
Abstract We present an inertial sensor based moni-

toring system for measuring upper limb movements in

real time. The purpose of this study is to develop a

motion tracking device that can be integrated within a

home-based rehabilitation system for stroke patients.

Human upper limbs are represented by a kinematic

chain in which there are four joint variables to be

considered: three for the shoulder joint and one for the

elbow joint. Kinematic models are built to estimate

upper limb motion in 3-D, based on the inertial mea-

surements of the wrist motion. An efficient simulated

annealing optimisation method is proposed to reduce

errors in estimates. Experimental results demonstrate

the proposed system has less than 5% errors in most

motion manners, compared to a standard motion

tracker.

Keywords Inertial measurement Æ Stroke

rehabilitation Æ Motion tracking Æ Upper limb Æ
Simulated annealing

1 Introduction

Stroke is one of the most important causes of dis-

ablement among elderly people. In the UK, around

130,000 people each year suffer a stroke, and one-third

of them have a severe disability due to the deteriorated

motor function in arms and legs. Evidence shows that

additional early exercise training may be beneficial [4].

Independent and repetitive exercises could directly

strengthen arms and legs, and may help patients re-

cover more quickly.

Classical treatments primarily rely on the use of

physiotherapy, which depends on the trained therapists

and their past experience. This suggests that traditional

methods lack objective standardised analysis for eval-

uating a patient’s performance and assessment of

therapy effectiveness. To address this problem, trajec-

tories during the rehabilitation course after stroke have

to be quantified, and hence appropriate instruments for

quantitative measurements are desirable to capture

motion trajectories and specific details of task execu-

tion. Recently, research has commonly addressed on

measurements of upper limb movements. Since upper

limbs are frequently used to contact and manipulate

objects [5], stroke recovery of functional use of upper

limbs is a primary goal of rehabilitation.

Successful examples have existed in literature for

the applications of inertial sensor based systems in the

measurements of upper limb movements [12, 14].

Inertial sensors are sourceless and are able to provide

accurate readings without inherent latency. Hence,

they are a better option than other sensors in our

application. For example, they are able to cope with

the occlusion problem bound in the optical tracking

systems. However, accumulating errors (or drifts) are
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usually found in the measurements by inertial sensors.

Therefore, in this study, we intend to develop an

inertial based motion detector, which can be used to

properly locate the position of the upper limb in space

without or with less drifts.

2 Methods

2.1 System description

We here propose a portable motion tracking system

that uses a commercially available MT9-B inertial

sensor (Xsens Dynamics Technologies, Netherlands).

This approach actually is the combination of sensor

fusion and optimisation techniques. This design en-

ables us to estimate the arm motion in a rehabilitation

program with a minimum requirement of inertial sen-

sors (low costs) and higher accuracy. The system is

implemented in the environment of Visual C++, where

the computer is a Media PC with a VIA Nehemiah/

1.2 GHz CPU. The connection between the computer

and MT9 sensors is wireless (using Bluetooth devices)

via a digital data bus called ‘‘XBus’’ (placed on the

waist). The designed motion tracking system will be

integrated within a home-based rehabilitation system

illustrated in Fig. 1.

The positioning algorithm is summarised as follows:

using the double buffers on-board, inertial measure-

ments corresponding to human arm movements are

consistently generated and then filtered to remove high

frequency noise. The wrist position can be obtained by

double integrating the measured accelerations. A

kinematic model will exploit this outcome, combining

the computed Euler angles, and then provide the po-

sition of the elbow joint. Since the positioning of the

wrist and elbow joints is conducted in a sense of inte-

gration, the drift problem will unlikely be avoided.

Therefore, a Monte Carlo Sampling based optimisation

technique, simulated annealing, is adopted in order to

attract the estimates near to the true positions given a

physical constraint equation.

2.2 Kinematic modelling

The human arm motion could be approximated as an

articulated motion of rigid body parts. Regardless of its

complexity, one still can characterise human arm mo-

tion by a mapping describing the generic kinematics of

the underlying mechanical structure. In this paper, we

mainly focus on the design of a two-joint (shoulder and

elbow) model. However, to respond the request of

learning dynamics of fingers, a more complicated

model with the finger joints will be launched in a future

study.

