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Abstract Malaria is a serious global health problem, and
rapid, accurate diagnosis is required to control the dis-
ease. An image processing algorithm to automate the
diagnosis of malaria on thin blood smears is developed.
The image classification system is designed to positively
identify malaria parasites present in thin blood smears,
and differentiate the species of malaria. Images are ac-
quired using a charge-coupled device camera connected
to a light microscope. Morphological and novel
threshold selection techniques are used to identify ery-
throcytes (red blood cells) and possible parasites present
on microscopic slides. Image features based on colour,
texture and the geometry of the cells and parasites are
generated, as well as features that make use of a priori
knowledge of the classification problem and mimic fea-
tures used by human technicians. A two-stage tree
classifier using backpropogation feedforward neural
networks distinguishes between true and false positives,
and then diagnoses the species (Plasmodium falciparum,
P. vivax, P. ovale or P. malariae) of the infection. Ma-
laria samples obtained from the Department of Clinical
Microbiology and Infectious Diseases at the University
of the Witwatersrand Medical School are used for
training and testing of the system. Infected erythrocytes
are positively identified with a sensitivity of 85% and a
positive predictive value (PPV) of 81%, which makes the

method highly sensitive at diagnosing a complete sample
provided many views are analysed. Species were cor-
rectly determined for 11 out of 15 samples.

1 Introduction

Malaria is a serious global health problem, causing be-
tween 1.5 and 2.7 million deaths every year [8]. The
worldwide annual economic burden of malaria, calcu-
lated to include spending on prevention and treatment as
well as loss of productivity due to illness, was estimated
at US$800 million in 1995 [5]. Rapid and accurate
diagnosis which facilitates prompt treatment is an
essential requirement to control malaria [8].

A number of new methods have been developed in
recent years for the diagnosis of malaria. These include
the use of fluorescent microscopy, rapid antigen detec-
tion methods and polymerase chain reaction (PCR)-
based techniques that detect specific nucleic acid se-
quences [8]. Despite these advances, malaria diagnosis
by means of light microscopy remains the most widely
and commonly used method [1].

Microscopic diagnosis entails examining thick and
thin blood smears for the presence of Plasmodia. It is
the most efficient and reliable diagnostic technique and
is very sensitive and highly specific [14]. The advantages
of microscopy are numerous: it is possible to differen-
tiate between species, quantify parasitaemia and ob-
serve asexual stages of the parasites [1, 14]. Low
material costs [11] mean that the marginal costs of tests
are very low.

Unfortunately, there are also disadvantages to the
method: substantial costs are incurred purchasing and
maintaining microscopes and training technicians [11],
the technique is labour intensive and time-consuming
[1] and the accuracy of the final diagnosis ultimately
depends on the skill and experience of the technician
and the time spent studying each slide [14]. Compared
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with expert microscopy, standard laboratory micros-
copy has a sensitivity of approximately 90%, a figure
which drops dramatically in the field [1]. Variable
smear quality and slide degeneration with time [12] are
also problematic.

The aim of this research is to improve upon micros-
copy by removing its most serious limitation: reliance on
the performance of a human operator for diagnostic
accuracy. This is pursued by developing a digital image
processing system to automate the examination of blood
smears. The system must provide a positive or negative
diagnosis of malaria with similar sensitivity and speci-
ficity to normal microscopy; and differentiate parasites
by species.

2 Materials and methods

Malaria samples were obtained from the Department of
Clinical Microbiology and Infectious Diseases at the
University of the Witwatersrand Medical School. Due to
the prevalence of Plasmodium falciparum in southern
Africa, the samples are almost all of that species, so
teaching slides of the other species (P. vivax, P. ovale and
P. malariae) are also used.

The slides are routinely stained using the quick
Giemsa protocol, which is similar to but faster than the
conventional Giemsa stain. All slides had already been
examined and verified by expert microscopists, who had
given a species-specific diagnosis.

Thin blood smears of the samples, whereby the
material is fixed and parasites can be visualised inside
the cells [14], are used for the automated diagnosis. The
advantage of thin films is that there is no loss of para-
sites during staining; the erythrocytes (red blood cells)
are fixed; artifacts are uncommon and, most impor-
tantly, parasite morphology is not distorted [2].

