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Abstract Intermittent disturbances are common in ECG

signals recorded with smart clothing: this is mainly because

of displacement of the electrodes over the skin. We eval-

uated a novel adaptive method for spatio-temporal filtering

for heartbeat detection in noisy multi-channel ECGs

including short signal interruptions in single channels.

Using multi-channel database recordings (12-channel

ECGs from 10 healthy subjects), the results showed that

multi-channel spatio-temporal filtering outperformed reg-

ular independent component analysis. We also recorded

seven channels of ECG using a T-shirt with textile elec-

trodes. Ten healthy subjects performed different sequences

during a 10-min recording: resting, standing, flexing breast

muscles, walking and pushups. Using adaptive multi-

channel filtering, the sensitivity and precision was above

97% in nine subjects. Adaptive multi-channel spatio-tem-

poral filtering can be used to detect heartbeats in ECGs

with high noise levels. One application is heartbeat

detection in noisy ECG recordings obtained by integrated

textile electrodes in smart clothing.

Keywords Multi-channel ECG � Textile electrodes �
Heartbeat detection � Independent component analysis �
Noise reduction

1 Introduction

This study focuses on heartbeat detection in multi-

channel ECG signals with high noise levels and inter-

mittent signal loss. These types of disturbances could

result from poor contact between the electrodes and the

skin, as when using textile electrodes in smart clothing.

Smart clothing is an evolving technique for monitoring

of physiological parameters in various situations, such as

home monitoring of elderly or patients with chronic
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Borås, Sweden

e-mail: Kaj.Lindecrantz@hb.se

L. Sandsjö
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diseases, or monitoring during sports activities [1, 4]. A

textile electrode consists of a textile conductive surface

that substitutes a traditional electrode. The conductive

surface can be made of any conducting material, but the

most common ones are silver-plated yarns or stainless

steel yarn [3, 19]. Textile electrodes integrated in

clothing differ from traditional electrodes, not only in

terms of material and structure used for the conductive

surface, but also in that they do not make use of elec-

trode gel and they are not affixed to the skin. The use of

textile electrodes can allow for flexible health monitoring

systems integrated in clothing, such as the continuous

monitoring of heart rate.

Disturbances are common in ECGs recorded with textile

electrodes: this mainly because of movements in the textile

structure [13] and movement artefacts. Disturbances can

also be generated by intermittent loss of signal from indi-

vidual electrodes and by electromyographic (EMG) inter-

ferences. Because of all these disturbances, it could be

difficult to detect heartbeats in ECGs recorded with textile

electrodes. By integrating many electrodes and by using

multi-channel algorithms, heartbeat detection may still be

feasible in textile ECG signals even in the presence of

occasional signal loss in a single or a few channels or high

noise levels.

Algorithms for heartbeat detection must determine the

time instant for each heartbeat with high precision. High

precision is important both to analyse beat-to-beat heart

rate fluctuations and to detect abnormal changes in the

morphology of the ECG. Although single-channel heart-

beat detectors can handle relatively high noise levels,

intermittent signal loss in different ECG channels can only

be handled by analysing many ECG channels simulta-

neously. Moreover, since the redundancy of a multi-chan-

nel system is higher, a multi-channel detector would

probably outperform a single-channel detector for heart

beat detection in noisy ECG recordings.

Few studies have described methods for heartbeat

detection in multi-channel ECG recordings. One previously

suggested method is the length transform, where the sam-

ples of each channel are regarded as points in a vector

space [7]. The length of the vector is calculated using data

from a segment of approximately the same length as the

QRS-complex, and the transform gives the highest value at

those time instants when a heartbeat occurs. Another ap-

proach is to separate the ECG and noise sources by blind

source separation (BSS), which is a method to estimate

source signals by using their linear mixtures. In practice,

this is often performed using independent component

analysis (ICA) [9]. ICA-algorithms have been used to

separate ventricular and atrial activity in the ECG [17], to

characterise ECG signals [12], to suppress noise in ECG

[2], and to separate foetal and maternal ECGs [20, 22]. To

our knowledge, ICA has not previously been used as an

explicit heartbeat detector.

In this study, we propose a method to detect heartbeat

events in disturbed ECG recordings using adaptive spatio-

temporal filtering [21]. This multi-channel filter is designed

to give distinct peaks in the output signal at the time in-

stants when heartbeats occur. The method was originally

developed for extraction of motor unit action potentials in

surface electromyograms [21]. In a preliminary study, we

applied spatio-temporal filtering to eight-channel ECG

recordings [16]. The results showed that heartbeats could

be detected even though the ECG recordings had high

levels of interferences, such as disturbances generated by

muscular activity and electrode displacement.

