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Abstract In this paper, a comparative evaluation of

state-of-the art feature extraction and classification

methods is presented for five subjects in order to in-

crease the performance of a cue-based Brain–Com-

puter interface (BCI) system for imagery tasks (left

and right hand movements). To select an informative

feature with a reliable classifier features containing

standard bandpower, AAR coefficients, and fractal

dimension along with support vector machine (SVM),

Adaboost and Fisher linear discriminant analysis

(FLDA) classifiers have been assessed. In the single

feature-classifier combinations, bandpower with

FLDA gave the best results for three subjects, and

fractal dimension and FLDA and SVM classifiers lead

to the best results for two other subjects. A genetic

algorithm has been used to find the best combination

of the features with the aforementioned classifiers and

led to dramatic reduction of the classification error and

also best results in the four subjects. Genetic feature

combination results have been compared with the

simple feature combination to show the performance

of the Genetic algorithm.

Keywords Brain–Computer interface (BCI) �
Adaboost � Support vector machine (SVM) � Adaptive

auto regressive (AAR) � Fisher linear discriminate

analysis (FLDA) � Fractal dimension (FD) �
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1 Introduction

In order to assist disabled people who suffer from motor

impairment like amyotrophic lateral sclerosis (ALS)

patients, an alternative communication channel can be

provided by a brain computer interface (BCI) system

[20]. BCI systems can enable the patients to move the

cursor on a screen [20, 23], or grasp a glass by sending

the signal commands to their orthesis, prosthesis, or

functional electrical stimulation unit [14]. An optimistic

view for the future of this research is that a BCI system

might someday help tetraplegic patients with spinal

cord injuries to move their limbs by functional electrical

stimulation (FES) controlled by thought. This interest-

ing application is in its primary stages since the classi-

fication rate even between two imagery tasks is still

insufficient in some subjects. To increase the perfor-

mance of BCI systems, much research has been done by

BCI research groups. In this way, the Graz-BCI re-

search group has employed discriminative features

based on second order statistics such as bandpower [14],

adaptive autoregressive coefficients (AAR) [18], and

wavelet coefficients [19], and also combination of fea-

tures by distinction sensitive learning vector quantiza-

tion (DSLVQ) [8] with well-known classifiers

containing Fisher’s linear discriminant analysis (FLDA)

[13], finite impulse response multi layer perceptrons

(FIRMLP) [2], linear vector quantization (LVQ) [17],
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hidden Markov models (HMM) [8], and minimum dis-

tance classifiers [18] to improve the classification rate

between the various movement imagery tasks. Deriche

and Al-Ani [3] selected the best feature combination

among the variance, AR coefficients, wavelet coeffi-

cients, fractal dimension by modified mutual informa-

tion feature selection (MMIFS) method. He showed

that a combination of the aforementioned features is

more efficient than each of them individually [3]. To

accumulate the scattered results, a comprehensive

assessment for well-known features and classifiers on

the same data set is deemed necessary. The aim of this

paper is to compare different feature extraction and

feature classification methods based on electroenceph-

alogram (EEG) data from two motor imagery tasks in

the synchronous mode. It should be considered that

most BCIs operate in a cue-based (synchronous or

system-driven) mode where the subject can change his

or her mental task only in certain intervals that are

determined by the system. Ideally, a BCI system should

be designed to operate in a self-paced (asynchronous or

user-driven) mode. Such systems, however, are much

more difficult to realize, which is the reason that most

present-day BCI systems employ a synchronous para-

digm. The data investigated in this study was also re-

corded according to a synchronous paradigm.

Brain activity associated with motor imagery can

result in characteristic EEG-patterns as e.g. ERD/ERS

[19] and these patterns should be best captured by the

extracted features. It has been shown [19] that in the

pre-motor-sensory area (the area that we catch the

EEG signals), EEG of specific imagery tasks has sim-

ilar patterns with the EEG of real movement of that

specific task. Therefore, there is no difference between

imagination of a normal subject and a disabled subject.

