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Abstract This work involves retinal image classification

and a novel analysis system was developed. From the

compressed domain, the proposed scheme extracts textural

features from wavelet coefficients, which describe the

relative homogeneity of localized areas of the retinal

images. Since the discrete wavelet transform (DWT) is

shift-variant, a shift-invariant DWT was explored to ensure

that a robust feature set was extracted. To combat the small

database size, linear discriminant analysis classification

was used with the leave one out method. 38 normal and 48

abnormal (exudates, large drusens, fine drusens, choroidal

neovascularization, central vein and artery occlusion, his-

toplasmosis, arteriosclerotic retinopathy, hemi-central

retinal vein occlusion and more) were used and a speci-

ficity of 79% and sensitivity of 85.4% were achieved (the

average classification rate is 82.2%). The success of the

system can be accounted to the highly robust feature set

which included translation, scale and semi-rotational, fea-

tures. Additionally, this technique is database independent

since the features were specifically tuned to the pathologies

of the human eye.

Keywords Retinal images � Shift-invariant DWT �
Feature extraction

1 Introduction

Ophthalmologists use digital fundus cameras [37] to non-

invasively view the optic nerve, fovea, surrounding vessels

and the retinal layer [18]. Often, this type of imaging

technique is referred to as retinal imaging and the oph-

thalmologist may search the images for signs of various

diseases. Since retinal imaging is non-invasive, there is a

rapid increase in the number of images which are being

collected. Diagnosing these large volumes of images is

expensive, time consuming and may be prone to human

error. To aid the doctors with this diagnostic task, a com-

puter-aided diagnosis (CAD) scheme could offer an

objective, secondary opinion of the images. Additionally,

the same feature set could be used in a content-based image

retrieval (CBIR) application, which would avoid the need

for text annotations.

In the past, a lot of research has been dedicated to vessel

and retinal segmentation as well as the registration of ret-

inal images [16, 31, 33, 39, 48]. As of recently, automated

eye disease detection has become more important and has

received some attention from the research community.

Brandon et al. developed a system to automatically classify

different types of drusens [8] using pixel level, region

level, area level and image level classification using feature

thresholds and neural networks. The achieved results are

promising (87% classification rates on 119 images), but

feature thresholds were created experimentally and would

be highly database dependant. Sinthanayothin et al. [37]

created an automatic screening system which aims to detect

diabetic retinopathy [exudates, microaneurysms and

haemorrhages (HMA)]. First, the optic disc and blood

vessels were located and removed. To detect exudates,

recursive region growing was used based on a relative

intensity measure. To detect HMA, image enhancement
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was performed followed by a threshold which classified

HMA and non-HMA regions. There were no specific

details on how the threshold was determined, so this

threshold may be database dependant. Furthermore, since

regions were grown according to intensity, this technique

would not be robust to illumination changes (i.e. other

retinal databases/imaging conditions). On 771 images,

overall classification rates of 75.43% were achieved. Wang

et al. [45] created a CAD system which detects exudates in

retinal images and achieved classification rates of 85%. To

increase performance, contrast enhancement was per-

formed using an exponential mapping function. The

parameters of the mapping function were found empirically

and therefore are database dependant. Additionally, initial

training was performed with manually segmented regions,

which requires intervention from the trained professional.

Zhou et al. [49] used several features to discriminate

between hypertension and diabetic-related diseases of the

eye. Twenty-six images were used which were acquired

from 16 patients. Since data was collected from only a few

patients, the classification rates may be skewed.

Although the discussed techniques achieve promising

results, thresholds and parameters were specifically devel-

oped for the database used. Additionally, one technique was

not fully automated since it required manual region seg-

mentation. The proposed work aims to overcome these

limitations by designing a system which is fully automated

and database independent (i.e. features are not dependent on

illumination conditions or the imaging system used). Fur-

thermore, the previous works listed only detect a specific

type of abnormality and lack the ability to diagnose various

types of pathologies. To combat this, the proposed work

utilizes a highly robust and descriptive feature set to diag-

nose a variety of pathologies, such as exudates, drusens,

choroidal neovascularization, central vein and artery

occlusion, histoplasmosis, hemi-central retinal vein occlu-

sion, arteriosclerotic retinopathy and more. The retinal

images are stored as lossy JPEG images, so feature

extraction is completed in the compressed domain. Feature

extraction in the compressed domain has become an

important topic recently [2, 10, 11, 43, 46], since the

prevalence of images stored in lossy formats far supersedes

the number of images stored in their raw format. The rest of

the paper is structured as follows: Section 2 contains the

methodology used for designing features and the classifi-

cation scheme used. Sections 3, 4, 5 contain the results,

discussions and conclusions, respectively.

2 Methods

There are several challenges associated with the develop-

ment of an automated classification scheme for retinal

imagery: pathologies come in different shapes, forms, sizes

and can occur in many different regions of the eye. The

following subsections will detail the methods used to

design a highly robust feature set which can account for all

these scenarios.