This study evaluated the performance of adaptive spatio-

temporal filtering in multi-channel ECG recordings with

high noise levels and intermittent signal loss in single

channels. We compared the performance of adaptive spa-

tio-temporal filtering with the length transform and regular

ICA. The multi-channel algorithms were evaluated using

data from the PhysioBank archive. We also evaluated

adaptive spatio-temporal filtering using data recorded with

a garment with textile electrodes. Our aim was to investi-

gate if adaptive spatio-temporal filtering would be a suit-

able technique to use for heartbeat detection in noisy ECGs

recorded with smart clothes.

2 Methods

2.1 Multi-channel spatio-temporal filtering

The proposed multi-channel filter is designed to produce an

output signal having distinct peaks that correspond to the

time instants where the QRS complexes occur. Such a

signal resembles a spike train, where most of the data

points have an amplitude value close to zero, but where the

peaks have significantly larger values. Thus, the signal

values have a super-gaussian distribution, with a marked

tail in the histogram.

To maximise the super-gaussianity of the output signal,

the adaptive multi-channel filter uses both spatial and

temporal filtering. The temporal filtering is performed

using individual finite impulse filters on each channel i

according to

ziðnÞ ¼
XK�1

k¼0

hiðkÞxiðn� kÞ; ð1Þ

where xi(n) is the input signal from channel i, {hi(k)} are

the coefficients of the temporal filtering, and K is the filter

length. In this study the filter size was set to 1, 3, 5, 10, and

20 samples in the time domain.
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With M input channels, the spatial filtering is given by

yðnÞ ¼
XM�1

i¼0

giziðnÞ ¼
XM�1

i¼0

gi

XK�1

k¼0

hiðkÞxiðn� kÞ; ð2Þ

where {gi} are the coefficients of the spatial filtering.

If gihi(k) is replaced with wi(k), then

yðnÞ ¼
XM�1

i¼0

XK�1

k¼0

wiðkÞxiðn� kÞ: ð3Þ

Consequently, the output signal y(n) is a linear combination

of time delayed input signals. In matrix form, this becomes

y ¼Wx: ð4Þ

The coefficients wi(k) were adaptively determined by

maximizing the skewness of the output by using the

FastICA algorithm [8]. The input signals were normalised

to unit variance. The dimension of the input vector x was

reduced using PCA, keeping 99% of the variability.

Spatio-temporal filtering was performed on blocks of 6-s

durations. In each block of the output signal, time instants

for individual heartbeats were determined using a threshold

detector. The threshold was based on the median of a

successive series of peak values for each second. A

heartbeat event was detected if a local peak in the output

signal was above the threshold limit. If two or more events

were detected within a window of 300 ms duration, the

event with the highest amplitude of the output signal was

kept and the others were discarded.

The multi-channel filter is adaptive because the filter

coefficients were determined for each segment of the signal.

Therefore, the phase shift was different for successive

blocks of the output signal and the blocks were time-aligned

as follows [15]: the algorithm first determined the minimum

time differences between the last detected beats in one block

and the first detected beats in the next partly overlapping

block. Then the sum of the absolute values of these time

differences was calculated. The difference in phase shift

between the two blocks was determined as the value that

minimises this sum. All calculations were performed using

the Matlab software package (Mathworks, Natick, Mass.).

2.2 Independent component analysis

Assume that the M recorded ECG signals, xiðnÞ; i � M;

are modelled as a linear combination of P unknown source

signals, sjðnÞ; j � P: In matrix form this corresponds to

the basic BSS model given by [9]

x ¼ As; ð5Þ

where A is the linear mixing matrix. If P = M then A is a

square matrix, and the source signals can be estimated by

computing its inverse

s ¼ A�1x ¼Wx: ð6Þ

In standard ICA, the matrix W is estimated as the one

that gives source signals (independent components) that are

as non-gaussian as possible. This comes from the idea of

using the central limit theorem ‘‘backwards’’. The central

limit theorem states that by summing independent variables

the sum will eventually have a normal distribution

regardless of the distribution of the independent variables.

A common way to measure ‘‘non-gaussianity’’ is to use

higher order cumulants, often kurtosis.