In order to find an informative feature along with a

reliable classifier, a comprehensive assessment has

been done in this paper. Features such as bandpower

(BP), AAR coefficients, and fractal dimension (FD)

along with classifiers including support vector machine

(SVM), Adaboost and FLDA are evaluated. Further-

more, in order to find the best combination of the

features for the mentioned classifiers, a genetic algo-

rithm (GA) has been used. The reminder of this paper

is a short description of the aforementioned features,

then an introduction of the classifiers, and finally a

presentation of the results followed by a discussion.

2 Subjects and data acquisition

Five subjects (L1, o3, o8, g8, and f8), familiar with the

Graz-BCI, participated in this study. Subjects are

ranged from 25 to 35 years old. Each subject sat in a

armchair about 1.5 m in front of the computer screen.

Three bipolar EEG-channels were recorded from six

Ag/AgCl electrodes placed 2.5 cm anterior and 2.5 cm

posterior to the standardized positions C3, Cz and C4

(international 10–20 system). The EEG was filtered

between 0.5 and 50 Hz and recorded with a sample

frequency of 128 Hz.

Graz-BCI training paradigm The training consisted

of a repetitive process of triggered movement imagery

trials. Each trial lasted 8 s and started with the

presentation of a blank screen. A short acoustical

warning tone was presented at second 2 and a fixation

cross appeared in the middle of the screen. At the same

time, the trigger was set from 0 to 1 for 500 ms. From

second 3 to second 7, the subjects performed left or

right hand motor imagery according to an arrow (cue)

on the screen. An arrow pointing either to the left or to

the right indicated the imagination of a left hand or

right hand movement. The order of appearance of the

arrows was randomized and at second 7 the screen

content was erased. The trial finished with the

presentation of a randomly selected inter-trial period

(up to 2 s) beginning at second 8. Figure 1 shows the

timing scheme. Three sessions were recorded for each

subject on three different days. Each session consisted

of three runs with 40 trials each.

3 Feature extraction

The goal of feature extraction is to find a suitable

representation (signal features) of the data that sim-

plifies the subsequent classification or detection of

brain patterns. The signal features should encode the

commands sent by the user, but should not contain or

at least reduce noise or other patterns that can impede

the classification process. To extract discriminative

features, bandpower, AAR coefficients, and fractal

dimension are selected in this paper. These are de-

scribed briefly below.

Bandpower The EEG contains different specific

frequency bands, that is standard alpha (10–12 Hz) and

beta (16–24 Hz) bands, which are particularly

Fig. 1 Training paradigm
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important to classify the different brain states,

especially for discriminating of imagery tasks. For

this study bandpower features were calculated by

applying a butterworth filter (order 5), squaring of

the samples and then averaging of subsequent samples

(1 s average with 250 ms overlap) [18].

Adaptive autoregressive coefficients AAR

coefficients are extracted from a signal and reflect the

whole variation of the signal. In contrast to the AR

model, AAR coefficients are adapted sample by

sample and therefore [18]. Update coefficient and

model order are two important factors that should be

selected regarding the minimum error of model. An

AAR model describes a signal Yk as

Yk ¼ a1;kYk�1 þ a2;kYk�2 þ � � � þ ap;kYk�p þXk

where Xk is assumed to be a white noise process, a1,k ,

..., ap,k are the time dependent autoregressive

parameters, and Yk–1, ..., Yk–p are the past p samples

of the time series, i.e. the model order. Writing the past

samples and the estimated AAR parameters as vectors

Yk ¼ ½Yk�1 Yk�2 � � �Yk�p�T

âk ¼ ½â1;k â2;k ::: âp;k�T

where the T denotes vector transpose and the ‘hat’

notation indicates estimated values, the adaptive

estimation procedure can be summarized by the

following equations:

ek ¼ yk � âk�1 Yk�1

kk ¼
Ak�1Yk�1

YT
k�1Ak�1 Yk�1 þ 1

Xk ¼ Ak�1 � kT
k YT

k�1Ak�1

Ak ¼ Xk þ
uc � I � traceðAk�1Þ

p

âk ¼ âk�1 þ kT
k ek

ek is the one-step prediction error, Kk is the Kalman

gain vector, and I is the identity matrix. For this study a

sixth order model and an update-coefficient uc of

0.0085 were used.