2.1 Feature extraction problem formulation

In a feature extraction problem, important structures or

events within the data are quantified with discriminatory

descriptors. The extracted features are then fed into a

classifier, which arrives at a decision. For retinal imagery,

this decision is related to the diagnosis of the patient. Let

X 2 Rn represent the signal space which contains all reti-

nal images with the dimensions of n = N · N. Since the

images contained within X can be expected to have a very

high dimensionality n, using all these samples to arrive at a

classification result would be prohibitive [13]. Further-

more, the original image space X is also redundant, which

means that all the image samples are not necessary for

classification. Therefore, to gain a more useful represen-

tation, a feature extraction operator f may map the subspace

X into a feature space F
f : X ! F ; ð1Þ

where F 2 Rk; k� n and a particular sample in the

feature space may be written as a feature vector: F = {F1,

F2, F2,..., Fk}. In the case of highly discriminatory features,

image classes would map to non-intersecting clusters in the

feature space F : However, the spatial domain representa-

tion of the retinal images may not carry enough

discriminating characteristics to result in high classification

results. Therefore, prior to feature extraction, the retinal

images may be transformed to another domain to gain a

more descriptive representation.

Although it is important to choose features which pro-

vide maximum discrimination between image classes, it is

also important that these features are robust. A feature is

robust if it provides consistent results across the entire

application domain [40]. To ensure robustness, the numer-

ical descriptors should be rotation, scale and translation

(RST) invariant. In other words, if the image is rotated,

scaled or translated, the extracted features should be

insensitive to these changes, or it should be a rotated, scaled

or translated version of the original features, but not mod-

ified [28]. This is useful for classifying unknown image

samples since they will not have structures with the same

orientation and size as the images in the training set [22].

If a feature is extracted from a transform domain, it is

also important to investigate the invariance properties of

the transform since any invariance in this domain also

translates to an invariance in the features. For instance, the
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1-D Fourier spectrum is translation-invariant [38] since any

translation in the time domain representation of the signal,

does not change the magnitude spectrum in the Fourier

domain.

2.2 Multiresolution transformation for retinal images

In general, biomedical signals contain a combination of

information which is localized spatially (i.e. transients,

edges) as well as structures which are more diffuse (i.e.

small oscillations, texture) [41]. As shown by Fig. 1, the

retinal images are also of this nature (nonstationary), since

they contain both coarse or fine texture patterns (high

frequency), as well as regions with slowly varying or

constant pixel values (low frequency). In order to ade-

quately represent these localized texture patterns, the

proposed work utilizes a transformation which can provide

a good description of these features. To achieve such a

description, multiresolutional analysis (MRA) techniques

will be utilized since they can represent localized image

features with good space-frequency resolution. For discrete

implementations, MRA can be realized with the discrete

wavelet transform (DWT) [27, 28, 42, 44]. The DWT

offers a multiresolutional representation by dyadically

changing the size of the analysis window. Consequently,

the basis functions are tuned to events which have high

frequency components in a small analysis window (scale)

or low frequency events with a large scale [9]. Therefore,

in one set of basis functions, it is possible to decompose the

image with various space-frequency resolutions. In this

work, the 2-D DWT is realized using the lifting/filterbank

technique [9, 28]. The wavelets and scaling basis functions

are related to a set of 1-D lowpass (ho(n)) and highpass

(h1(n)) filter coefficients, where each filter is applied sep-

arably to the image. The 5/3 Le Gull wavelet is used since

filter lengths are small and can warrant an efficient

implementation [30, 47].

A 2-D DWT scheme is made up of basis functions

which can decompose various scaled versions of the input

image. In other words, the DWT is scale-invariant, i.e. any

scaled version of the input image will be matched to a

scaling function with the same scale in the basis family. As

stated earlier, any transformation which is applied prior to

feature extraction must also have invariant properties; thus

the DWT can give way to scale-invariant features.

Fig. 1 Retinal images (700 · 605) supplied by the STare public database [18]. a Normal retinal image, b normal retinal image, c retinal image

with background diabetic retinopathy, d retinal image with central retinal vein occlusion

Med Bio Eng Comput (2007) 45:1211–1222 1213

123



Consequently, a single transformation can be used to

capture various-sized pathologies (which is beneficial for

retinal image classification since pathologies do not come

in a predefined size).