From Eq. (6), it follows that BSS using ICA is similar to

spatio-temporal filtering with K = 1. Thus regular ICA can

be regarded as a pure spatial filtering, whereas spatio-

temporal filtering also uses the temporal information of the

data. Moreover, in ordinary ICA, we obtain as many

independent components as recorded data signals, whereas

our proposed filtering technique results in a single output.

In this study, we implemented ICA using the FastICA

algorithm, where we selected the output signal with max-

imum kurtosis. This is the same approach as previously

suggested to separate QRS-complexes from atrial activity

in 12-lead ECGs [5].

2.3 Length transform

The length transform of a multi-channel ECG recording is

given by [7]

LðM; q; nÞ ¼
Xnþq�1

k¼n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XM

i¼1

ðxiðkÞ � xiðk � 1ÞÞ2
vuut ; ð7Þ

where M is the number of input channels, and q is a win-

dow with size approximately equal to the duration of the

QRS complex. In this study, q = 65 was used. The input

signals were high-pass filtered and normalised. Heartbeat

events were determined in the output signal using a similar

threshold detector as described above.

2.4 Database recordings

The multi-channel heartbeat detectors were evaluated using

recordings from the Physikalisch-Technische Bundesan-

stalt (PTB) Diagnostic ECG Database (http://www.physi-

onet.org). We selected the first ten recordings from healthy

controls and analyzed the first 2 min of each 12 leads-ECG

recording. The sampling frequency was 1,000 Hz. The
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signals were high-pass filtered (cut-off frequency 0.01 Hz)

to suppress baseline drift.

Pseudoreal signals were generated by adding four dif-

ferent noise signals to each of the ten database recordings.

Two recordings with noise typical in ambulatory ECG

recordings were downloaded from the MIT–BIH Noise

Stress Test Database (http://www.physionet.org). The first

recording consisted of electrode motion artefacts (record

‘em’), and the second recording contained muscle artefacts

(record ‘ma’). The sampling frequency was 360 Hz, but

was increased to 1,000 Hz by interpolation and re-sam-

pling. Each noise recording consisted of two channels of

30 min duration. Data were divided into 2-min segments,

resulting in a total of 30 blocks of data for each noise type.

Twelve of these thirty blocks were randomly selected and

added to the each of the twelve channels of the ECG

recording. Two different noisy ECG signals were gener-

ated: (1) ECG with electrode motion artefacts only, and (2)

ECG with the sum of electrode motion artefact noise and

muscle artefact noise. The signal-to-noise ratio (SNR) was

defined as the ratio of the variance of the ECG signal and

the variance of the noise signal. As a result of the used

procedure an equal SNR was achieved in all channels.

The noisy ECG signals described above were also used

to test the effect of intermittent signal loss due to poor

electrode contact. To simulate a short interruption of the

signal, we added short pulses modelled as a randomly

occurring rapid transition to the maximum value followed

by an exponential decay [6]. The duration of these pulses

was randomly selected with a uniform distribution between

0.1 and 3.0 s, and the time constant of the decay was set to

4 s. The pulses were randomly distributed in different

channels with an average interval of 15 s between pulses.

SNR was calculated before adding the simulated pulses

with signal loss.

The performance of the multi-channel algorithms was

evaluated using different noise sources at three different

SNRs (0, –5, and –10 dB) and at three different numbers of

channels: four (leads I, II, III and AVR), eight (leads I, II,

III, AVR, AVL, AVF, V1, V2 and V3), and all twelve ECG

channels. Reference values of time instants for the heart-

beats were determined by using each algorithm on all 12

channels without any additional noise.

2.5 Recordings with textile electrodes

Data were recorded from ten healthy male subjects (age

21–47 years, mean 30 years) using a T-shirt with inte-

grated textile electrodes. The data acquisition unit had a

wireless transfer of data to an ordinary PC system [10, 11].

The modular-constructed acquisition unit consisted of a

main module with a single-chip microprocessor (8051-

core), an application-specific signal conditioner module

(including A/D converters), and a digital wireless module

(Bluetooth). All modules can be exchanged depending on

the specific measurement situation. In this study, ECG was

measured using amplifiers with fixed gain, high resolution

and oversampling 16-bit A/D converters. The wireless

multi-channel data acquisition unit was configured for

recording of eight ECG channels at 500 Hz. Baseline drift

was suppressed by analogue high-pass filtering at 0.1 Hz.