Fractal dimension (FD) BP and AAR features are

based on the second order statistic of the signal and

thus they describe the spectral information in the data.

FD, however, captures nonlinear dynamics in the

signal. Although all features here try to capture the

underlying neurophysiological patterns in the signal,

fractal dimension (FD) has a direct relationship with

the entropy of the signal, and in turn the entropy is

related to the amount of information inside a signal.

FD determines the amount of complexity of a signal.

More fluctuation in the attractor shape is reflected by a

higher value of fractal dimension. There are several

methods to calculate the FD [5]. In this study we

employed Higuchi’s method, which can be calculated

as follows: Consider a signal containing N samples

(x(1), x(2),...,x(N)). Construct k new time series xk
m

(embedded space) as:

xk
m¼ xðmÞ;xðmþkÞ;xðmþ2kÞ;...;x mþ N�m

k

� �
k

� �� �

for m¼ 1; 2;... , k.

where m indicates the initial time value, and k indicates

the discrete time interval between points. For each of

the k time series xm
k , the length Lm(k) is computed by:

LmðkÞ ¼
P ðN�mÞ=k½ �

i¼1 xðmþ ikÞ� xðmþði�1ÞkÞj jðN�1Þ
ðN�mÞ=k½ �k

for m¼ 1, . . . ,k.

where N is the total length of the data sequence x

and (N–1)/[(N–m)/k]k, is a normalization factor. An

average length of every sub-sequence is computed as

the mean of the k lengths Lm(k). This procedure is

repeated for the different values of k (k = 1,2,

...,kmax), that kmax varies for each k. There is no

analytical formula for determining the number k,

therefore, it has to be found experimentally. An

average length for each k is obtained which may be

expressed as proportional to k–D, where D is the

signal’s fractal dimension. In order to find the best

value of k, from the log–log plot of ln(L(k)) versus

ln(1/k) one obtains the slope of the least-squares

linear best fit. The fractal dimension of the signal, D,

is then calculated as:

D ¼ log½LðkÞ�= logð1=kÞ

4 Classification

Classification is a very important component in brain

computer communication systems. In this study, sup-

port vector machine, linear discriminant analysis, and

Adaboost were employed to discriminate between left

and right movement imagery. A short description of

these methods is given in the following:
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Support vector machine (SVM) SVMs were

proposed by Vapnik [22] and have been used

successfully in many applications [1]. There are linear

and non-linear SVMs that can classify the input

patterns based on minimum error risk criterion. To

increase SVM capability, a nonlinear kernel is used to

map the data to a high dimensional space which is

more separable according to the cover’s theorem.

Among different kernels, Gaussian kernels have a

strong generalization property, and therefore were

selected for our research. The variance of Gaussian

kernels is a very important factor in the SVM

performance and was determined by cross validation

on the training set. To optimize the decision boundary,

the following relation should be optimized.

QðaÞ ¼
XN

i¼1

ai �
1

2

XN

i¼1

XN

j¼1

aiajdidjkðxi; xjÞ

kðx; xiÞ ¼ uTðxÞuðxiÞ

where u(x) is the kernel function and ai denotes the

Lagrange coefficients which are bounded by the

limitation parameter c. Limitation parameter c plays

an important role in the performance of SVM because

it is related inversely to the total error. After finding

the value of alpha, the weight vector which classifies

two classes is determined by

w ¼
XN

i¼1

aidiuðxiÞ:

In order to perform the required calculations, the

freely available SVM3 toolbox [11] was used in this

study.

Fisher linear discriminant analysis (FLDA) The

goal of FLDA is to find a direction in the feature space

along which the distance of the means relative to the

within-class scatter, described by the within-class

scatter matrix SW, reaches a maximum, thereby

maximizing the class separability. This goal can be

achieved by maximizing the following criterion with SB

the between scatter matrix:

JðWÞ ¼ WTSBW

WTSWW
:

The direction w that maximizes this criterion can be

shown to be [4]

W ¼ S�1
W ðm1 �m2Þ

where m1 and m2 are the means for the two classes.