Human arm motions can be represented by kine-

matic chains. The kinematic chain of our concern

consists of four joint variables, i.e. three for the

shoulder joint and one for the elbow joint. Our system

is different from other existing 7 degree-of-freedom

(DOF) limb models, i.e. [11]. To obtain the positions of

the joints, an analytic formulation will be sought, fol-

lowed by optimal numerical rendering. For the purpose

of clarification, forward kinematics of the arm motion

will be discussed next.

The forward kinematics specify the Cartesian posi-

tion and orientation of the local frame attached to the

human arm relative to the base frame which is attached

to the still joint (shoulder). They are provided by

multiplying a series of matrices parameterised by joint

angles. Figure 2 illustrates a three-joint human arm,

where there are two segments linking these three joints.

An inertial sensor is placed near to the wrist joint.

To simplify the position estimation, we further assume

that the distance (L1) between the shoulder and elbow

joints has been known. The same assumption is also

applied to the distance (L2) between the elbow and

wrist joints. In practice, these two parameters can be

obtained with careful anthropometric measurements.

Consider a rigid body moving in the world (or earth)

frame. The world frame is n, and the sensor body frame

is b. D represents the position displacement vector

between the origin of the n-frame and that of the

b-frame. Let the coordinates of the elbow joint and theFig. 1 Illustration of the designed rehabilitation system
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sensor be denoted by (x1, y1, z1) and (x2, y2, z2),

respectively. Also, we suppose that xb is the angular

rate vector transformed from the n-frame to the b-

frame, and ab is the tri-axial non-gravitational accel-

eration of the b-frame.

Rb
n, a 3·3 rotation matrix, represents the orientation

transformation from the b-frame to the n-frame vn=Rb
nvb,

where vn and vb stand for the linear velocity vector of the

sensor in the n- and b-frames, respectively. It is recogni-

sed that Rb
n at the next instant, namely Rb

n¢, can be up-

dated using the continuous-time differential equation [2]:
_R

n

b ¼ Rn
bS xb
� �

; where S xb
� �

� xb�
� �

is the skew-

symmetric matrix that is formed using the cross-product

operation. In fact, the new rotation matrix Rb
n¢ will be

equivalent to the previous Rb
n plus _R

n

b multiplied by a

time interval.

Once the rotation matrix has been updated, then the

acceleration readings in the n-frame will be obtained as

follows an=Rb
nab+Gn, where Gn=[0, 0, 9.81]T m/s2 is the

local gravity vector whose effect on the acceleration

needs to be eliminated [3].

Finally, we have the sensor’s velocity and position in

the n-frame by integrations as

vn ¼
R t1

0 andt and Dn ¼
R t1

0

R t1
0 andt where t is time and

t1 is the present instant.

Using the kinematic models proposed in [13], we can

derive the positions of the elbow joint and the sensor.

Suppose that /x, /y and /z are the Euler angles of the

sensor around x-, y- and z-axis (in the frame originated

at the elbow joint), respectively. The position of the

sensor is represented as follows

x2; y2; z2½ �T
���
tiþ1

¼ x2; y2; z2½ �T
���
ti
þ
Ztiþ1

ti

Ztiþ1

ti

awdt ð1Þ

where ti and ti+1 are two instants, and aw is a linear

acceleration vector from the inertial sensor attached to

the forearm and 1 cm away from the wrist joint (see

Fig. 3).

The solution for the position of the elbow joint is

obtained as a ‘‘piecewise’’ function [13], which can be

presented as follows: if /y ¼ � p
2 ; then

x1 ¼ x2 ð2Þ

When � p
2

x1 ¼ x2 � L2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2ð/zÞ þ sin2ð/xÞ sin2ð/zÞ

sin2ð/xÞ sin2ð/zÞ þ 1
cos2ð/yÞ

vuut ð3Þ

Otherwise, if p
2

x1 ¼ x2 þ L2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2ð/zÞ þ sin2ð/xÞ sin2ð/zÞ

sin2ð/xÞ sin2ð/zÞ þ 1
cos2ð/yÞ

vuut ð4Þ

The solutions for y1 and z1 will be available as

y1 ¼ y2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2

2 � ðx2 � x1Þ2
q

cosð/xÞ

z1 ¼ z2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2

2 � ðy2 � y1Þ2
q

sinð/yÞ

8
><

>:
ð5Þ

Clearly, the estimation of the elbow position relies on

the estimated position of the sensor. Empirical evi-

dence shows that the estimated 3-D positions using

Eq. 1 usually suffers from drifts [12]. Therefore, we

here need to launch a study to eliminate or minimise

the unexpected errors.