Seven ECG channels were recorded using an elastic

garment with textile electrodes placed on the chest and

shoulders (Fig. 1). ECG was measured bipolar with a

textile reference electrode placed near the waist. In addi-

tion, one ECG channel was recorded with two conventional

Ag/AgCl electrodes placed on the wrists (lead I). This

signal was recorded as a reference signal to confirm the

detected heartbeats. The textile electrodes were made from

stainless steel and knitted in pieces of approximate size

2 · 2 cm. Snap buttons were mounted on the textile pieces

with electrical insulation between the back of the buttons

and the skin of the test subjects. Standard ECG cables were

used for connections of the textile electrodes to the wireless

data acquisition system. All recordings were performed

with dry textile electrodes.

Data were recorded for approximately 9 min. During the

recording, the subjects generated intermittent disturbances

by moving or by high levels of muscular activity: walking,

changing between sitting and standing, flexing the breast

muscles, and push-ups. Heartbeat events were detected

Fig. 1 T-shirt with integrated textile electrodes and the ECG monitor

with a wireless transfer of data to a PC. White dots indicate positions

of electrodes
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using spatio-temporal filtering. All heartbeat event times

were manually confirmed. Detection errors were found by

visual inspection of the ECG recordings and the deter-

mined R–R intervals.

2.6 Scoring of results

A heartbeat event was labelled as true positive (TP) if it

belonged to a window of 128 ms duration around the R-

peak [14], if not, it was labelled as false positive (FP).

Undetected R-peaks were labelled as false negatives (FNs).

The probability of detection was measured by the sensi-

tivity and precision:

sensitivity ¼ TP

ðTPþ FNÞ precision ¼ TP

ðTPþ FPÞ :

Results were presented as boxplots, which showed

minimum and maximum values, 75% percentile, median,

25% percentile and outliers. Outliers were defined as val-

ues smaller than (25% percentile) – 1.5(median – 25%

percentile). The error in the determined time instants for all

beats classified as TP was estimated by the mean-squared

error (MSE), given by the average of the squared deviation

from the corresponding reference values.

2.7 Statistical analysis

The performance of the different multi-channel algorithms

was compared using the Kruskal–Wallis test. In all tests, a

p value of less than 0.05 was considered statistically sig-

nificant.

3 Results

3.1 Database recordings

Figure 2 shows one example of the performance from the

evaluation of the proposed algorithm for adaptive spatio-

temporal filtering using the database recordings. In this

example, the SNRs were –10 dB for all input channels. The

figure shows three input signals, but a total of 12 noisy

ECG channels were used to determine the output signal

with maximum skewness. For reference, the top panel

shows the corresponding noise-free ECG.

Figures 3 and 4 show the results from the evaluation of

the algorithms for different SNR and number of input

channels. The boxplots show the pooled results for all four

generated types of noise: the boxplots represent 40 values

each. As shown in the figures, the poorest performance was

obtained for the length transform. Therefore, the length

transform was excluded from further analyses.

When SNR was –5 dB, spatio-temporal filtering with

eight channels and filter length 20 resulted in a mean

sensitivity of 99.7% with a mean precision of 99.7%. The

corresponding results for ICA were 99.0 and 98.2%,

respectively. At SNR = –10 dB, the best results were ob-

tained for 12 channels and spatio-temporal filtering with

filter length 20 with a mean sensitivity of 98.2% and a

mean precision of 99.3%. ICA with 12 channels resulted in

a mean sensitivity of 89.9% and a mean precision of

84.6%. Although there was a tendency to increased sensi-

tivity with increasing filter length in the spatio-temporal

filter, the only statistically significant differences were

found between filter length 20 and ICA (p < 0.001).

Regardless of filter length, the precision was statistically

significantly higher for spatio-temporal filtration than for

ICA (p < 0.001). Table 1 shows the average MSE for the

detected heartbeat event times. The average MSE was

below 1 ms for spatio-temporal filtration with at least eight

channels.

3.2 Textile electrode recordings

Figure 5 shows the performance of adaptive spatio-tem-

poral filtering (using K = 20) in one recording with textile

electrodes while the subject was doing push-ups. As seen in

the figure, all input channels contained severe muscular

interferences. These interferences were suppressed in the

multi-channel filter, as shown by the time instants of the

spikes in the output signal before and after the onset of

muscular interferences.

