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Abstract A Bayesian network dynamic model was

developed to determine the kinematics of the intervertebral

joints of the lumbar spine. Radiographic images in flexion

and extension postures were used as input data for mod-

eling, together with movement information from the skin

surface using an electromagnetic motion tracking system.

Intervertebral joint movements were then estimated by the

graphic network. The validity of the model was tested by

comparing the predicted position of the vertebrae in the

neutral position with those obtained from the radiographic

image in the neutral posture. The correlation between the

measured and predicted movements was 0.99 (p \ 0.01)

with a mean error of less than 1.5�. The movement

sequence of the various vertebrae was examined based on

the model output, and wide variations in the kinematic

patterns were observed. The technique is non-invasive and

has potential to be used clinically to measure the kine-

matics of lumbar intervertebral movement.

Keywords Intervertebral kinematics � Bayesian belief

networks � Lumbar spine motion � Dynamic modeling �
Spine biomechanics

1 Introduction

Knowledge of patterns of intervertebral movement of the

lumbar spine is clinically useful in the assessment and reha-

bilitation of spinal disorders [4, 10]. Biomechanical modeling

also requires accurate kinematic information as model input

data. Nevertheless, measurement of intervertebral move-

ments is technically challenging as the spine is relatively

inaccessible and the nature of spinal movement is complex.

Radiographic, electro-optical, electromagnetic and

miniature inertial sensing systems have been used in the

measurement of lumbar spine motion with some success

[2, 3, 6, 18, 19–21, 28, 29, 35]. Surface measurements using

optical markers or sensing devices are subjected to con-

siderable error due to interposition of tissue between the

spine and the surface markers. Recently, Morl and Blickhan

[24] had examined the correlation between the motions of

external skin markers and the underlying vertebrae using

open magnetic resonance imaging. Although moderate to

strong correlation was observed, the measurement errors

were found to be high. Surface measurement techniques are

only accurate for determining the movement of spine

regions as opposed to discriminating the contribution of

individual intervertebral joints. Surface measurements that

yield accurate intervertebral movement data would require

the insertion of pins into the spinous processes [10, 11], but

this method has low acceptability for patients.
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Only radiographic techniques are able to determine

movement of the vertebrae with acceptable accuracy in

vivo [28]. Lee and Evans [20] reported that the mean error

in determining intervertebral joint motion in the sagittal

plane was about 1.0�. However, radiographic techniques

such as the videofluoroscopy [27, 38] and cineradiography

[17, 35], are complicated, and do involve ionizing

radiation.

Sun et al. [34] developed an inverse kinematic model for

determining intervertebral motion of the lumbar spine

during flexion. The lumbar spine was modeled as an open-

ended, kinematic chain of five links, which represented the

five vertebrae (L1–L5). An optimization equation with

physiological constraints was employed to determine

intervertebral joint configuration. The method was found to

be very accurate with a high degree of agreement between

the predicted movement and the actual movement as

determined by radiographic images (r = 0.83–0.97). The

mean error of prediction (mean difference between radio-

graphic measurement and predicted value) was less than

1.6�. Although this was considered to be accurate, the

technique of Sun et al. was able to predict intervertebral

displacement in a static neutral or flexed position only.

Therefore, we still need a noninvasive and reliable method

to study time history of intervertebral joint motions.

A Bayesian belief network is a mathematical model that

represents a set of variables and their probabilistic depen-

dencies. It is a graphical model where variables are

represented by nodes on a graph, and the arcs joining these

nodes encode conditional dependencies between the vari-

ables [7, 9, 16]. Such models have recently been employed

to solve problems related to the tracking of motions of

objects [31, 37], where the target variables (motions of

objects) were unknown and might be probabilistically

associated with observations or variables that could be

measured experimentally. Bayesian network is used to

update the state of a set of variables when observations are

made. This process of computing the posterior distribution

of variable-given evidence is called probabilistic inference,

which is implemented by belief propagation algorithms

using the Bayes’ rule [7, 8, 23, 39]. In this study, we

attempted to estimate the intervertebral motions of lumbar

spine using observations or cues obtained from motion

sensors attached to the skin. Bayesian belief network was

employed to describe the probabilistic dependencies

between vertebral motions and skin-mounted sensor

information and to estimate the intervertebral movements

through probabilistic inference.

