 5 min of recording, the induction

of anesthesia was performed as routine practice (intrave-

nous thiopental 5 mg/kg, succinylcholine 1.5 mg/kg and

100 lg of fentanyl). After tracheal intubation, 1.5% iso-

flurane in oxygen was administered to maintain anesthesia.

Mechanical ventilation was applied at respiratory rate

10 min-1 and the tidal volume was set to keep the end tidal

CO2 at 30–35 mmHg. The electrocardiogram recording

continued for at least 20 min thereafter.

The electrocardiogram was recorded into the hard disk

in a personal computer via an analog-to-digital converter

with sampling frequency 500 Hz and offline analysis was

performed.

2.3 Data analysis

2.3.1 Similarity index

The similarity index value was calculated both in the

awake and anesthetic state. The data of the awake state

were taken from the 5-min duration before induction of

anesthesia. The data of the anesthetic state were taken from

the 5-min duration after isoflurane had been used for

10 min and the patient was fully anesthetized with the end

tidal isoflurane concentration reached its stable level.

The values of the similarity index were compared

between awake and anesthetic states using both paired and

unpaired t test. The former was to test the effect of iso-

flurane on the subjects and the latter was to test the

overlapping of the values between the two states in the

populations. P \ 0.05 was considered as statistically

significant.

Furthermore, the ability of the similarity index to predict

the state of awake or anesthesia was analyzed by the pre-

diction probability (Pk) [21]. The HRV parameters were

used as the predicting variable and the state of awake or

anesthesia was the variable to be predicted. The Pk value

revealed the overlapping of the parameter value between

the two states. Pk value of 1.0 means perfect prediction and

totally no overlap between the two states, and the worst Pk

value of 0.5 means a prediction no better than random

guess and this represents overlapping of the value in the

whole range of data distribution. The optimal cutting

threshold of SI value between the two states was
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determined by changing the cutting threshold continuously

from 1 to 100 (with increment of 1). The Pk for each

cutting threshold was computed. The cutting threshold with

the maximal Pk value was identified as the optimal cutting

point.

The prediction probability has parallel power to the area

under curve (AUC) of the familiar receiver operating

characteristic (ROC) curve, but prediction probability is

easier to interpret. However, the ROC curve was also

derived for completeness.

2.3.2 Power spectral analysis

For comparison, spectral powers were calculated using fast

Fourier transformation on the 1,024 data points in the

awake or anesthetic states. The high frequency (HF) range

was taken as 0.15–0.4 Hz and the low frequency (LF)

range was 0.04–0.15 Hz [9, 22]. There was only one

spectrum generated from the whole length of 5-min data.

The t tests and Pk value calculation were performed on HF

power, LF power and the HF/LF ratio.

2.3.3 Sample entropy

For comparison, sample entropy [18] was also computed.

SampleEntropy (m, r, N) is the negative logarithm of the

conditional probability that two segments in a time series

are the same in their first m points and remain the same at

the consecutive point. Values within tolerable error r were

counted as the same. Here, we set m = 2, r = 0.15 times

the standard deviation of the time series, and the data

length N in the computation of sample entropy was set to

be the same as the similarity index used, that is 64 s of

data. The sample entropy of the awake and anesthetic states

was computed and compared.

3 Results

The trend of the similarity index of one of the patients is

shown in Fig. 2. This is the typical pattern of the similarity

index trend in many cases. Anesthesia was inducted at

point S in the figure and the data representing the anesthetic

state were started from point A, when isoflurane anesthesia

had been applied for 10 min. The similarity index was very

low in the awake state and higher at the anesthetic state.

This reflected the decrease of HRV after isoflurane

anesthesia.

The results of statistical tests and Pk values of SI and

other HRV parameters are summarized in Table 1. In the

paired t test, the similarity index showed significant dif-

ference between the paired difference value and zero,

implying significant effect of isoflurane anesthesia on the

subjects. On the other hand, the significant result of

unpaired t test reflected the little overlapping of SI value

distributions between the two states.

The predictive probability Pk of SI to discriminate the

awake and isoflurane anesthesia state was 0.91. The high

prediction power further confirmed the little overlap of its

value between the two states. The optimal cutting value of

the similarity index to get the best predictability was 18,

i.e., if we take the value above 18 as isoflurane anesthesia

and the value below 18 as awake, then the correct rate of

the prediction was 91%.