Slides are examined under oil-immersion using a light
microscope with 1,000· magnification, and images are
captured using a charge-coupled device (CCD) camera
connected to the microscope. In total 12 patient samples
and two teaching samples of P. falciparum, one patient
sample and one teaching sample of P. vivax and one
teaching sample each of P. ovale and P. malariae are
examined.

3 Algorithm development

The automated image processing algorithm is designed
to diagnose malaria in much the same way as a human
operator performing microscopy. To do this, the algo-
rithm finds and identifies erythrocytes and malaria par-
asites present in a microscopic field of a thin blood
smear. Based on the parasites and erythrocytes found,
the program makes a diagnosis as to whether or not
malaria is present, and if present, it determines the
species of the infection. Low parasitaemia does not im-
ply a good outcome for the disease [15], so the system

must have a high degree of sensitivity. It must also have
good specificity to be useful as a clinical tool [11].

The algorithm design is essentially an image classifi-
cation problem, and thus takes the form of a standard
pattern recognition and classification system. It consists
of four stages: image acquisition, pre-processing, feature
generation and classification [17], and the performance
of the system is then evaluated. A morphological
method used to identify malaria in Giemsa-stained
blood slides [3] is used as a starting point for the algo-
rithm, from which many of the pre-processing and image
segmentation steps are derived.

3.1 Image acquisition

Images are acquired using a 3.34 megapixel Nikon
Coolpix 995 digital camera (Nikon Corporation, Tokyo,
Japan). The camera, using full 4· optical zoom, is con-
nected to a light microscope with 1,000· magnification.
Malaria slides are examined under oil immersion. Ima-
ges are captured in the JPEG format at the maximum
resolution of the camera, 2,048·1,536 pixels.

3.2 Pre-processing

The purpose of the pre-processing stage is to remove
unwanted effects such as noise from the image, and
transform or adjust the image as necessary for further
processing. The resolution of the image is reduced by a
factor of four to 512·384 to speed up performance of the
system.

The complemented, green component of the true
colour original is primarily used by the system, since it
has the least noise [3] and the parasites, which stain a
purple colour, are most visible.

Following Di Ruberto et al. [3], the image is filtered
using a 5·5 median filter, followed by a morphological
area closing filter using a disk-shaped structuring ele-
ment (SE) of radius 6 pixels. The morphological filter
removes some parasite detail from the image, and so the
morphologically-filtered image is only used for functions
where parasite detail is not important, such as erythro-
cyte segmentation. In all other cases, the median-filtered
image is used.

3.3 Feature generation

The goal of the feature generation stage is to develop a
set of quantitative features from which the objects
present in the image can be classified. Objects present in
thin blood smears include erythrocytes, a variety of
white blood cells, artifacts in the blood, and parasites (in
infected samples). These must be identified and seg-
mented from the background before differentiating fea-
tures can be generated and used to classify the objects.
The feature generation procedure therefore requires

428



image analysis, image segmentation and feature calcu-
lation (Fig. 1).

3.3.1 Image analysis

In order to use morphological methods for image seg-
mentation, the shape and size of the objects in the image
must be known. The size and eccentricity of the ery-
throcytes are also required for the calculation of some
feature values (as these can be indicative of infection).
The shape of the objects (circular erythrocytes) is known
a priori, but the image must be analysed to determine
the size distribution of objects in the image and to find
the average eccentricity of erythrocytes present.

A pattern spectrum showing the size distribution of
objects in a sample image (Fig. 2) can be calculated
using granulometry [3]. Granulometry is computed from
the difference in morphological openings with SE’s of
increasing size [9]. In this case, a disk-shaped SE with
increasing radius is used, so the pattern spectrum will
indicate the radii that most commonly occur in the im-
age.

From the sample pattern spectrum (Fig. 3), it is
possible to identify the principal object radius present in
the sample image (�30 pixels). This corresponds to the
mean external radius of erythrocytes in the image. A
peak in the pattern spectrum is also commonly found for
the internal radius (�12 pixels) of the erythrocytes,
which are not prevalent in this sample, and for parasites
(�7 pixels), as is the case in Fig. 3.

The external radius, which is the dimension of inter-
est, and an estimate of the standard deviation of the
external radius, are calculated from the principal mode
of the pattern spectrum (Fig. 3) as 30 and 3 pixels
(2.56 pixels rounded to the nearest integer), respectively.