The purpose of this study was to investigate the feasi-

bility of using a Bayesian belief network model to

determine the intervertebral motion of the lumbar spine and

to study the motion sequence patterns of the intervertebral

joints using the data estimated by the model.

2 Methods

This study was carried out on healthy subjects who per-

formed flexion and extension motions of the spine.

Radiographic images were obtained statically in three spine

postures—flexion, extension and neutral. The flexion and

extension images were used as input data for modeling,

together with movement information derived from the skin

surface using an electromagnetic motion tracking system.

The intervertebral joint motions of the spine were then

computed. The validity of the model was tested by com-

paring the predicted position of the vertebrae in the neutral

position with those obtained from the radiographic image

in the neutral posture. In addition, the timing and sequence

of movements of the various intervertebral joints was

assessed based on the data estimated by the proposed

model.

2.1 Subject

Seventeen healthy volunteers (4 males, 17 females, age

71.8 ± 3.3 years, body height = 156.1 ± 8.9 cm, body

weight = 59.0 ± 11.3 kg, body mass index = 24.1 ± 3.6)

were recruited. All subjects had no history of back pain or

symptoms attributable to the spine that required medical

attention or treatment. Subjects were excluded if there was

vertebral body collapse, metastases, spondylolisthesis,

spondylolysis, rheumatological disease, or surgery to the

lumbar spine. Measurements obtained were part of a health

assessment at the Jockey Club Centre for Osteoporosis

Care and Control, The Chinese University of Hong Kong

[14, 15]. Dual X-ray densiometer (Hologic, Waltham, MA,

USA) was used to measure the bone mineral density

(BMD) at the lumbar spine. All subjects had normal bone

density.

2.2 Instrument

An electromagnetic motion tracking system (Fastrak�,

Polhemus, 40 Hercules Dr, Colchester, Vermont, USA)

was used to obtain skin displacement information related to

movement of the lumbar spine. This consisted of a source

of electromagnetic waves and four miniature motion sen-

sors (Polhemus RX1-D, 0.9 mm 9 0.9 mm 9 0.9 mm;

20 g). The source was placed in fixed position within one

metre of the subject. The four sensors were attached to the

skin. The tips of the spinous processes of the first lumbar

(L1) and first sacral (S1) vertebrae were identified by

palpation. Two sensors were placed over these spinous

processes. The other two sensors were evenly distributed

between L1 and S1. A previous study demonstrated that the

electromagnetic sensors had an angular accuracy of ±0.2�
[29]. A software program [17], able to perform fast serial

334 Med Biol Eng Comput (2008) 46:333–340

123



communication with 120 Hz data update rate, i.e., 30 Hz

per sensor sampling rate, was used to acquire and display

the data in real time.

2.3 Radiograph measurements

Lateral radiographs (Philips M50 CP-H X-ray machine)

were obtained for each subject with the sensors attached to

the back. Each subject was asked to stand upright with the

pelvis rigidly fixed to a frame and the left side of the body

facing the film. Lateral images of the lumbar spine (L1–S1)

were acquired by a conventional radiographic system in

three positions: neutral upright, full flexion, and full

extension. In order to accurately define the sensors’ loca-

tion on the radiographic image, two radio-opaque lead

markers were fixed on each sensor as shown in Fig. 1. A

radio-opaque ruler was also attached to the subject’s back

in the sagittal plane so that magnification of the vertebrae

could be determined.

The coordinates of the vertebral bodies, the tips of the

spinous processes, and the lead markers of the sensors were

recorded. The L1–L5 vertebral bodies were fitted with

quadrangles on each image, as shown in Fig. 1, the corners

of the quadrangle representing landmarks for defining the

position and orientation of the vertebra. In the case of the

sacrum, the posterosuperior and anterosuperior corners of

the sacrum were used as landmarks.