2.3 Error minimisation by fast simulated annealing

We here attempt to challenge the problem where the

used accelerometers and gyros are sensitive to trans-

lational accelerations. If an erroneous acceleration or

orientation is sampled, then the error will be accumu-

lated due to the required integration and eventually

deteriorates the accuracy of the later episodes. This has

happened if errors occur in the estimation of the wrist

position, then they will be brought forward to the

computation of the elbow-joint position. Classically,

model based optimal filtering approaches, e.g. Kalman

filter, can be used to estimate the arm position by
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Fig. 2 Kinematics of a three-joint human arm
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fusing the detected accelerations and orientations with

physical restrictions. However, these methods cannot

be justified in the presence of non-Gaussian errors.

Further, parameters of the filters need to be tuned in

order to fit different circumstances. Hence, our aim is

to develop a motion detector that is adaptive to dif-

ferent environments and automatically runs with stable

performance in accuracy and reliability.

Recall that the distance between the elbow and

shoulder joints has been known as L1. Assuming that the

shoulder joint is the origin of the base frame, then we

shall have the Euclidean distance constraint as x1
2+y1

2+z1
2

– L1
2 fi 0. A similar constraint equation can be deduced

for x2, y2, and z2 (L2 is used instead). Irregular overes-

timates or underestimates due to noise or erroneous

measurements can lead to x2
1 þ y2

1 þ z2
1 � L2

1

�� ��� 0:

Indeed, a generic generalised format for the distance

constraint is yielded as follows:

E x1; y1; z1ð Þ / argmin x2
1 þ y2

1 þ z2
1 � L2

1

� �
ð6Þ

To pursue a global solution to Eq. 6, an efficient

simulated annealing by Penna [10] is adopted with the

given set of measurements and the physical con-

straint. Simulated annealing is analogue to a ther-

modynamic process. The technical key for annealing

is to ensure a low energy state to be reached. The

search of a global minima involves the comparison of

the energies of two consecutive random conformations

[6]. The states at steps i+1 and i are given by vi+1 and

vi, respectively, where vi is a 6-D vector that includes

the tri-axial position of the wrist and the tri-axial

angular changes to be optimised. vi+1 and vi are linked

together by vi+1=vi+Dvi, where Dvi is a random per-

turbation of the six variables (coordinates of the two

joints). This random perturbation allows vi to gradu-

ally approach to the desired state ~viþ1: In practice, a

proper random perturbation falls in the range of |0.01,

0.1| cm.

The optimisation of using simulated annealing starts

from a set of initial estimates of parameters (here

positions of the elbow joint and the sensor), and then

adjusts their values during the iterative process. It is

helpful to improve convergence speed if the initial

estimates are close to the finals.

To reach this purpose, we use the iterative Leven-

berg–Marquardt (L–M) algorithm to find proper

starting positions (x2_0, y2_0, z2_0): we can take the

derivative of E(x1, y1, z1) with respect to each of the

parameters, e.g. x2, y2, and z2, and sets each to zero.

The required derivatives in the iteration of L–M are

yielded as

@E
@x2
¼ 2x1 þ 2y1 x2�x1ð Þ cos /xð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

L2
2
� x2�x1ð Þ2

p

@E
@y2
¼ 2y1 þ

2z1 y2�y1ð Þ sinð/yÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2

2
� y2�y1ð Þ2

p

@E
@z2
¼ 2z1

8
>>><

>>>:

ð7Þ

Once the starting positions have been found, we are

then able to perform the optimisation using the

established simulated annealing strategy. The entire

optimisation algorithm is shown in [13]. This combi-

nation expectedly leads to final results accurately and

faster as the initial estimates have been driven towards

the final settlement. In practice, iteration numbers are

normally less than 50 before the convergence is

reached.

3 Experimental work

In this section, the performance of the proposed mon-

itoring system consisting of kinematic models and the

simulated annealing algorithm is in comparison to that

of the standard motion tracking system, CODA CX1.

As a vision based system, CODA picks up emitted

signals from the active markers mounted on the objects.