Although the DWT provides good space-frequency

localization and is scale-invariant, it is a well known fact

that the DWT is shift-variant [9, 28]. The shift-variant

property of the DWT is a direct result of the rate change

operators [25]. For different translations of the input image,

a different set of DWT coefficients would be generated. In

fact, since decimation is carried out separately along the

rows and columns of an image, the 2-D DWT would pro-

duce four different distributions of coefficients, which are

in response to shifts of the input by: (0,0), (0,1), (1,0),

(1,1), where the first index corresponds to the row shift and

the second index corresponds to the column shift. The

coefficients for all other shifts of the input can be obtained

by circularly translating one of the sets of DWT coeffi-

cients created by one of the four fundamental shifts of the

input [(0,0), (0,1), (1,0), (1,1)]. For instance, all other

translations of the input by {0, 2, 4, 6, ...} rows and {0, 2, 4,

6, ...} columns would result in DWT representations which

are space translated versions of the DWT coefficients

computed from the input when it is shifted by (0,0). Similar

results apply for the other input shifts (0,1), (1,0), (1,1), see

[32]. Since different shifts of the input image results in a

completely different set of amplitude values for the coef-

ficients, the extraction of a consistent feature set is difficult

[28, 41]. In order to extract shift-invariant features from the

wavelet domain, shift-invariant algorithms must be inves-

tigated so that a consistent set of coefficients are chosen,

regardless of the input image’s space translation. To

achieve this, a shift-invariant discrete wavelet transform

(SIDWT) may be performed on the input image f(x,y)

f ðx; yÞ �! SIDWT �! eFðk1; k2; jÞ

where eFðk1; k2; jÞ are the wavelet coefficients. This

representation would be considered shift-invariant if a

shift of the input image (Dx, Dy) [ Z results in output

coefficients which are exactly the same as eFðk1; k2; jÞ; or a

spatially shifted version of it. This may be shown by

f ðxþ Dx; yþ DyÞ �! SIDWT �! eFðk01; k
0

2; jÞ

where k1

0
= k1 + b1� Dx and k2

0
= k2 + b2� Dy for some

(b1, b2) [ Z. If the coefficients are exactly the same: b1 =

b2 = 0.

2.3 Shift-invariant discrete wavelet transform

(SIDWT)

The shift-variant property of the DWT is widely known and

several solutions have been proposed. To achieve a shift-

invariant representation, Mallat et al. use an overcomplete,

redundant dictionary, which corresponds to filtering without

decimation [6, 28]. From the filtered and fully sampled

version of the image, local extrema are used for translation

invariance since a shift in the input image results in a cor-

responding shift of the extrema [23, 28]. Since there is no

decimation, each level of decomposition contains as many

samples as the input image, thus making the algorithm

computationally complex and memory intensive.

Simoncelli et al. [36] propose an approximate shift-

invariant DWT algorithm by relaxing the critical sampling

requirements of the DWT. This algorithm is known as the

power-shiftable DWT since the power in each subband

remains constant. As explained in [6], the shift-variant

property is also related to aliasing caused by the DWT

filters. The power shiftable transform tries to remedy this

problem by reducing the aliasing of the mother wavelet in

the frequency domain. The modifications to the mother

wavelet result in a loss of orthogonality [26].

The Matching Pursuit (MP) algorithm can also achieve a

shift-invariant representation, when the decomposition

dictionary contains a large amount of redundant wavelet

basis functions [29]. However, the MP algorithm is extre-

mely computationally complex and arriving at a

transformed representation causes significant delays [12].

Bradley combines features of the DWT pyramidal

decomposition with the à trous algorithm [28], which

provides a trade off between sparsity of the representation

and time-invariance [6]. Critical sampling is only carried

out for a certain number of subbands and the rest are all

fully sampled. This representation only achieves an

approximate shift-invariant DWT [6].

The algorithms discussed either try to minimize the ali-

asing error by relaxing critical subsampling and/or add

redundancy into the wavelet basis set. However, these algo-

rithms either suffer from lack of orthogonality (which is not

always an issue for feature extraction), achieve an approxi-

mate shift-invariant representation, are computationally

complex or require significant memory resources. To combat

these downfalls, it is possible to use the SIDWT algorithm

proposed by Beylkin, which computes the DWT for all cir-

cular shifts, in a computationally efficient manner [5].

Furthermore, the transformation utilizes orthogonal wave-

lets, thereby resulting in less redundancy in the representation

[23]. Belkyn’s work has also been extended to 2-D signals by

Liang et al. [23, 24, 26] and its performance in a biomedical

image feature extraction application will be investigated.

2.4 SIDWT algorithm for retinal imagery

For different shifts of the input image, it was shown that

the DWT can produce one of four possible coefficient
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distributions (after one level of decomposition). These four

DWT coefficient sets (cosets) are not translated versions of

one another and each coset is the DWT output response to

one of four shifts of the input: (0,0), (0,1), (1,0), (1,1). All

other shifts of the input (at this decomposition level) will

result in coefficients which are shifted versions of one of

these four cosets. Therefore, to account for all possible

representations, these four cosets may be computed for

each level of decomposition. This requires the LL band

from each level to be shifted by the four translates {(0,0),

(0,1), (1,0), (1,1)} and each of these new images can be

separately decomposed to account for all representations.