In order to validate the prediction of the model, inter-

vertebral joint angles were determined based on the

radiographic images of the vertebral bodies, and compared

with those predicted by the model. The sagittal angles of

the intervertebral joints were computed from the coordi-

nates of the corners of the two adjoining intervertebral

bodies, and the mean error of this measurement was found

to be 1.0� [20].

2.4 The Bayesian belief network model

In this study, the purpose of modeling was to estimate the

intervertebral motions of the lumbar spine using knowl-

edge of the sensor trajectory and the spatial relationship

between sensors and the vertebrae as obtained in the flex-

ion and extension radiographic images. Bayesian network

was employed to describe the probabilistic dependencies

between element nodes and the observations, which rep-

resented the variables of interest and the measurable data,

respectively. Specifically, the element nodes were the

coordinates of two corners (N2 and N3, in Fig. 1) of the

vertebral bodies, and the observations were the positions of

the skin-mounted Fastrak sensors. Arcs within the networks

represented associations among the variables and obser-

vations, as shown in Fig. 2. For the model construction, the

initial and final spatial relationships between the vertebrae

and sensors were defined by the flexion and extension

radiographic images. The positions of the vertebrae or the

element nodes during the movement from flexion to

extension were estimated by the Bayesian network model

based on the observations that is, the information obtained

from the skin-mounted sensors. Belief propagation

Fig. 1 Radiographic image showing the reference points for the

vertebrae (the white nodes, N1–N4 are illustrated for L4) and the four

sensors of the Fastrak system (D1–D4)

Fig. 2 The Bayesian network model illustrating the dynamic move-

ment from the kth time frame to the k + 1th time frame. The open
circles and open squares represent the element nodes (vertebral

position, the x nodes) and observations (sensor position, the y nodes),

respectively. Arcs represent the association among element nodes and

observations. For simplicity, not all the associations are shown. Thus,

the model represents the dynamic process with a Bayesian network,

which contains l time frames (only two time frames are shown here)

with the same basic local sub-structure. In total, there are l 9 12x
nodes and l 9 8y nodes in the model
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algorithms were employed to implement Bayes’ probabi-

listic inference for estimation task.

As a graphical model, Bayesian belief network is a static

structure carrying no timing information. In order to model

the kinematics of the flexion–extension movement, the

Fastrak data in the time domain were projected onto the

space domain by transforming the time sequence into space

sequence. Therefore, the graphical model included all time

frames each of which had a basic structure as illustrated in

Fig. 1. The network structure for any two successive time

frames is shown in Fig. 2, where x and y represent the

element node (‘‘circle’’ in Fig. 2) and observation

(‘‘square’’ in Fig. 2), respectively. The nodes in the net-

work obey the following principles:

1. Among different time frames—each x node of the kth

time frame is associated with the k-1th and k + 1th

time frame.

2. Within the same time frame—there were probabilistic

dependencies between the vertebrae L1–S1 and sen-

sors D1–D4.

3. Associations among x nodes within the same time

frame.

(1) xi was associated with xi-1 and xi+1. It was

considered that the position of a vertebra was

directly influenced by its neighbors.

(2) x12 was associated with any other nodes (x1–x11).

The local coordinate system was fixed to the

sacrum so that it the lumbar vertebrae move with

respect to the sacrum.

In Fig. 2, arcs are used to illustrate the main associations

among the various nodes and observations. The sensor

information is obtained by actual measurement, and

therefore probabilistic inference is made in single direction

from observation to element node. However, the probabi-

listic associations between the element nodes are dual

directional.

Belief propagation algorithm was employed to predict

the values of x-nodes (coordinates of the vertebral body

corners) based on the topology of the network model. In

brief, the algorithm was implemented as follows. Bel(n)(xi)

and m
nð Þ

j!i xið Þ represent the Belief of the ith node and the

Message from the jth node to the ith node at the nth state,

respectively.

(1) Initialization: the initial values of Bel(0)(xi) and

m
0ð Þ

j!i xið Þ are set as zero mean Gaussian distribution

with large covariance. Previous research showed that

the outline or shape of the vertebrae followed a

Gaussian distribution [32].