The average eccentricity of the erythrocytes is deter-
mined from a binary image (obtained by thresholding
following the method of Otsu [13]). The eccentricity is
expressed as a value between 0 and 1, with 0 indicating a
circle and 1 a line segment. Free-standing erythrocytes
are differentiated from overlapping cells by their area.
The area of a circle, with a radius equal to the sum of the
mean and the standard deviation of the erythrocyte ra-
dius determined by granulometry, is used as the
threshold. Any cell with an area less than that is ad-
judged to be free-standing. Eccentricity is calculated
using free-standing erythrocytes only.

Granulometry is a very computationally intensive
routine due to its use of a series of morphological
openings. In order to reduce the computational time of
the algorithm, it is assumed that the size distribution of
erythrocytes is constant throughout a sample. Image
analysis is only performed on four images from every
sample (which typically consist of about twenty images),

Determine pattern
spectrum by granulometry

Extract infected
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Generate features from
infected cells
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parasites
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Fig. 1 Feature generation stage
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Fig. 3 Sample pattern spectrum determined by granulometry

Fig. 2 Sample image (Plasmodium falciparum parasites circled)
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and an average pattern spectrum is used to determine the
sample magnitude and standard deviation of the eryth-
rocyte radii. The average cell eccentricity of the sample is
also taken as the average from these four images. Ideally,
should computational resources allow it, image analysis
should be performed on every image considered.

3.3.2 Image segmentation

The next stage of the algorithm, image segmentation,
identifies and segments potential parasites and erythro-
cytes from the image background. To extract the in-
fected erythrocytes, it is first necessary to identify them
from the combination of parasites and erythrocytes in
the image, and then segment them from the background
(Fig. 1).

Although techniques such as edge detection and the
watershed algorithm are also commonly used for image
segmentation, this algorithm relies primarily on thres-
holding. The key to successfully segmenting an image
using thresholding is threshold selection. A method to
find thresholds based on the image histogram was
developed for this algorithm.

The histogram of the complemented, green compo-
nent of the sample image (Fig. 4) is a bimodal distri-
bution typical of all the images considered. The principle
mode is due to the greyscale intensities of the image
background, and the second mode is due to those of the
erythrocytes in the image. Two threshold levels need to
be determined from the histogram: one for erythrocytes,
and one for parasites.

The first threshold is selected to separate the ery-
throcytes from the background of the image. This
essentially means separating the two modes of the image
histogram. The threshold level is automatically selected
using a method that maximises the separability of the
resultant classes of the grey-level histogram [13].

The resulting thresholded binary mask of erythro-
cytes (Fig. 5) then has all holes with an equivalent radius
less than an empirically determined 62.7% of the aver-
age erythrocyte radius removed (Fig. 5). A morpholog-
ical opening using a disk-shaped SE with a radius 40%
of the mean erythrocyte radius is applied to smooth the
objects in the image, and any objects with an equivalent

radius of less than half the mean erythrocyte radius are
removed (Fig. 5). The problem with this binary image of
erythrocytes is that clusters of cells are not separated.

The next step is to select the second threshold to find
parasites present in the image. A global threshold level,
taking the threshold as the first local minimum in the
histogram after the mode due to erythrocytes (Fig. 4), is
not sensitive enough (Fig. 6). This is a common problem
experienced with global threshold selection, caused by
inconsistent intensities in the image.

The solution is to find local threshold levels. The
erythrocytes, having already been identified, provide
excellent image regions in which to find these, especially
since valid parasites are only found inside erythrocytes.
The threshold is then found by taking the first minimum
after the principal mode of the histogram incorporating
only the erythrocytes.

While this method has greater sensitivity, it is at the
expense of a reduced specificity (Fig. 6). There are also
cases in this study, particularly with P. ovale, where the
global threshold is able to detect parasites that are
missed by the local thresholds. This is due to colouri-
sation of the infected cells, which shifts the principle
mode of the local histograms of the affected cells. For
this reason, both local and global thresholds are used,
and the union of the two binary images is used as the
parasite marker image.

Invalid objects in the marker image (objects detected
with the global threshold that lie outside any erythro-
cyte) are removed by taking the intersection of the
parasite marker image with the binary mask of ery-
throcytes. The erythrocyte mask is dilated first, to ensure
that ‘blister’ forms of the parasites, that appear to bulge
out of the edge of the cells, are not removed.