The differences between awake and anesthetic state are

also significant for the HF and LF power, and the Pk were

0.88 and 0.91, respectively. This result showed that the SI,

which needed only 1-min data to calculate, had compara-

tive predictive performance with spectral powers. On the

other hand, the predictive power of HF/LF and short-term

Fig. 2 The trend of the similarity index of one patient. Anesthesia

was inducted at point S and the data representing the anesthetic state

were started from point A, when isoflurane anesthesia had been

applied for 10 min

Table 1 The values of similarity index and other parameters of HRV

in the awake and the isoflurane anesthetic states

Awake Anesthesia Difference Pk

Similarity index 12.9 ± 5.8 29.5 ± 8.2* 16.7 ± 7.0§ 0.91

LF power

(9104 ms2)

2.75 ± 2.37 0.43 ± 0.81* 2.32 ± 2.39§ 0.88

HF power

(9104 ms2)

0.73 ± 0.68 0.12 ± 0.15* 0.61 ± 0.63§ 0.91

HF/LF 0.37 ± 0.40 0.36 ± 0.21 0.02 ± 0.47 0.58

Sample entropy 0.69 ± 0.24 0.60 ± 0.29 0.09 ± 0.41 0.60

The fourth column is the difference of the values between the two

states

Pk The prediction probability of the parameters to distinguish the two

states

* Significantly different from awake state in unpaired t test,

p \ 0.001

§ Significantly different from 0 in paired t test, p \ 0.001
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sample entropy are not very high, with Pk values of 0.58

and 0.60, respectively. To illustrate the distribution of these

parameters, the values of SI and other HRV parameters of

all the subjects in the two states are plotted and are shown

in Figs. 3, 4, 5, 6, 7. The ROC curve of SI to predict the

anesthetic states is shown in Fig. 8.

Fig. 3 The similarity index of all patients in awake and anesthetic

states. Only the average values in 5-min duration are shown

Fig. 4 The LF spectral powers of HRV of all patients

Fig. 6 The HF/LF value of all patients

Fig. 5 The HF spectral powers of HRV of all patients
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4 Discussion

Many clinical observations and physiologic parameters

have been used to distinguish consciousness from uncon-

sciousness states during general anesthesia. The routine

used clinical observations as heart rate, respiration, blood

pressure, etc., actually do not have very high correlation

with anesthetic status. The auditory evoked potential and

EEG related parameters are more powerful, especially the

BIS and AEP index. But as Drummond [5] has stated, only

a significant difference between the awake and anesthetic

state is not enough for a good anesthetic depth indicator. A

good parameter of anesthetic depth must have as little

overlapping of its values as possible between conscious and

anesthetic states in the general population. Ibrahim et al.

[8] found that although the average BIS values during

sedation were lower than consciousness, the distribution of

the values has too much overlapping between these two

stages. This lowers the prediction power of the BIS

parameter at anesthetic stage.

Besides the EEG derived measurements, the relation of

HRV with physiological system and anesthesia has been

extensively studied during the past two decades [1, 9, 22].

HRV has been correlated to the regulation of autonomic

nervous system. Because autonomic nervous system func-

tion is highly affected by general anesthesia, the spectral

powers of HRV were suppressed during inhalational gen-

eral anesthesia [6, 10]. Thus HRV have been widely

accepted as a potentially good predictor of anesthetic

depth.

However, for the purpose of anesthetic depth monitor-

ing, the time epoch needed for the measurement of specific

parameter should be as short as possible. The most com-

monly used ‘‘short-term’’ parameter of HRV is the spectral

powers. Conventionally this is calculated by fast Fourier

transformation (FFT) on ECG data of 5-min duration.

Theoretically, due to the trade off between time and fre-

quency resolution, the power spectrum generated from too

short data block is not reliable. To get power spectrum of

short data blocks, more complicated signal processing

techniques such as short time Fourier transformation or

time–frequency spectral analysis should be used. Thus

spectral analysis is not very suitable for the anesthetic

depth monitoring. On the other hand, the time domain

measurements of HRV are mainly relied on the statistic

characteristics of heart rate data and needs even longer

samples to calculate. Hence these time domain parameters

are conventionally used as long-term measurement of HRV

and are applied on the 24-h recordings of ECG data. To

cope with this condition, our calculation algorithm com-

pared two consecutive data blocks from the same subject.

This self-pairing helped to filter out the inter-individual

variation and revealed the oscillation that is mainly due to

external influences, which was the anesthetic depth in our

cases. This approach has resulted in a stable time domain

HRV parameter by using only 1-min ECG data at each

measurement. As shown in Fig. 2, the SI value in either

awake or anesthetic stage changes smoothly and is rela-

tively consistent in the same stage for the specific

individual.

There are two additional advantages of our parameters.

One is the better feasibility of ECG than EEG. The energy

levels of ECG signals are much higher than EEG and the

former is more resistant to noise. The ECG signals can be

easily acquired using routine monitoring machine and

regular electrode leads. This makes the handling of ECG

Fig. 7 The sample entropy of all patients

Fig. 8 ROC curve of the similarity index
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derived data more convenient, economic and reliable than

EEG or AEP related data. The other advantage of our

parameter is its simplicity. From the R–R interval time

series, only elementary arithmetic calculation and simple

counting are needed. This can be done within milliseconds

with simple software or hardware. Thus the parameter can

be derived on a beat-to-beat basis and have the potential for

real time applications without expensive instruments.