To compute the coefficients at the jth decomposition level,

for the input shift of (0,0), the subbands LLj, LHj, HLj, HHj

may be found by filtering the previous levels coefficients

LLj+1, as shown below:

LL
j
ð0;0Þðx; yÞ ¼

X

m

X

n

hoðm� 2xÞhoðn� 2yÞ � LLjþ1ðm; nÞ

ð2Þ

LH
j
ð0;0Þðx; yÞ ¼

X

m

X

n

h1ðm� 2xÞhoðn� 2yÞ � LLjþ1ðm; nÞ

ð3Þ

HL
j
ð0;0Þðx; yÞ ¼

X

m

X

n

hoðm� 2xÞh1ðn� 2yÞ � LLjþ1ðm; nÞ

ð4Þ

HH
j
ð0;0Þðx; yÞ ¼

X

m

X

n

h1ðm� 2xÞh1ðn� 2yÞ � LLjþ1ðm; nÞ:

ð5Þ

The subband expressions listed in Eqs. 2 through 5

contain the coefficients which would appear the same if

LLj+1 is circularly shifted by {0, 2, 4, 6,..., s} rows and {0,

2, 4, 6,..., s} columns, where s is the number of row and

column coefficients in each of the subbands for the level

j + 1.

The subband coefficients which are the response to a

shift of (0,1) in the previous level’s coefficients may be

computed by

LL
j
ð0;1Þðx; yÞ ¼

X

m

X

n

hoðm� 2xÞhoðn� 2yÞ

� LLjþ1ðm; n� 1Þ
ð6Þ

LH
j
ð0;1Þðx; yÞ ¼

X

m

X

n

h1ðm� 2xÞhoðn� 2yÞ

� LLjþ1ðm; n� 1Þ
ð7Þ

HL
j
ð0;1Þðx; yÞ ¼

X

m

X

n

hoðm� 2xÞh1ðn� 2yÞ

� LLjþ1ðm; n� 1Þ
ð8Þ

HH
j
ð0;1Þðx; yÞ ¼

X

m

X

n

h1ðm� 2xÞh1ðn� 2yÞ

� LLjþ1ðm; n� 1Þ;
ð9Þ

which contain all the coefficients for {0, 2, 4, 6,..., s} row

shifts and {1, 3, 5, 7,..., s – 1} column shifts of LLj+1.

Similarly, for a shift of (1,0) in the input, the DWT

coefficients may be found by

LL
j
ð1;0Þðx; yÞ ¼

X

m

X

n

hoðm� 2xÞhoðn� 2yÞ

� LLjþ1ðm� 1; nÞ
ð10Þ

LH
j
ð1;0Þðx; yÞ ¼

X

m

X

n

h1ðm� 2xÞhoðn� 2yÞ

� LLjþ1ðm� 1; nÞ
ð11Þ

HL
j
ð1;0Þðx; yÞ ¼

X

m

X

n

hoðm� 2xÞh1ðn� 2yÞ

� LLjþ1ðm� 1; nÞ
ð12Þ

HH
j
ð1;0Þðx; yÞ ¼

X

m

X

n

h1ðm� 2xÞh1ðn� 2yÞ

� LLjþ1ðm� 1; nÞ:
ð13Þ

which contain all the coefficients if the previous levels’

coefficients LLj+1 are shifted by {1, 3, 5, 7,..., s – 1} rows

and {0, 2, 4, 6,..., s} columns. For an input shift of (1,1),

the subbands may be computed by

LL
j
ð1;1Þðx; yÞ ¼

X

m

X

n

hoðm� 2xÞhoðn� 2yÞ

� LLjþ1ðm� 1; n� 1Þ
ð14Þ

LH
j
ð1;1Þðx; yÞ ¼

X

m

X

n

h1ðm� 2xÞhoðn� 2yÞ

� LLjþ1ðm� 1; n� 1Þ
ð15Þ

HL
j
ð1;1Þðx; yÞ ¼

X

m

X

n

hoðm� 2xÞh1ðn� 2yÞ

� LLjþ1ðm� 1; n� 1Þ
ð16Þ

HH
j
ð1;1Þðx; yÞ ¼

X

m

X

n

h1ðm� 2xÞh1ðn� 2yÞ

� LLjþ1ðm� 1; n� 1Þ:
ð17Þ

Similarly, these subband coefficients account for all

DWT representations corresponding to {1, 3, 5, 7,..., s – 1}

row shifts and {1, 3, 5, 7,..., s – 1} column shifts of the

input subband LLj+1.

Performing a full decomposition will result in a tree

which contains the DWT coefficients for all N2 circular

translates of an N · N image. The number of coefficients in

each node (per decomposition level) remains constant at

3N2, and a complete decomposition tree will have
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N2(3log2N + 1) elements [23]. For a detailed review on

how to address the coefficients of the SIDWT decompo-

sition tree, see [23, 24]. A proper addressing scheme will

help to find the wavelet transform for a particular translate

(m, n), where m is the row shift and n is the column

translate of the input image.

This new representation computes the 2-D DWT for all

circular translates in a computationally efficient manner.

To achieve shift-invariance, a method to select a consistent

set of wavelet coefficients which are independent of the

input translation must be determined. Such a method would

choose the same basis set (which corresponds to a partic-

ular translate of the original image), regardless of the shift

in the input image. Coifmen and Wickenhauser’s best basis

selection technique [14] is utilized. See [21] for more

details on the algorithm’s full implementation (including

the best basis algorithm and the coefficient addressing

scheme).