Fig. 3 Experimental set-up in
evaluation (the sensor and
markers are attached to the
arm using adhesive tapes)

482 Med Bio Eng Comput (2006) 44:479–487

123



At a 3-m distance, this system has less than 3 mm in all

axes for peak-to-peak deviations from actual position.

3.1 Experimental set-up

Before the evaluation starts, an experimental envi-

ronment needs to be set-up. Figure 3 illustrates a

subject sitting in front of the CODA system, while a

MT9 sensor and three CODA markers are rigidly at-

tached to his arm. The distance between the subject

and the CODA system is 2 m. The viewing direction of

the cameras is aligned with the z-axis of the world

coordinate system, and the x-axis is vertical to the

floor. In order to avoid relative motion, a marker is

fixated on the MT9 sensor while facing the cameras.

For direct comparison, two engaged systems use the

sampling rate of 100 Hz. In order to properly interpret

the outcomes, it is desirable to align these two systems

in the world coordinate system. Alternatively, the

transformation between the two trackers needs to be

discovered. Once the measurements from these two

tracking systems have been registered, then the

estimation using the proposed tracker will directly

represent the real movements of the human upper limb

in 3-D space.

To conduct this system alignment or calibration, we

consider a 3-D coordinate transformation between

these two systems:

PMT9ðkÞ ¼ PCODAðkÞRþ T ð8Þ

where k is the trial number, PCODA is the sensor posi-

tion estimated by the CODA system, PMT9 by our

proposed system, R is a rotation matrix and T is a

translation vector (R and T are to be estimated). The

following strategy is thus applied: with the set-up shown

in Fig. 3, a male subject is asked to move his arm

nearer-to-further by following a straight line (about

15 cm) on the surface of a desk in front of him. We then

collect ten samples from the whole trajectory in aver-

aging time. This motion-sampling process is repeated

for five times. To reduce errors in different motion

directions, movements in four axial directions (like a

‘‘+’’ symbol) are subsequently conducted and sampled

as introduced above. We then use the estimated posi-

tion of the overall samples by the two trackers to solve

Eq. 8 for R and T using the singular value decomposi-

tion (SVD) technique. Once R and T have been ob-

tained, then the proposed tracking system is calibrated.

The overall experiments are carried out using two

methods. In the first method, we use the proposed

analytic model to estimate the movements of the

human arm without any further optimisation. In the

second method, based on the outcomes of method 1,

we apply the simulated annealing optimisation to re-

duce the errors existing in the measurements.

In general, we collect three sequences that represent

three different motion manners (Fig. 4): (1) the fore-

arm moves up–down repeatedly but the elbow joint is

kept stationary; (2) the whole arm is allowed to per-

form up–down motion; and (3) the whole arm conducts

left–right movements. The individual motion styles and

their corresponding results, the estimated 3-D wrist-

and elbow-joint positions, will be subsequently intro-

duced in the rest of this section. Before the overall tests

start, each subject has been informed to keep his/her

shoulder still during the motion session. However, it is

still likely that the shoulder position can be changed,

e.g. forward or backward. This leads to over- or under-

estimation of the wrist and elbow position. To avoid

this, the position of the CODA marker placed nearby

the shoulder is used as a compensation to the estimates

by the proposed tracking system.

Four male subjects have been involved in the eval-

uation experiments, and the lengths of their arm seg-

ments are given in Table 1. In our application,

computational errors less than 10% of the entire trav-

elling distance is subjectively permitted. In other words,

errors less than ~ 3 cm will be acceptable in trials.

4 Results

Motion pattern 1 The motion style has been illus-
trated in Fig. 4a. Figure 5 illustrates examples of the
detected accelerations and Euler angle z (the fore-
arm), which show stable consistency. Figure 6 clearly
shows that in this circumstance the simulated
annealing (the second method) improves system per-
formance dramatically: (a) in the estimation of the
wrist position along the x-axis, the first method has the
RMS errors of 9.1 cm against 1.36 cm by the second
method. (b) Wrist position along the y-axis. The first
method has the RMS errors of 5.11 cm, and the sec-
ond method has the RMS errors of 0.94 cm. In (c),
(d), (e) and (f), it has been found that the results from
these two methods are close but obviously the second
method is better.