Table 2 shows the results of adaptive multi-channel

filtering in the recordings with textile electrodes. No sta-

tistically significant differences were found between spa-

tio-temporal filtering and ICA. There was a tendency that

the number of heartbeat detection errors was reduced for

spatio-temporal filtering when the filter length was in-

creased from 1 up to 20. Using filter length 20 and all 7

channels, the sensitivity and the precision was higher than

97% in 9 of 10 subjects. The majority of misclassifications

were made when the subjects were doing push-ups. One

subject had a lot of hair on his chest and his recording had

very poor quality, with a maximum sensitivity of 93% and

precision of 93%. The length transform was not used to

analyse the textile recordings because of its poor perfor-

mance on the database recordings.

4 Discussion

Our primary goal was to evaluate whether adaptive spatio-

temporal filtering was a suitable method to use in smart

clothes where frequent disturbances in the ECG can be

expected. Our idea was to integrate many textile electrodes

Med Bio Eng Comput (2007) 45:515–523 519
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in a T-shirt and use advanced signal processing to extract

heartbeats. Therefore, we evaluated different methods for

heartbeat detection in multi-channel ECG recordings with

high noise levels and intermittent signal loss. We found

that spatio-temporal filtering outperformed both regular

ICA and the length transform when SNR was low. The

performance of the multi-channel increased with increasing

number of channels. We also found that the performance of

the filter increased when the length of the temporal filter

was increased. Thus the combination of spatial and tem-

poral filtering reduced the number of detection errors in the

database recordings with high noise levels. We also applied

Fig. 2 Adaptive spatio-

temporal filtering of a database

recording using filter length 20.

Top panel Original noise-free

ECG. Middle panels Three input

signals with SNR = –10 dB and

intermittent signal loss. Bottom
panel Output signal with

maximum skewness. Circles
indicate determined time

instants for heartbeat events

Fig. 3 Results from database

recordings: sensitivity for

different SNR:s and different

number of channels for the

length transform (LT),

independent component

analysis (ICA), and for different

filter lengths of adaptive spatio-

temporal filtering
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Fig. 4 Results from database

recordings: precision for

different SNR:s and different

number of channels for the

length transform (LT),

independent component

analysis (ICA), and for different

filter lengths of adaptive spatio-

temporal filtering

Table 1 Mean square error (MSE) for the determined heartbeat event times for all 40 pseudoreal noisy ECG signals

ICA K = 1 K = 20

Number of input channels M = 4 M = 8 M = 12 M = 4 M = 8 M = 12 M = 4 M = 8 M = 12

MSE (ms) SNR 0 dB 0.09 0.06 0.05 0.06 0.06 0.05 0.08 0.12 0.11

MSE (ms) SNR –5 dB 0.39 0.07 0.06 0.12 0.06 0.06 0.15 0.14 0.12

MSE (ms) SNR –10 dB 2.15 1.28 0.58 1.43 0.62 0.28 1.58 0.66 0.20

Results are presented for independent component analysis (ICA) and adaptive spatio-temporal filtering with filter length 1 and 20

Fig. 5 ECG recording made

with the T-shirt with integrated

textile electrodes in a healthy

subject while doing push-ups.

Bottom panel Output signal

from adaptive spatio-temporal

filtering

Med Bio Eng Comput (2007) 45:515–523 521
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adaptive spatio-temporal filtering to multi-channel ECG

data recorded with textile electrodes. Although the noise

level was very high in some of the channels, 97% or more

of the heartbeat events were extracted in recordings in nine

out of ten healthy subjects.

In this study, spatio-temporal filtering was used to

automatically extract one output signal—the one with the

maximum skewness. The same filtering approach can also

be used with other criteria and algorithms than the FastICA

algorithm. Previously, kurtosis was used as criterion in

spatio-temporal filtering of EMG signals [21]. Kurtosis is

also more common in regular ICA applications. A pre-

liminary study showed that skewness tended to be more

robust against ECG disturbances than kurtosis [15], which

was also found in this study as indicated by the higher

precision for spatiotemporal filtering than for ICA. At

present, we are developing the algorithms for adaptive

multi-channel filtering to obtain an even more robust

selection of the ‘‘best’’ output signal.

ICA has been used on multi-channel ECG in order to

suppress noise [2], but not explicitly as a robust heartbeat

detector. Compared to ICA, spatio-temporal filtering has

the advantage that the use of time information decreases

length of the signal corresponding to a heartbeat, thereby

making the heartbeat easier to detect. In this study, this is

seen as an improved performance with increasing time

length of the filter.