We also tested the predictive power of ECG derived

sample entropy on the anesthetic states because the com-

putation of this parameter needs only short data segments.

However, as our data has shown, this may not be an ideal

indicator of anesthetic states under isoflurane general

anesthesia. The EEG derived entropy had been used to

investigate the consciousness and anesthetic depth of the

subjects [12]. But the underlying physiological mechanism

of the EEG and ECG derived entropy may be very dif-

ferent. ECG derived entropy has been applied in the study

of various other clinical conditions [2, 7, 17]. However,

there has been little evidence on the correlation between

ECG derived entropy and the depth of anesthesia. Our

result showed that more effort is needed to make ECG

derived entropy a valuable predictor of anesthetic states.

Mathematically the SI is a measure of the similarity

between the statistical distribution (or histogram) between

two consecutive data blocks. The rationale of this mea-

surement to be an HRV parameter is that, if the heart rate is

more variable, then the consecutive data segments will be

less similar. This ‘‘similarity between consecutive data’’

actually was implicitly implied in many approaches of

HRV measurements. For example, the sample entropy

defined the ‘‘similarity’’ as ‘‘the probability of the repeating

of data sequences’’, the conventional time domain HRV

measurements viewed the ‘‘similarity’’ as the measurement

of the statistical variation of the data, and the spectral

analysis defined the concept of ‘‘similarity’’ implicitly as

the periodicity of the time series. Our algorithm suggested

just another approach on this concept. All these are merely

different viewpoints on the same data and we can’t say

which one was superior to another. For the monitoring of

anesthetic depth, as the underlying physiological mecha-

nism of general anesthesia hasn’t been elucidated yet, it is

impossible to determine the performance of these various

algorithms in theoretical level. Thus the validity of any of

these predictors can only be tested by measuring real world

data. We think that maybe the significance of such kind of

parameter is based on its usefulness in the real world

application more than on its physical meaning.

Besides the SI, there are also many other time domain

HRV parameters. Although these are all derived from the

R–R interval time series, they were based on different

computation processes so the inter-relation of them cannot

easily be clarified. For example, sample entropy measures

the probability of the repeating of data sequences. How is

this related to the standard deviation of mean of the R–R

intervals? Actually there may be very little relation

between these parameters. We believe that this is also the

case between the SI and the other time domain parameters.

In a study of heart failure patients, an autocorrelation

like function had been used on the R–R intervals to treat

the HRV data [23]. However, in the current study, we

chose to perform our similarity index calculation on the

difference of heart rate instead of the heart rate per se.

Because HRV mainly represents the regulation rather than

the activity of autonomic function [15], the difference of

heart rates have more significant information than the heart

rate itself. Myers et al. [16] had compared several time

domain HRV parameters and concluded that the parameter

of BB50, which was derived from the R–R interval dif-

ference, had the highest correlation with the prognosis of

AMI patients. Actually, we had tested the calculation of

our similarity index by using only the heart rates and the

resulted index were far less impressive with lower pre-

dictive power.

The SI has improved the ability of HRV in the appli-

cation of anesthetic depth. However, a perfect predictor of

100% power without any overlapping between two groups

is unlikely to be exist because in any population there will

be some extreme cases. In other words, for any biomedical

measurement or diagnostic test, some false positive or false

negative is unavoidable. This is why the concept of ‘‘sen-

sitivity’’ and ‘‘specificity’’ were developed and the tools

such as the ROC curve or the prediction probability Pk

were used to evaluate the prediction power or accuracy of

any predictors. A prediction probability of 91% is actually

quite good as in our work. Notice that in Fig. 3 if we

exclude a couple of extreme cases (i.e., the two with the

highest and lowest awake SI values), then the trends of the

SI values in the remaining subjects are surprisingly con-

sistent, the separation of awake and anesthetic value is very

clear cut. However, it is actually too optimistic to suppose

any HRV parameter can solely be used as a satisfactory

anesthetic depth predictor. HRV is only an indirect indi-

cator of anesthesia and is relatively nonspecific. There are

many clinical factors that may affect the autonomic system

and change HRV, decreasing the predictive power of

related parameters. The effects of various factors on our

similarity index need further investigations to elucidate.

However, before the true mechanism of general anesthesia

can be clearly explored and direct observation can be

performed, we can only rely on the indirect measurements

to monitor the anesthetic depth. Because there still is no

single perfect predictor, there have been trials to combine

several modes of observations to increase the predictability

of anesthetic depth. Unfortunately, due to the lack of ideal

parameters, HRV has rarely been incorporated into those
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systems up to now. Our current study provides a possibility

to improve this condition. We believe that HRV can play

more important role in the application of anesthetic depth

measurements.

5 Conclusion

The similarity index of HRV showed significant difference

and little overlap between awake and isoflurane anesthetic

states, and is easily derived from short ECG data. Our

research strongly suggests that HRV, if suitably treated,

can play more roles in the monitoring of anesthetic depth

than it currently does.
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