2.5 Multiscale texture analysis for retinal images

Normal retinal images are easily characterized by their

overall homogeneous appearance. Other anatomical prop-

erties of a normal eye (such as the retina, fovea or veins)

are embedded into this homogeneous texture. This is easily

seen in Fig. 2a–c.

Unlike normal eyes, eyes which contain disease do not

possess uniform texture qualities. Three cases of abnormal

retinal images are shown in Fig. 2d–f. Diabetic retinopathy

is characterized by exudates or lesions which are typically

found in random whitish/yellow patches of varying sizes,

locations [45] with relatively defined margins [37], as shown

in Fig. 2a. The exudates occur in very dense, semi-homo-

geneous patches, which possess directional textural

elements that can be differentiated from the homogeneous

background. Furthermore, blood vessels rapidly grow in the

retina to compensate for reduced blood supply caused by the

exudates [4]. This may be characterized by oriented texture

which is composed of a high concentration of blood vessels.

Another clinical sign of diabetic retinopathy are microan-

eurysms and haemorrhages. Microaneurysms appear as

small, red, round dots and haemorrhages can have ‘‘dot’’,

‘‘blot’’ or ‘‘frame’’ configurations [37]. These two types of

pathologies are the first clinically detectable signs of diabetic

retinopathy [37] and may be detected with a texture analysis

tool since they disrupt the homogeneity of the background.

Another type of eye disease is known as macular

degeneration which can cause blindness if it goes

untreated. Macular degeneration may be characterized by

drusens, which appear as yellowish, cloudy blobs, which

exhibit no specific size or shape and can appear with a

variety of characteristics [8]. This is shown in Fig. 2e by

the yellow ‘‘blobs’’ which are scattered throughout the eye.

These structures are heterogenous and not as dense (radi-

opaque) as exudates. Other diseases include central retinal

vein and/or artery occlusion and an example is shown in

Fig. 2f. It is easy to notice from this image that an oriented

texture pattern radiates from a central location.

Since normal and abnormal retinal images possess

unique texture qualities which allow visual discrimination

between the two classes, a texture analysis scheme which

interprets the images in accordance to human texture per-

ception should be adopted to differentiate between the

Fig. 2 Retinal images which exhibit textural characteristics. a–c
Normal, homogeneous retinal images, d background diabetic reti-

nopathy (dense, homogeneous yellow clusters), e macular

degeneration (large, radiolucent drusens with heterogeneous texture

properties), f central retinal vein occlusion (oriented, radiating

texture)
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retinal images (in fact, texture has been one of the most

important image characteristics used to classify images [1,

19]). When a textured image is viewed, the human visual

system can easily discriminate between textured regions.

To try and understand how the human visual system can

easily differentiate between textures, Julesz defined tex-

tons, which are elementary units of texture [20]. Various

textured regions can be decomposed using these textons,

which include elongated blobs, lines, terminators and more.

It was also found that the frequency content, scale, orien-

tation and periodicity of these textons can provide

important clues on how to differentiate between two or

more textured areas [20, 28]. These fundamental points

have opened up a wide-variety of computer vision appli-

cations [1, 15, 38], which aim to mimic the properties of

the human visual system when discriminating texture.

Since many applications and algorithms are being built to

assist humans with their everyday tasks, for interpretation

of medical imagery it is only logical that these computing

devices understand images the same way humans do.

To extract texture-based features, normalized graylevel

co-occurrence matrices (GCMs) are used. Let each entry of

the normalized GCM be represented as a probability distri-

bution p(l1, l2, d, h), where l1 and l2 are two graylevel values

at a distance d and angle h. Using normalized GCMs, sta-

tistical quantities which measure the uniformity of the

images will be used, since relative homogeneity differenti-

ates between normal and abnormal retinal images. The

features which will be used are homogeneity (h), which

describes how uniform the texture is and entropy (e), which is

a measure of nonuniformity or the complexity of the texture.

hðhÞ ¼
X

L�1

l1¼0

X

L�1

l2¼0

p2ðl1; l2; d; hÞ ð18Þ

eðhÞ ¼
X

L�1

l1¼0

X

L�1

l2¼0

pðl1; l2; d; hÞ log2ðpðl1; l2; d; hÞÞ ð19Þ

If the region is homogeneous, there will be only a few

rapidly changing graylevel values. As a result, only a small

number of high probability values will be found in the GCM

matrix, translating into a large h value. Conversely, if the

texture is nonuniform, there will be lots of varying pixel

values which would each carry a small probability value.

This would cause the value of h to be small. For complex,

random texture structures, the entropy will be large while a

completely uniform texture will result in e = 0.

Traditionally, features based on the GCM have been

extracted from the spatial domain [1, 19]. A weakness of this

technique is that it doesn’t consider other important qualities

which aid in texture discrimination. As Julesz has mentioned

in [20], texture discrimination is also dependant on the

perception of texture events at different scales, frequencies

and orientations. Consequently, to gain a robust represen-

tation which is in accordance to human texture perception,

textural features are computed from the wavelet domain.