(2) Updating for each x node by calculating the Belief

Bel nð Þ xið Þ ¼ /i xi; yið Þ
Y

j2C ið Þ
m

nð Þ
j!i xið Þ ð1Þ

where /j(xj, yj) is the likelihood between xj node and its

observation represented by yj node;
Q

j2C ið Þm
nð Þ

j!i xið Þ is the

prior of xi at the nth state; C(i) is the neighborhood of node

i; and m
nð Þ

j!i xið Þ is the message from node j to node i at the

nth state, where j 2 C ið Þ:
The association between the variable (x node) and its

observation (y node) is modeled using coordinate

transformation

Y ¼ R � X þ T ð2Þ

where X and Y are vectors representing coordinates of any

two associated nodes, R is the rotational matrix, and T is

the translation. Accordingly, the compatibility function

/j(xj, yj) in Eq. (1) was defined by a Gaussian distribution

of variable yi–Ri*xi–ti with zero mean.

The calculation of m
nð Þ

j!i xið Þ in Eq. (1) is achieved by two

steps:

(i) Message product at the nth iteration: multiply incom-

ing messages with the local observation to form a

statistical distribution over xj.

M
nð Þ

j xj

� �
¼ /j xj; yj

� � Y

k2C jð Þ
m

n�1ð Þ

k!j xj

� �
ð3Þ

where /j(xj, yj) is the likelihood between xj node and its

observation yj; C(j) is the neighborhood of node j; and

m
nð Þ

k!j xj

� �
is the message from node k to node j at the nth

state, where k 2 C jð Þ:
(ii) Message propagation at the nth state: transform

distribution from xj node to xi node using the pairwise

interaction compatibility function wji (xj, xi).

m
nð Þ

j!i xið Þ ¼
Z

wji xj; xi

� �
M

nð Þ
j xj

� �
dxj ð4Þ

At the nth state, by integrating over xj, all the jth node prior

knowledge about ith node is summarized and transformed

to the ith node. Similar to /j(xj, yj), the pairwise interaction

compatibility function wji (xj, xi) in Eq. (4) describes the

association between xi and xj which is a coordinate

transformation as shown in Eq. (2). Therefore, wji (xj, xi)

is defined in the same manner as /j(xj, yj), i.e., xi–Rji*xj–tji,

where Rji and tji are the rotation matrix and displacement

from the jth node to the ith node. The initial and final

values of rotation matrix (R) and the displacement (T) in wji

(xj, xi) are set, respectively, by the position information of

xi and xj extracted from the two boundary frames in the

model.

Finally, Eq. (4) is substituted into Eq. (1), updating the

distribution of xi at the nth state, i.e., Bel(n)(xi).
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(3) Iteratively calculating the Belief for all the variable

nodes until the termination condition (Bel(n)(xi)–

Bel(n-1)(xi)\e, e = 10-5) was satisfied, allowing the

convergence of the ultimate state value.

(4) The mean values of Bel(n)(xi) in the last state were

taken as the ultimate estimation of the ith node, i.e.,

the coordinates of vertebral landmarks. The sagittal

angles of the intervertebral joints were then computed

from the ultimate estimates of the coordinates of the

corners of the two adjoining intervertebral bodies

[20].

2.5 Movement sequence patterns of the lumbar spine

Using the data predicted by the model, the movement

sequencing of the intervertebral joints of the lumbar spine

was determined for four movements—extension-neutral,

neutral-flexion, flexion-neutral, and neutral-extension. In

order to provide uniform data length for all movement–

time curves, data was normalized with respect to time

using the spline function, and expressed as percentage of

the total time. An intervertebral joint was considered to

start moving when the change in joint angle became greater

than 1�. Movement sequence was determined from the

order of movements using the proposal of Gatton and

Pearcy [5]. Five categories of movement sequence were

defined—‘‘all together’’ (where all joints started movement

simultaneously), ‘‘bottom up’’ (when the bottom of the

lumbar spine L5/S1 was first to move, and the top T12/L1

last to move), ‘‘middle first’’ (when the middle joints, i.e.,

either L2/3 or L3/4, moved first), ‘‘top down’’ (when the

T12/L1 joint moved first and the L5/S1 joint moved last),

and ‘‘other’’ (not fitting anyone of the above categories).