Fisher discriminant linear analysis (FLDA) is a sub-

optimal classifier for two classes when their distribu-

tions are Gaussian (http://www.ece.osu.edu). FLDA

has been found to produce very good and robust

classification performance in a number of BCI related

publications [20, 23].

Adaptive boosting (Adaboost) The Adaboost

method was proposed by Schapire (http://

www.boosting.org) in 1996. The principal of the

Adaboost is that a committee machine can adaptively

adjust to the errors of its components—the so-called

weak learners. The classification rate of each weak

learner should exceed more than 50% [15]. Neural

networks with one hidden layer neuron (with the

sigmoid activation function) are selected as weak

learners. First, the first neural network (weak learner)

trains with the equal weight vector of input samples:

DiðiÞ ¼ 1=N ði ¼ 1; . . . ;NÞ;

where N is the number of input samples and D is the

weight vector of the ith sample in the first iteration.

Then the next weak learner trains, but the weight

vector of the samples which were misclassified by the

previous weak learner is changed by the following

relation:

ai ¼ 0:5 log
1� errorðiÞ

errorðiÞ

Dtþ1ðiÞ ¼
DtðiÞe�aiFðxðiÞÞyðiÞ

zt

where zt is a normalization factor chosen so that Dt+1

will be a distribution. ai is the weight of the ith weak

learner output, y(i) is the label of the ith sample, and

Ft(x) is the function of the tth weak learner. For each

time point, we have a boosting process which increases

the weight vector D(i) of those samples that have a

bigger error. These samples are considered in the next

iteration with more sensitivity to learn the next weak

learner. We expect that the next weak learner is

trained so that the errors for the previous misclassified

samples decrease in this stage. This iterative procedure

repeats till the time that n reaches T (the maximum

value considered for the number of weak learners).

Finally, the output u(x) is a weighted sum of the weak

learners:

/ðxÞ ¼ Signðf ðxÞÞ ¼ Sign
XT

t¼1

atFtðxÞ
 !

The tth weak learner (classifier) has a vote at, and the

final outcome of the classifier is a weighted vote of the

weak learners. For this classifier, all of the feature

values must be normalized in the interval [–1,1]. Thus

406 Med Bio Eng Comput (2007) 45:403–412
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the features were normalized by their Euclidian norm.

A schematic diagram of the mentioned Adaboost is

shown in the Fig. 2.

5 Evaluation of classification performance

Features were extracted from five subjects and applied

to the FLDA, SVM and Adaboost classifiers. The

classifiers were evaluated by ten times, ten folds cross

validation. Best classifiers from the evaluation phase

were selected and applied to the test data. It is

important to note that the parameters of all methods

for feature extraction and classification were adjusted

solely on the training data. Totally 360 trials were

available for each subject that 240 trials were selected

as train features for cross validation process and the

rest (120 trials) are selected for testing the methods.

6 Genetic algorithm

Genetic algorithms are widely used in the different

fields for optimization [9]. In our case, the best com-

bination of the features was found by a genetic algo-

rithm. For combining the mentioned features (BP with

two dimensions, AAR with six and FD with one for

each channel) were gathering in one feature matrix.

Then, for three channels our feature vector has a

dimension of 27. The weights encoded in the chromo-

somes of the GA were used to linearly combine the

features. The cross-validated classification rate calcu-

lated from the training set was used as fitness function.

The characteristics of the standard genetic algorithm

[9] were: mutation rate 3%, roulette wheel selection,

one point cross over, 500 generations, and the number

of chromosomes for the initial population was 50 [11].

7 Results

The classification results are generally produced in two

different ways. In the first manner, one of the features

(like BP or FD or AAR) is applied to one of the

classifiers (such as FLDA or SVM or Adaboost) re-

ferred to here as the combinations of single feature-

classifier. In the second way, all of the mentioned

features by two methods are applied to the classifiers.

In the first method, all of the mentioned features are

arranged in one feature vector without any weight

(simple combination of the features) while in the sec-

ond method, feature vectors are weighted by genetic

algorithm (genetic combination of the features) and all

of these two types of combination of the feature vec-

tors are applied to the classifiers. In the single feature-

classifier combinations, bandpower with SVM and

FLDA led to the best results for all of our subjects in

the cross validation phase. But in the test phase when

the best classifiers, determined by the cross validation

phase, were applied to the corresponding features of

the unseen test data, the results were slightly changed.