Extracting features from the wavelet domain will result in a

localized texture description, since the DWT has excellent

space-localization properties. To account for oriented

texture, the GCMs are computed at various angles in the

wavelet domain at d = 1 to account for fine texture. Typi-

cally, the DWT is not used for texture analysis due to its

shift-variant property. However, using the SIDWT algo-

rithm described will allow for the extraction of a consistent

feature set, thus allowing for multiscale texture analysis.

2.5.1 Multiscale texture features

In the wavelet domain, GCMs are computed from each scale

j at several angles h. Each subband isolates different fre-

quency components—the HL band isolates horizontal edge

components, the LH subband isolates horizontal edges, the

HH band captures the diagonal high frequency components

and LL band contains the lowpass filtered version of the

original. To demonstrate this localized frequency concept,

please refer to Fig. 3 for one level of decomposition of a

synthetic image. For a retinal image decomposition, see

Fig. 4a, b. Note how the pathology in Fig. 4b is very local-

ized and heterogeneous in all the subbands.

To capture these oriented texture components, the GCM

is computed at 0� in the HL band, 90� in the LH subband,

45� and 135� in the HH band and 0�, 45�, 90� and 135� in

the LL band to account for any directional elements which

may still may be present in the low frequency subband.

From each of these GCMs, homogeneity h and entropy e

are computed for each decomposition level using Eqs. 18

and 19. For each decomposition level j, more than one

directional feature is generated for the HH and LL sub-

bands. The features in these subbands are averaged so that:

features are not biased to a particular orientation of texture

and the representation will offer some rotational invari-

ance. The features generated in these subbands (HH and

LL) are shown below. Note that the quantity in parenthesis

is the angle at which the GCM was computed.

eh
j

HH ¼
1

2
hj

HHð45�Þ þ hj
HHð135�Þ

� �

; ð20Þ

eej
HH ¼

1

2
ej

HHð45�Þ þ ej
HHð135�Þ

� �

; ð21Þ

eh
j

LL ¼
1

4
hj

LLð0�Þ þ hj
LLð45�Þ þ hj

LLð90�Þ þ hj
LLð135�Þ

� �

;

ð22Þ
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eej
LL ¼

1

4
ej

LLð0�Þ þ ej
LLð45�Þ þ ej

LLð90�Þ þ ej
LLð135�Þ

� �

:

ð23Þ

As a result, for each decomposition level j, two feature

sets are generated:

Fj
h ¼ hj

HLð0�Þ; h
j
LHð90�Þ; ehj

HH;
eh

j

LL

h i

; ð24Þ

Fj
e ¼ ej

HLð0�Þ; e
j
LHð90�Þ; eej

HH; ee
j
LL

� �

; ð25Þ

where eh
j

HH;
eh

j

LL; ee
j
HH and eej

LL are the averaged texture

descriptions from the HH and LL band previously descri-

bed and hj
HL(0�), ej

HL(0�), hj
LH(90�) and ej

LH(90�) are

homogeneity and entropy texture measures extracted from

the HL and LH bands. Since directional GCMs are used to

compute the features in each subband, the final feature

representation is not biased for a particular orientation of

texture and may provide a semi-rotational invariant

representation.

2.6 Pattern analysis/classification

Using the SIDWT and feature extraction operator f, the

image space X has been mapped to the feature space F ;
where each image is described by a feature vector F = {F1

e,

F1
h,..., Fj

e, Fj
h}, where j is the number of decomposition

levels. After extracting features, it is necessary to classify

this data into groups (i.e. classify each image as normal or

abnormal). For each image and corresponding feature set

Fig. 3 a Synthetic ‘‘square’’

image f(i,j) of dimensions 256

· 256, b one level of DWT for

image f(i,j) showing localized

frequency components. HH

band: diagonal edges, LH band:

horizontal edges, HL band:

vertical edges, LL band:

smoothed version of original

Fig. 4 One level of DWT decomposition for retinal images. Contrast

enhancement was performed in the higher frequency bands (HH, LH,

HL) for visualization purposes. a Normal image decomposition

showing an over the a homogeneous appearance of the wavelet

coefficients in the HH, HL and LH bands, b decomposition of a

retinal image with diabetic retinopathy, see Fig. 2c for original image.