3 Results

3.1 Validation of model

Based on the boundary conditions provided by the radio-

graphic images at the end of flexion and extension, the

Bayesian belief network model predicted the coordinates of

the vertebral landmark-given observations (coordinates of

radio-opaque markers on the sensors). Figure 3 is an

example of the intervertebral joint motion of the lumbar

spine of one subject that was predicted by the model. For

the purpose of validation, the intervertebral angles from the

radiographic image in the neutral posture were compared

with those calculated from the estimation from the model.

The correlation coefficient between the estimated move-

ments and the actual movements recorded on radiographs

was found to be 0.99 (p \ 0.01), indicating a very high

degree of agreement. Error was defined as the difference

between measured and predicted values. The magnitude of

error of the various intervertebral joints is shown in Fig. 4.

The overall mean error was found to be -1.45� ± 3.34�,

where the L2/3 and L5/S1 joints had the least and largest

mean errors, respectively. The error was considered to be

small, and the model accurate enough for predicting

intervertebral joint motion.

3.2 Movement sequence patterns

There were wide variations in the movement sequences of

the intervertebral joints among subjects. Table 1 shows the

frequency of occurrence of each movement pattern. Most

subjects exhibited patterns, which were not classifiable and

Fig. 3 The dynamic movement of the lumbar vertebrae estimated by

the Bayesian network model using data from the Fastrak sensors. The

final positions of flexion and extension are shown. x1–x12 and y1–y8,

which are the the lumbar vertebra and the skin-mounted sensors,

respectively
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belonged to the category ‘‘others’’. The most frequently

observed sequence was the ‘‘bottom-up’’ pattern, and no

subject exhibited the ‘‘top-down’’ pattern. It was noted that

for subjects classified as the same sequence pattern, the rate

of change of intervertebral angles (velocities) varied from

subject to subject. Interestingly, it was also observed that

some individual joints extended during flexion motion and

vice versa.

4 Discussions

This study was the first attempt to determine the kinematics

and movement patterns of the intervertebral joints using the

Bayesian belief network model, a model, which is com-

monly used in artificial intelligence [13]. The degree of

correlation between the measured and predicted move-

ments was excellent with a mean error of less than 1.5�.

Some previous studies [20, 34] had reported accuracy of

similar magnitude, but they analyzed only intervertebral

displacement information only in the static posture. The

current model has many other potential benefits. For

instance, it is easier to operate and computationally less

complex when compared to the inverse kinematic model

proposed by Sun et al. [34]. Unlike previous models, the

Bayesian model makes no assumption about the geometry

and structure of the kinematic chain, and is therefore highly

robust for predicting spinal motions.

Measurements of spinal motions using skin-mounted

sensors are subjected to considerable error due to soft tis-

sue deformation between the spine and the sensors. The

sensor displacements may not reliably represent the actual

spinal motions. Due to the soft tissue deformation, the

spatial association between the vertebrae and the sensors

are constantly changing. It would be impossible to establish

this association using traditional statistical methods such as

correlation or regression because the soft tissue deforma-

tion is rather unpredictable. However, the present model

solves this problem by estimating the spatial association

between the vertebrae and the sensor through probabilistic

inference using the belief propagation algorithm. This

allows spinal motions to be successfully determined using

surface information, as demonstrated by the small error

observed in this study.

Table 1 shows that the L5/S1 joint was subjected to a

larger error compared to the other intervertebral joints.

This is mainly because one landmark on the S1 vertebra is

remote to the sensor site (in Fig. 1, 2). In the model con-

struction, two upper corners of the sacrum were chosen as

landmarks to define the bone position. One of the element

nodes for S1, x11 (Fig. 2), was further away from the ver-

tebra when compared to the other element nodes. This

increased node distance may have accounted for the larger

prediction error observed in the L5/S1 joint. Equations (1)–

(4) of the model show that node distance is an essential

factor in the algorithms for belief propagation. A smaller

distance would result in a more reliable relationship

between the element node and the observation. This

problem can be minimized in future by choosing another

bony landmark such as the S2 spinous process.