All of the test results with the whole of mentioned

combinations for all of our subjects are shown in Ta-

ble 1. The results include the minimum classification

error and the latency of minimum error through our

paradigm. Also, the classification results through our

paradigm for all of our subjects in the single feature-

classifier and combination of the features are shown,

respectively in Figs. 3 and 4. In the test phase, the re-

sults of single feature-classifier despite the similarity of

FLDA and SVM results in the cross validation phase,

FLDA shows better and more reliable performance

than SVM for four subjects but for the fifth case (f8),

SVM with fractal dimension led to zero percent error.

Table 1 indicates that the combination of BP and

FLDA gives better results than other combinations for

the subjects o3, o8 and g8. FD with FLDA shows a

better result than BP and FLDA combination for the

subject L1. In the second approach, simple feature

combination without any weight (FC) and feature

combination with genetic algorithm (FCGA) methods

are evaluated. Genetic combination of the mentioned

features showed better results for four cases (o3, o8, g8,

and f8). In the case of o3, feature combination results

showed a considerable reduction of classification error

in comparison with the individual features with the

SVM and Adaboost classifiers, but the combination of

Fig. 2 A committee of the neural networks generated using
Adaboost. F1, F2, and FT are the output of weak learners and the
output u(x) is the total output of the Adaboost [15]
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FLDA and BP gave the best results in case of o3. In the

case of L1, feature combination by the genetic ap-

proach showed a drastic error reduction with FLDA

and Adaboost classifiers. For the case o8, a remarkable

decrease in the error rates was found by applying the

classifiers to the genetic combination of the features.

Also, for the case o8, simple combination of the fea-

tures with Adaboost led to a remarkable improvement.

In the case g8, BP with both FLDA and SVM led to the

best results for the single feature-classifier combina-

tions. In the case g8, when genetic combination of the

features is applied to the different classifiers, classifi-

cation error was decreased drastically. For the case f8,

fractal dimension along with the SVM showed the

dramatic decreasing in the error rate (zero) for the

single feature-classifier and in the case of combination

of the features, genetic combination showed the same

results (zero percent error).

8 Discussion

Several informative features along with well-known

classifiers have been evaluated in this research. Also,

the combination of these features in two ways has been

considered to find the best result for each classifier. In

the first step, combination of single feature-classifier is

analyzed and in the second step, results of simple and

genetic combination of the features with the men-

tioned classifiers are assessed.

Table 1 indicates that for the three cases of o3, o8,

and g8, the best single combination for recognizing the

mentioned imagery tasks is BP and FLDA, but this is

not the best combination for the case L1 and f8. The

reason is that the standard alpha (10–12 Hz) and beta

(16–24 Hz) bands are not necessarily optimal for all of

the subjects. In fact, these bands should be optimized

for each subject. BP in alpha and beta bands is directly

associated to the event-related desynchronization

neural networks in the brain [6] and therefore BP is a

promising method for the BCI based on oscillatory

activity. Moreover, both BP and AAR are based on

second-order statistics. FD with FLDA for the case L1

and FD with SVM for the subject f8 have shown better

results than all the other single combinations. Many

scientific publications have shown that the EEG signal

shows a chaotic behavior, therefore, FD is another

useful feature for the classification of brain patterns,

which has been rarely considered for BCI applications.

FD is a promising method in other fields of EEG, such

as the detection of epileptic seizures in the EEG [7]

and sleep analysis of EEG data [10]. This classification

result for L1 and f8 may lead to the assumption that the

EEG of these subjects is more complex and chaotic

than three other subjects; therefore FD is more infor-

mative than the two other features.