Motion pattern 2 The motion style has been shown
in Fig. 4b. Partial measurements of accelerations and
Euler angles are shown in Fig. 7. We here focus on the
measurements of the z coordinates of the wrist and
elbow joints, illustrated in Fig. 8. In Fig. 8a, the RMS
errors in the second method have been limited to be
3.1 cm. This accuracy is much better than that of the
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first method, where the RMS errors are 8.1 cm. Sim-
ilar conclusion can be drawn from Fig. 8b.

Motion pattern 3 The motion style is shown in
Fig. 4c. Instead of showing the results in figures, we
rather demonstrate the animation of the motion esti-
mation using the proposed simulated annealing
method, which is shown in Fig. 9. It reveals that the
estimated parameters have matched the actual
movements. For example, the graph on the first col-
umn and the second row shows the current position of
the left arm. Due to the flexion of the elbow (refer to
the graph on the third column and the second row),
the real elbow angle is reduced. The estimated joint
positions by our model (simulated annealing based)
properly reflect this variation in the same graph.

4.1 Experimental statistics

This section allows us to summarise the statistics,

based on long trial experiments and their corre-

sponding results. The trials have been continuously

conducted for 120 s. The Euclidean distance between

the estimated positions of the wrist and elbow joints

by the proposed systems and the ground truth by the

CODA system, including means and standard devi-

ations, will be subsequently tabulated in Table 2. In

a general sense, the kinematic models plus simulated

annealing method is favourable against the case of

the kinematic models only due to smaller means and

standard deviations. For example, in ‘‘pattern 1

(wrist)’’ we discover that the simulated annealing

method holds the mean errors of 1.6 cm against

7.7 cm by the kinematic models only method (abso-

lute means are considered). However, it is also no-

ticed that both methods have approximate accuracy

in estimating the elbow-joint position in ‘‘pattern 1

(elbow)’’. This happens because these two methods

have respectively reached their maximum limitations

of accuracy, and the travelling distance (peak-

to-peak) is fairly short (only 3.5 cm).

SHOULDER
ARM

SHOULDER

ARM

SHOULDER

ARM

(a) Pattern 1 (b) Pattern 2 (c) Pattern 3

Fig. 4 Movement patterns of
the human arm

Table 1 Segment lengths of individual subjects in the
experiments (units: cm)

Subjects L1 L2

1 26 24
2 27.2 24.4
3 24.7 22.8
4 31.6 28.5
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Fig. 5 Motion pattern 1:
accelerations and Euler
angles (forearm)
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5 Discussion

In this paper, we have achieved a fast and accurate

estimation of the arm position using a combination of

sensor fusion and optimisation techniques. Classical

sensor fusion methods (i.e. [9]) demand a complicated

system set-up, while optimisation only methods (i.e.

[1]) may lead to over- or under-estimate of the arm

position. Our method integrates the measurements

from the accelerometers and gyroscopes, and then uses

a simulated annealing based optimisation technique to

render the position of the upper limb. The theoretical

and experimental work has clearly indicated that the

proposed scheme is able to achieve accurate and reli-

able arm location.

Our system allows the subjects to freely move their

upper limbs in the experiment. This releases the con-

straint of the classical robot-assisted systems, where

robotic arms were physically attached with the upper

limbs of the stroke patients in order to locate the latter

in motion exercises [8]. In addition, our system is able to

perform real track in the presence of ‘‘self-occlusion’’
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Fig. 6 Motion pattern 1: measurement plotting of human arm
movements (solid lines by the CODA system, dotted lines by the

proposed kinematic models only, and dashed lines by the
proposed kinematic models and simulated annealing)
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Med Bio Eng Comput (2006) 44:479–487 485

123



[7] due to the sourceless features of the inertial sensors.

It also shows that no drift appears in the estimates. This

indicates that the proposed fusion strategy successfully

handles the drift problem in the reported experiment.

However, some errors or noise have been observed

in the estimates: less than 1.8 cm (mean values) errors

existed in the estimated joint position. To reduce er-

rors, in the future work we will launch a further study

to improve the optimisation approach. This is mainly

related to the convergence properties and possible

solutions. At present, we strictly keep the assumption

of a still shoulder joint during arm movements. In a

real case, the movements of the upper limb are not

restricted to this assumption. In other words, both

translation and rotation of the shoulder joint are var-

ied. In the future work, we attempt to develop a trunk

model that is an extension of the proposed kinematic

model herein. This permits us to release this assump-

tion and to consider the case of free movements of the

shoulder joint.
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