This study clearly shows that there is wide variation in

the way that the lumbar spine moves between subjects. The

variability in the motion sequence patterns is illustrated in

Table 1. This is largely because the human spine has

redundant degree of freedom, giving great flexibility in the

performance of a movement. For instance, spinal flexion

can be accomplished with infinite configurations of the

intervertebral joints. Previous studies on lumbar spine

kinematics assumed certain patterns in movement sequence

of the lumbar spine. For instance, Kanayama et al. [12]

suggested that during forward flexion the spine moves from

the top first, though this was not observed in this study.

McGill [25] assumed that all the intervertebral joints

moved at the same time in his model, but in this study, only

about 4% of examinations showed an ‘‘all together’’
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Fig. 4 Prediction error for the intervertebral angles (unit: degree)

Table 1 Movement sequence

patterns of the intervertebral

joints of the lumbar spine

Extension ? Neutral Neutral ? Flexion Flexion ? Neutral Neutral ? Extension

All together 2 1 0 0

Bottom up 6 5 5 3

Middle first 3 4 0 4

Top down 0 0 0 0

Others 6 7 12 10
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pattern. Our study supports the findings of Gatton and

Pearcy [5], who reported that different spines exhibit dif-

ferent movement sequences. Both our study and this earlier

work showed that the ‘‘bottom-up’’ pattern was the most

common pattern. However, our study may provide more

reliable data because our work was based on the best

estimates of intervertebral motions using probablisitic

inference. The observation of Gatton and Pearcy was only

based on information obtained from skin-mounted sensors

and they did not estimate the underlying intervertebral

motions.

The most interesting finding in this study was that some

intervertebral joints move in a direction opposite to the

direction of bending of the lumbar spine. That is, some

joints exhibited extension during flexion of the spine and

vice versa. Such aberrant motion has also been reported by

previous studies [5, 22, 26, 28, 30, 33, 36]. The movement

patterns of the spine are often oversimplified in many

textbooks, and this study had provided a detailed descrip-

tion of subject variability in the spinal motion pattern.

However, our sample size is small, and a larger study will

be required to fully document the various patterns. For this

purpose, our study does provide a valid and accurate

model, which allows an easier assessment of spinal motion.

The clinical implications of the aberrant motions are still

unclear, and further studies will be required to address this

issue.

Future biomechanical studies will benefit from the

dynamic model developed in this study. The actual inter-

vertebral rotations can be predicted by the model, and no

assumptions have to be made regarding the movement

pattern. The relationship among the various segments did

not have to be assumed to be constant throughout the

movement. The accuracy of the biomechanical model is

thus tremendously improved. This will allow us to study

how different kinematic patterns in different individuals

produce different loading patterns in the spine.

Knowledge of the kinematic patterns of the spine may

also be useful in the clinical assessment of spinal disorders

such as back pain, spondylolysis or spondylolisthesis. A

major attraction of the model is that it provides kinematic

data and allows us to determine the higher derivatives of

motions such as velocities and accelerations. Previous

research showed a significant relationship between back

pain and intervertebral motion [1]. The association between

pain and higher movement derivatives is still unclear. This

can be explored using the present model.

It should be pointed out that the present study was

conducted in a group of elderly subjects. It is likely that the

Bayesian belief network model could also employed in

younger subjects with similar accuracy. However, the

kinematic and movement sequence pattern observed in this

study may not be generalized to the younger age group, and

this will need to be clarified in future studies. It would also

be interesting to study how activity level and quality of life

may influence the kinematic patterns among the elderly

subjects.

5 Conclusion

This is the first study, which employs a Bayesian belief

network model to study the kinematic pattern of the

intervertebral movement of the lumbar spine. The devel-

oped model is able to estimate the intervertebral angle

reliably with a mean error of less than 1.5�. The technique

is non-invasive and has the potential to be used clinically to

measure kinematics of intervertebral movement. It will

also be useful to biomechanical modelling when kinematic

data are required as input variables. This study showed a

wide variation in the kinematic patterns in the subjects

studied. The present model may also be used to study

velocity and acceleration of intervertebral joint providing

further insight into the kinematics of the lumbar spine.