Note that in each of the higher frequency subbands the retinopathy

appears as heterogeneous blobs (high-valued wavelet coefficients) in

the center of the subband (which spatially corresponds to the center of

the original image)
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Fi, let Y 2 f1; 2; . . .;Cg be the class label or category for

image i and C is the maximum number of classes. For this

particular application, C = 2; one class label is ‘normal’

and the other class label is ‘‘abnormal’’. Therefore, each

image may be classified into one of two groups:

Y 2 f1; 2g: To arrive at a classification result, it is neces-

sary to define a classifier which maps the feature space into

the decision regions d : F ! Y:
Prior to choosing a classifier, a series of factors must be

considered which are related to the feature set and database

size. Firstly, a large number of test samples are required to

evaluate a classifier with low error (misclassification) rates

[35] since a small database will cause the parameters of the

classifiers to be estimated with low accuracy [34]. This

requires the biomedical image database to be large, which

may not always be the case since acquiring the images is

always not easy and also the number of pathologies may be

limited (i.e. data collection will have to continue for a

number of years to get all the desired cases). If the

extracted features are strong (i.e. the features are mapped

into nonoverlapping clusters in the feature space) the use of

a simple classification scheme will be sufficient in dis-

criminating between classes. Therefore, linear discriminant

analysis (LDA) [3, 13] will be the classification scheme of

interest.

To enhance the reliability of LDA, the leave one out

method (LOOM) is also used. Instead of dividing the N

input samples into two equal sized sets of training and

testing data, one sample is removed from the whole set and

the discriminant functions are derived from the remaining

N – 1 data samples. Then, using these discriminant scores,

the left out sample is classified. This procedure is com-

pleted for all N samples. Since most biomedical image

databases are expected to contain a small number of ima-

ges, using LOOM will allow the classifier parameters to be

estimated with least bias [17]. This is all completed at a

cost of increased computational complexity, since the

discriminant functions must be recalculated N times [7].

3 Results

The objective of the proposed system is to automatically

classify various pathologies from normal retinal images.

The retinal images used are 700 · 605, 24 bpp and lossy

(.jpeg). Thirty-eight normal and 48 abnormal images were

used (ground truth data is supplied with database).

Pathologies of the abnormal images included: exudates,

large drusens, fine drusens, choroidal neovascularization,

central vein and artery occlusion, histoplasmosis, arterio-

sclerotic retinopathy, hemi-central retinal vein occlusion

and more. Since the DWT requires the dimensions of the

input image to be a factor of two, zero padding was

completed prior to any analysis. The images were con-

verted to grayscale prior to any processing to examine the

feature set in this domain. Features were extracted for the

first five levels of decomposition. Further decomposition

levels will result subbands of 8 · 8 or smaller, which will

result in skewed probability distribution (GCM) estimates

and thus were not included in the analysis. Therefore, the

extracted features are Fe
j and Fh

j for j = {1, 2, 3, 4, 5}. The

block diagram of the proposed system is shown in Fig. 5.

In order to find the optimal sub-feature set, an exhaus-

tive search was performed (i.e. all possible feature

combinations were tested using the proposed multiscale

texture classification scheme). The optimal classification

performance was achieved by combining homogeneity

features from the fourth decomposition level with entropy

from the first, second and fourth decomposition levels.

These four feature sets are shown below:

F4
h ¼ h4

HLð0�Þ; h4
LHð90�Þ; eh4

HH;
eh

4

LL

h i

; ð26Þ

F1
e ¼ e1

HLð0�Þ; e1
LHð90�Þ; ee1

HH; ee
1
LL

� �

; ð27Þ

F2
e ¼ e2

HLð0�Þ; e2
LHð90�Þ; ee2

HH; ee
2
LL

� �

; ð28Þ

F4
e ¼ e4

HLð0�Þ; e4
LHð90�Þ; ee4

HH; ee
4
LL

� �

: ð29Þ

Using the optimal feature set shown above, the

classification results for the retinal images are shown as a

confusion matrix in Table 1 (specificity of 79% and

sensitivity of 85.4% were achieved). From the

misclassified cases, it was noticed that normal retinal

images which possessed several, thick veins, which

appeared in an oriented manner, were the cases that were

misclassified. Since the texture analysis scheme searches

for such texture qualities (i.e. heterogeneous oriented

texture) for abnormal images, it is easy to understand

why these types of images were misclassified. See Fig. 6

for such a case. It would be possible to obtain better

performance if PCA (principal component analysis) was

used to provide a greater separation between clusters in the

feature space for cases which are ‘‘close calls’’.

Furthermore, two of the misclassified normal images had

several imaging artifacts (i.e. some of the eye was missed

in the image), which undoubtedly caused them to also be

misclassified.

In terms of the abnormal images which were misclas-

sified as normal, it was noted upon examination of the

misclassified images that the pathologies were very diffi-

cult to detect, even with the human eye. See for example

Fig. 6 which contains an example of an abnormal image

which was classified as normal. As can easily be seen by

this image, the pathology (fine drusens) are very unno-

ticeable and blend into the background, thus causing them

to be classified as homogeneous, or normal.
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To verify the optimality of this multiscale textural fea-

ture set, the classification performance of Table 1 is

compared to homogeneity and entropy features extracted

from the spatial domain. Again, d = 1 was used and GCMs

were computed at four directions (0�, 45�, 90� and 135�)

and both h and e were computed from these GCMs using

Eqs. 18 and 19, respectively. The classification results for

the three possible spatial feature combinations (i.e. only h,

only e, h and e) are shown in Tables 2, 3, 4. As shown by

these tables, the performance of the spatial features does

not compare to the performance achieved by the multi-

resolution analysis scheme. Therefore, localization of the

pathology in both scale and frequency is important for

retinal image texture discrimination.