Table 1 Minimum error rates
and the corresponding
latencies for the subjects L1,
o3, o8, g8, and f8

Subject Feature FLDA SVM Adaboost

Error (%) Latency (s) Error (%) Latency (s) Error (%) Latency (s)

L1 BP 28.57 4.75 27.38 4.25 33.33 4.25
L1 AAR 26.19 4.75 26.19 4.75 22.62 4.00
L1 FD 20.24 4.00 23.81 4.00 25.00 4.00
L1 FC 36.90 4.00 36.90 4.25 29.76 4.25
L1 FCGA 14.33 4.75 25.00 4.25 15.21 4.75
O3 BP 9.59 5.75 19.8 4.50 24.66 4.50
O3 AAR 28.77 4.50 30.14 6.00 30.14 6.00
O3 FD 21.92 4.25 26.03 4.25 30.14 5.50
O3 FC 38.10 4.75 28.75 5.00 30.50 4.75
O3 FCGA 13.69 5.00 15.07 5.50 12.32 5.00
O8 BP 17.14 6.25 21.90 4.00 20.00 4.00
O8 AAR 23.81 4.25 27.62 4.50 25.71 6.00
O8 FD 22.86 5.00 21.90 5.00 27.38 3.75
O8 FC 14.29 4.50 18.10 5.75 12.38 4.75
O8 FCGA 13.33 5.50 12.38 5.50 13.33 5.50
G8 BP 16.43 6.25 16.43 5.00 20.71 5.00
G8 AAR 22.14 6.25 30.00 5.75 27.14 6.00
G8 FD 22.86 5.50 21.43 5.50 27.86 5.50
G8 FC 23.57 5.25 31.43 6.25 27.86 4.75
G8 FCGA 11.14 5.00 12.86 4.75 18.70 6.25
F8 BP 10.10 5.75 6.12 5.75 10.20 5.75
F8 AAR 15.00 6.50 15.00 8.00 18.00 5.75
F8 FD 12.24 6.25 0.00 5.25 4.00 6.25
F8 FC 15.60 5.50 14.60 6.50 19.00 6.50
F8 FCGA 09.61 5.50 0.00 5.75 2.50 6.00
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Fig. 3 These figures show the test results (classification results
on unseen test data) for the whole time frame of the paradigm
and for the subjects L1, o3, and o8. These results are derived by
applying FLDA, SVM, and Adaboost classifiers to the band-

power, AAR coefficients, and fractal dimension features.
a–e show the results of Adaboost, f–j show the results of SVM
and k–p show the results of FLDA on the mentioned features for
the cases L1, o3, o8, g8 and f8, respectively
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Fig. 4 These figures show the test results (classification results
on unseen test data) for the whole time frame of the paradigm
and for the subjects L1, o3, and o8. These results are derived by
applying FLDA, SVM, and Adaboost classifiers to the band-
power, AAR coefficients, and fractal dimension features.

a–e show the results of Adaboost, f–j show the results of SVM
and k–p show the results of FLDA on the simple and genetic
feature combinations for the subjects L1, o3, o8, g8, and f8,
respectively
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Another crucial factor is the latency of the mini-

mum error in the cue-based BCI. For instance, in on-

line BCIs, the subjects should be provided with a

reliable and stable feedback of their performance as

soon as possible, because such a feedback can im-

prove the overall performance of a BCI system con-

siderably. Therefore, not only the classification

performance but also how fast the minimum error

rate can be achieved (latency) is important. If we

consider these two criteria together, FLDA and BP in

the case of o3 do not yield the best performance,

because the minimum error rate occurs at second

5.75. The significant property of FD is that it reports

the changes in the mental state fast enough with an

acceptable classification rate. It is important to note,

that all subjects of this study were already experi-

enced in BCI training. In fact, they participated in

previous BCI feedback training sessions based on BP

features. It might be possible, that a specific feedback

training based on FD would also change the classifi-

cation results in favor of FD.

AAR coefficients are often used in BCI applica-

tions. Sample by sample adaptation of the coefficients

makes this feature especially suitable for online real-

izations, because no further parameters such as win-

dow size and form of the window have to be

determined. The combination of AAR and FLDA in

all cases gives a fast report in the EEG mental changes,

but the error rates are high compared to other com-

binations of feature and classifier.