Acknowledgments This work was supported by the Hong Kong

Research Grant Council (Competitive Earmarked Research Grant

CERG CUHK5251/04E).

References

1. Abbott J, Fritz J, McCane B, Shultz B, Herbison P, Lyons B,

Stefanko G, Walsh R (2006) Lumbar segmental mobility disor-

ders: comparison of two methods of defining abnormal

displacement kinematics in a cohort of patients with non-specific

mechanical low back pain. BMC Musculoskelet Disord 7:45

2. Dvorak J, Panjabi MM, Chang DG, Theiler K, Grob D (1991)

Functional radiographic diagnosis of the lumbar spine. Flexion–

extension and lateral bending. Spine 16:562–571

3. Dumas R, Blanchard B, Carlier R, de Loubresse CG, Le Huec JC,

Marty C, Moinard M, Vital JM (2008) A semi-automated method

using interpolation and optimisation for the 3D reconstruction of

the spine from bi-planar radiography: a precision and accuracy

study. Med Biol Eng Comput 46:85–92

4. Frymoyer J, Pope M, Wilder D (1990) Segmental instability. In:

Weinstein J, Wiesel S (eds) The lumbar spine. WB Saunders,

Philadelphia, pp. 612–636

5. Gatton ML, Pearcy MJ (1999) Kinematics and movement

sequencing during flexion of the lumbar spine. Clin Biomech

14:376–383

6. Goodvin C, Park EJ, Huang K, Sakaki K (2006) Development of

a real-time three-dimensional spinal motion measurement system

for clinical practice. Med Biol Eng Comput 44:1061–1075

7. Jensen FV (1996) An introduction to Bayesian networks. UCL

Press, London

8. Jordan MI, Ghahramani Z, Jaakkola TS, Saul LK (1999) An

introduction to variational methods for graphical models. Mach

Learn 37:183–233

9. Jordan MI (2004) Graphical models. Stat Sci 19:140–155

10. Kaigle A, Pope M, Fleming B, Hansson T (1992) A method for

the intravital measurement of interspinous kimatics. J Biomech

25:451–456

Med Biol Eng Comput (2008) 46:333–340 339

123



11. Kanayama M, Abumi K, Kaneda K, Tadano S, Ukai T (1996)

Phase lag of the intersegmental motion in flexion–extension of

the lumbar and lumbosacral spine: an in vivo study. Spine

21:1416–1422

12. Kanayama M, Tadano S, Kaneda K, Ukai T, Abumi K, Ito M

(1995) A cineradiographic study on the lumbar disc deformation

during flexion and extension of the trunk. Clin Biomech 10:193–

199

13. Korb KB, Nicholson AE (2003) Bayesian artificial intelligence.

Chapman & Hall/CRC, Florida

14. Lau MC, Chan YH, Chan M, Woo J, Griffith J, Chan HL, Leung

PC (2000) Vertebral deformity in Chinese men: prevalence, risk

factors, bone mineral density, and body composition measure-

ments. Calcif Tissue Int 66:47–52

15. Lau MC, Woo J, Chan H, Chan KF, Griffith JF, Chan YH, Leung

PC (1998) The health consequences of vertebral deformity in

elderly Chinese men and women. Calcif Tissue Int 63:1–4

16. Lauritzen SL, Wermuth N (1989) Graphpical models for asso-

ciations between variables, some of which are qualitative and

some quantitative. Ann Stat 17:31–57

17. Lee R (2002) Measurement of movements of the lumbar spine.

Physiother Theory Pract 18:159–164

18. Lee RYW (1995) The biomechanical basis of spinal manual

therapy. University of Strathclyde, Glasgow

19. Lee RYW (2001) Kinematics of rotational mobilisation of the

lumbar spine. Clin Biomech 16:481–488

20. Lee RYW, Evans JH (1997) An in vivo study of the intervertebral

movements produced by posteroanterior mobilisation. Clin Bio-

mech 12:400–408

21. Lee RYW, Laprade J, Fung EH (2003) A real-time gyroscopic

system for three-dimensional measurement of lumbar spine

motion. Med Eng Phys 25:817–824

22. Lehman GJ (2004) Biomechanical assessments of lumbar spinal

function. how low back pain sufferers differ from normals.