4 Discussions

The results show that the classification rates are quite high

(average classification rate of 82.2%), indicating that the

proposed system can differentiate between normal and

abnormal retinal images with a high success rate even

though a variety of pathologies were present. The choice of

wavelet-based statistical texture measures (entropy and

homogeneity) was critical since they were able to effi-

ciently describe the localized texture properties of the

images. This was further confirmed by computing the same

features in the spatial domain, which resulted in poor

classification performance due to lack of localization. The

SIDWT allowed for the extraction of consistent (i.e. shift-

invariant) features. The scale-invariant basis functions of

the DWT captured pathologies of varying sizes within one

transformation (i.e. scale-invariant). Furthermore many of

the abnormal retinal images possess oriented texture ele-

ments (central vein/artery occlusion) and the overall

success of the system can also be accounted to the fact that

the oriented texture was properly characterized by (1)

extracting features from the 2-D DWT, which isolates

localized directional texture elements, (2) computing fea-

tures for different angles to characterize the oriented

textural properties and (3) averaging the features to obtain

a non-biased, semi-rotational invariant representation.

As shown by other works in the area of retinal imaging

(Sect. 1), the authors’ schemes were tuned to only detect a

specific type of abnormality (i.e. drusens OR retinopathy).

Therefore, a major success of this work is the development

of a system which can differentiate between normal and

several abnormalities of the human eye with high classifi-

cation rates. Since multiple pathologies were classified

within one framework, comparison with other works is not

possible. Additionally, each of the related works used a

number of processing steps prior to feature extraction

which may vary from database to database. In the proposed

work, no prior preprocessing is performed (aside from

grayscale conversion) and the features are database

Fig. 5 System block diagram

for the classification of retinal

images

Table 1 Results for multiscale retinal image classification displayed

as a confusion matrix

Normal Abnormal

Normal 30 (79%) 8 (21%)

Abnormal 7 (14.6%) 41 (85.4%)

Fig. 6 These images were

misclassified by the system.

a Normal region exhibiting

several, coarsely oriented veins.

b Abnormal image with several

small drusens barely noticeable

to the human eye
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independent. These results could be applied on other dat-

abases to get similar results since a highly discriminatory

and robust (scale, translation and semi-rotational invariant)

feature set was used.

Although the classification results are high, any mis-

classification can be accounted to cases where there is a

lack of statistical differentiation between the texture uni-

formity of the abnormal and normal retinal images. This

phenomena was shown in Fig. 6a, b. As stated, in future

works, PCA could be used to decorrelate or separate the

clusters even further in the feature space to increase clas-

sification performance.

Another important consideration about the classification

results arise from the sizes of the databases. Since only a

modest number of images were used, misclassification

could result due to the lack of proper estimation of the

classifiers parameters (although the scheme tried to combat

this with LOOM). Additionally, finding the right trade off

between number of features and database size is an ongo-

ing research topic and has yet to be perfectly defined [17].

A last point for discussion is the fact that features were

successfully extracted from the compressed domain of the

retinal images. Since many forms of multi-media are being

stored in lossy formats (.mp3, .mpeg, .jpeg), it is important

that classification systems may also be successful when

utilized in the compressed domain.

Overall, the system achieved good results in the pres-

ence of several pathologies and required no intervention

from the ophthalmologist. Consequently, such a system

could be employed in a clinical setting, as a computer-

aided diagnosis system or content-based image retrieval

system. Since the number of images being acquired in

ophthalmology clinics around the world are rapidly

increasing due to its non-invasive nature, such a scheme

would help reduce the labourious task of interpretation or

image archiving for the physician.

5 Conclusions

A unified feature extraction and classification scheme was

developed using the discrete wavelet transform for retinal

images. Textural features were extracted from the wavelet

domain in order to obtain localized numerical descriptors

of the relative homogeneity of the retinal images. To

ensure the DWT representation was suitable for consistent

extraction of features, a shift-invariant discrete wavelet

transform (SIDWT) was computed. To combat the small

database size, LDA classification was used with LOOM to

try and gain a true approximation of the classifier’s

parameters. Unlike other works, this work classifies mul-

tiple types of pathologies using one algorithm, thus not

permitting fair comparison.

Eighty-six abnormal and normal retinal images were

correctly classified at an average rate of 82.2%. The suc-

cess of the system can be accounted to semi-rotational

features and scale-invariance of the DWT, which permitted

the extraction of consistent features for various sizes, forms

and types of pathologies. Due to the success of the pro-

posed work, it may be used in a CAD scheme or a CBIR

application, to assist the ophthalmologists to diagnose and

retrieve the images. Additionally, since the retinal images

were stored in a lossy format and high classification rates

were achieved, the system successfully extracted features

from the compressed domain.
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