In the second step when the features are combined

in the two different ways (simple and genetic combi-

nations), the results were dramatically improved ex-

cept in the case o3. Also, in the case f8, genetic

combination has the same result with FD and SVM.

Therefore, it can be claimed that genetic algorithm can

combine and improve (by giving the weight) the posi-

tive discriminative points of the features in order to

increase the classification rate. This concludes our

interpretation of the features behavior.

The classifiers capabilities based on the results of

this study can be summarized as follows: FLDA is

faster than the two other classifiers. In the test phase,

SVM showed a better result than FLDA and for the

case f8, SVM and FLDA results are the same. Com-

pared to FLDA, SVM is more complicated to train.

SVM has some parameters like C (that limits the

Lagrange coefficient) and alpha (variance of Gaussian

kernel), which have to be optimized for the specific

classification task. This selection of the SVM parame-

ters was done by a simple bisectional algorithm, which

found the nearly optimum value in an interval.

Therefore, SVM is more time consuming than FLDA.

SVM with the genetic feature combination showed the

best result for the cases o8 and f8.

In some specific cases when the boundary space

between the classes in the feature space is complicated,

Adaboost can act more efficiently than the two other

classifiers. Adaboost in the cross validation phase is

much more time consuming than FLDA and SVM

because it requires considerable time to train its weak

learners (neural networks) and to find the best value of

T (number of weak learners). We also considered SVM

as weak learner instead of a neural network in the

Adaboost construction, but the results did not change

compared to the normal SVM. A reason may be that

Adaboost can improve the performance of weak clas-

sifiers and it is not suitable for strong classifiers like

SVM.

In the test phase, for the individual combination of

features and classifiers, in the subject o8, Adaboost

behaves similarly to FLDA and SVM, and even in the

case f8, Adaboost showed better results than FLDA.

On the whole, Adaboost showed higher capabilities

when features are combined by genetic algorithm.

Guger et al. [12] has stated that BCI cannot work

for all people and shows that about 10% of all users

cannot achieve control (only 50% accuracy in a sec-

ond-class task, i.e. same performance than random). In

many articles [11, 17], results show that the classifica-

tion rate is not a constant value for all cases and it

depends on many factors such as learning ability of the

subject, intrinsic characteristics of subject’s EEG, etc.

For instance, some subjects have weak alpha and beta

bands amplitude although they can have a good

learning ability but the intrinsic characteristics of their

EEG do not let them to be considered as good cases

for BCI application. No article could prove that one

feature is good for all BCI subjects. Some features

work very well with some classifiers in some subjects

but in some other subjects, other features might work

better. Therefore if we add some other subjects, the

results of features and classifiers in the different sub-

jects will not definitely confirm each other.

To summarize, it can be stated that the combination

of features produced by different feature extraction

methods can lead to improved classification results.

Moreover, the results suggest that incorporating com-

plexity measures such as fractal dimension in the pool

of features suitable for BCI is useful because of the

improved achievable classification latency. Therefore,

fractal dimension is a good alternative for those cases

that their EEG signals have strong chaotic behaviors

and their alpha and beta band changes are not signifi-

cant. Generally, combination of the features is sug-

gested because this reflects more complete information
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from different aspects and this combination can be

optimized by some methods such as genetic algorithm

or simulated annealing for the classification tasks. Al-

though SVM and Adaboost have shown remarkable

performance in various applications, for a two class

cue-based BCI, Fisher’s LDA is preferable. This is

because of its robustness and simplicity.

In the future researches, combination of the classi-

fiers via boosting method is suggested in order to have

more generalization and robustness and also improve

the classification rate between the imagery tasks. Be-

cause, when a classifier cannot distinguish the features

of different classes, that classifier for that database can

be considered as a weak learner. Even efficient classi-

fiers like SVM or LDA for some complex databases

(like EEG features of a hard case) are considered as

weak learners. Boosting technique can improve the

performance and generalization of a weak learner

(classifier) and it has been statistically proved that by

adding the number of weak learners, error rate expo-

nentially decreases [16, 22]. Nevertheless, one of the

efficient factors, which play an important role in the

generalization of the results, is to have more recording

from each subject that is a very time consuming and

expensive task.
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