Implications for outcome measures research. part i: kinematic

assessments of lumbar function. J Manipulative Physiol Ther

27:57–62

23. MacKay DJC (2003) Exact Marginalization in Graphs. In:

MacKay DJC (ed) Information theory, inference, and learning

algorithms. Cambridge University Press, Cambridge, pp. 334–

340

24. Morl F, Blickham R (2006) Three-dimensional relation of skin

markers to lumbar vertebrae of healthy subjects in different

postures measured by open MRI. Eur Spine J 15:742–751

25. McGill SM, Norman RW (1986) Partitioning of the L4–L5

dynamic moment into disc, ligantous and muscular components

during lifting. Spine 11:666–678

26. Nattrass CL, Nitschke JE, Disler PB, Chou MJ, Ooi KT (1999)

Lumbar spine range of motion as a measure of physical and

functional impairment: an investigation of validity. Clin Rehabil

13:211–218

27. Okawa A, Shinomiya K, Komori H, Muneta T, Arai Y, Nakai O

(1998) Dynamic motion study of the whole lumbar spine by

videofluoroscopy. Spine 23:1743–1749

28. Pearcy MJ (1985) Stereo radiography of lumbar spine motion.

Acta Orthop Scand 56(Suppl 212):1–45

29. Pearcy MJ, Hindle RJ (1989) New method for the non-invasive

three dimensional measurement of human back movement. Clin

Biomech 4:73–79

30. Selles RW, Wagenaar RC, Smit TH, Wuisman PI (2001) Disor-

ders in trunk rotation during walking in patients with low back

pain: a dynamical systems approach. Clin Biomech 16:175–181

31. Sigal L, Bhatia S, Roth S, Black MJ, Isard M (2004) Tracking

loose-limbed people. In: The 2004 IEEE computer society con-

ference on computer vision and pattern recognition (CVPR

2004), Washington, DC, USA

32. Smyth PP, Taylor CJ, Adams JE (1999) Vertebral shape: auto-

matic measurement with active shape models. Radiology

211:571–578

33. Sullivan MS, Shoaf LD, Riddle DL (2000) The relationship of

lumbar flexion to disability in patients with low back pain. Phys

Ther 80:240–250

34. Sun LW, Lee RYW, Lu W, Luk DK (2004) Modelling and

simulation of the intervertebral movements of the lumbar spine

using an inverse kinematic algorithm. Med Biol Eng Comput

42:740–746

35. Takayanagi K, Takahashi K, Yamagata M, Moriya H, Kitahara

H, Tamaki T (2001) Using cineradiography for continuous

dynamic-motion analysis of the lumbar spine. Spine 26:1858–

1865

36. Teyhen DS, Flynn TW, Childs JD, Kuklo TR, Rosner MK, Polly

DW, Abraham LD (2007) Fluoroscopic video to identify aberrant

lumbar motion. Spine 32:E220–E229

37. Toyama K, Blake A (2002) Probabilistic tracking with exemplars

in a metric space. Int J Comput Vis 48:9–19

38. Wong KWN, Luk KDK, Leong JCY, Wong SF, Wong KKY

(2006) Continuous dynamic spinal motion analysis. Spine

31:414–419

39. Yedidia JS, Freeman WT, Weiss Y (2003) Understanding belief

propagation and its generalizations. In: Lakemeyer G, Nebel B

(eds) Exploring artificial intelligence in the new millennium.

Margan Kaufmann Publishers, San Fancisco, pp 239–270

340 Med Biol Eng Comput (2008) 46:333–340

123


	A new method for determining lumbar spine motion using Bayesian belief network
	Abstract
	Introduction
	Methods
	Subject
	Instrument
	Radiograph measurements
	The Bayesian belief network model
	Movement sequence patterns of the lumbar spine

	Results
	Validation of model
	Movement sequence patterns

	Discussions
	Conclusion
	Acknowledgments
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