The maximum filter length used for spatio-temporal

filtration was 20, which corresponds to a time window of

20 ms duration. Thus, one would expect that the filter

performs better for removal of muscular interferences than

most movement artefacts. If the electrodes are spatially

distributed, electrode movement artefacts probably only

occurs in a few channels simultaneously. Similarly, muscle

interferences in different channels are probably indepen-

dent. This could be the reason why the proposed method

seems to handle rather large noise levels. We performed

tests where the filter length was increase to 50. The per-

formance did not improve, but there was a marked increase

in computational time.

ICA is used to recover the source signals from a linear

combination of mixed signals [9], whereas spatio-temporal

filtering extracts time instants for heartbeats without pre-

serving the shape of the ECG. The shape of the QRS-

complexes can be estimated in individual channels by

using time instants for successive heartbeats and noise-

reduction by averaging. Time delayed input signals have

been used in variants of ICA to separate the foetal ECG

from the maternal ECG [18, 20].

We accepted detected heartbeats if they were found

within 128 ms around the corresponding R-peak, but the

estimated error in heartbeat event time was below 1 ms for

spatio-temporal filtration with eight channels. We have

performed preliminary tests on recordings with ectopic

beats. These tests indicate that additional functionality will

be needed to fully separate ventricular ectopic beats from

sinus beats. Supraventricular ectopic beats will probably be

detected in the same way as sinus beats.

We investigated the performance of the multi-channel

algorithms in two different situations. The pseudoreal

signals based database recordings were analysed with the

same SNR in all input channels. In this case, the perfor-

mance improved markedly by adding more input channels.

The textile recordings had different SNR in different

channels. In several subjects, the first two ECG channels

were of relatively high quality with low noise levels. There

was no significant improvement in performance when

adding more channels or when the filter length was in-

creased. On the other hand, these results indicate that the

performance did not decrease when more noisy data

channels were added. In smart clothes, the electrodes may

have good contact with the skin at certain times, whereas

they will have poor contact at other times. By using many

textile electrodes and the proposed algorithm, it may not be

necessary to identify data channels of poor quality before

the heartbeat detection. One disadvantage with using many

electrodes is that more data needs to be recorded.

Another disadvantage with adaptive spatio-temporal

filtering is the complexity of the algorithm. Many simple

one-channel algorithms are available that can detect

heartbeats in relatively noisy ECGs but not during tem-

porary signal loss. Spatio-temporal filtering could be used

as a robust reference method when developing simpler

multi-channel algorithms.

The textile recordings were performed with a T-shirt

with integrated textile electrodes and conventional cables

attached to snap buttons. Movement of electrode cables

caused additional disturbances, disturbances that may be

Table 2 Sensitivity and precision for textile ECG recordings from ten healthy subjects

ICA K = 1 K = 20

Number of inputchannels M = 2 M = 4 M = 7 M = 2 M = 4 M = 7 M = 2 M = 4 M = 7

Mean sensitivity 0.963 0.951 0.956 0.966 0.955 0.959 0.981 0.981 0.979

Mean precision 0.965 0.957 0.960 0.964 0.962 0.962 0.983 0.984 0.979

Results are presented for independent component analysis (ICA) and adaptive spatio-temporal filtering with filter length 1 and 20

522 Med Bio Eng Comput (2007) 45:515–523

123



avoided using integrated textile cables. Dry textile elec-

trodes were used and there were no preparations of the

subjects’ skin before putting on the T-shirt. The missed

beats were mainly in the segment where push-ups were

performed and in the less successful recordings from sub-

jects with most chest hair. The effect of body movements

may also be reduced by using other electrode positions than

those used in this T-shirt.

Smart textiles, i.e., clothing with integrated textile sen-

sors have large potential in areas such as clinical moni-

toring, health surveillance, ergonomics, and sports

medicine. The technique enables a heart patient to be

continuously monitored at the clinic or in the patients home

by just putting on a T-shirt including textile electrodes.

Fire-fighters can be provided with smart clothing for con-

tinuous monitoring of vital signs during rescue operations

in order to not expose individuals beyond safe conditions.

Another possible application of smart clothing is moni-

toring of heart rate variability, which can be used to

evaluate the cardiac autonomic modulation during different

experimental conditions as well as during stressful situa-

tions.

5 Conclusions

Multi-channel spatio-temporal filtering may be a suitable

method for heartbeat detection in ECG measurements with

high noise levels and intermittent signal loss, e.g., when

textile electrodes are used in smart clothes. Heartbeat

detection using spatio-temporal filtering can also be ap-

plied to other multi-channel ECG recordings with high

noise levels and/or temporary signal loss in some channels,

such as Holter-ECGs and stress-test ECGs.
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