Other artifacts in the blood containing nucleic acid,
particularly white blood cell nuclei, are also detected by
this thresholding. They are removed by excluding all
objects greater than an empirically determined size
(chosen to exclude all objects greater than the largest
trophozoite that one would expect to find.)

The infected cells are identified by morphologically
reconstructing the erythrocyte mask with the valid par-
asite marker (Fig. 7). Binary reconstruction simply in-
volves extracting the connected components of an image
(the mask) that are marked by another image (the
marker). Where cells are clustered together, if an in-
fected cell forms part of the group, then the entire
aggregation is reconstructed.

To separate these clusters so that the infected cell can
be isolated and extracted, a modification of the mor-
phological technique used in Di Ruberto et al. [3] is
used. A morphological opening filter, using a disk-
shaped SE with radius equal to the mean erythrocyte
radius less the standard deviation, is applied to the
greyscale, morphologically filtered green component of
the image to remove any objects smaller than an eryth-
rocyte. The morphological gradient—the difference be-
tween a dilation and erosion of the image—is then
calculated using a diamond-shaped SE with unity length.
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The segmentation method is applied to each object in
the reconstructed binary image of erythrocytes individ-
ually. Those objects that do not exceed the area of a
circle with radius equal to the mean erythrocyte radius
plus the standard deviation are regarded as being single
cells, and are unmodified.

Unlike the method in Di Ruberto et al. [3], where the
morphological gradients are used to generate marker
images for the watershed algorithm, the objects deemed
to be overlapping erythrocytes are segmented as follows.
First, the intersection of the morphological gradient
image and the dilated cell cluster is taken. This image is

Fig. 5 Binary mask of
erythrocytes

Fig. 6 Binary parasite markers

Fig. 7 Morphologically
reconstructed erythrocyte mask
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then transformed to a binary image by thresholding any
value greater than zero. A series of morphological
operations, namely a closing operation, thinning, and
spur-removal are then applied to generate a contour of
the segmented erythrocytes. The contours are filled, and
the segmented mask is again reconstructed with the valid
parasite marker image to result in a segmented mask of
infected cells (Fig. 7).

The erythrocytes that have been identified as possibly
infected are then extracted from the image (Fig. 8) and
passed to the next stage of the algorithm for feature
generation. The binary mask of the erythrocyte, as well
as a binary mask (obtained by local threshold selection
based on the image histogram as detailed above) of
parasite-like objects present in the cell, are also passed to
the next stage (Fig. 9).

3.3.3 Feature generation

The purpose of feature generation is to compute new
variables from the image array that concentrate infor-
mation to separate classes [16]. The classifier has two
functions: it must determine whether or not a detected
cell is truly positive for malaria, and what the species of
the infection is. Features are created with these functions
in mind. They must provide information with which the
classifier can distinguish between parasites and other
artifacts in the blood, and information which will allow
the classifier to differentiate between parasites of differ-
ent species. The final performance of the classifier di-
rectly depends on the success of the feature generation
stage.

Two sets of features are developed. The first set is
based on image characteristics that have been used
previously in biological cell classifiers, which include

geometric features (shape and size), colour attributes
and grey-level textures (6, 10]. Texture features are
generated from the greyscale image matrices of the red,
green and blue components, as well as the intensity
component from the hue-saturation-intensity image
space. First order features, based on the image histo-
grams, and second order features, based on co-occur-
rence and run-length matrices (as described in Theodoris
and Koutroumbas [16]) are used.

Colour features are derived from the red, green, blue,
hue and saturation components, and include measures
such as the peak intensity, average intensity, skewness,
kurtosis and entropy of the component histograms.

Geometric features include the roundness ratio and
bending energy of binary masks [16]; boundary analysis
performed on chain codes [10]; and size information
such as the area and equivalent radius.

It is advantageous to apply expert, a priori knowl-
edge to a classification problem [6]. This is done with the
second set of features, where measures of parasite and
infected erythrocyte morphology that are commonly
used by technicians for manual microscopic diagnosis
are used. It is desirable to focus on these features, be-
cause it is already known that they are able to differ-
entiate between species of malaria.

These features, based both on the parasites and the
infected erythrocytes, include: the relative size of the
infected erythrocytes; the relative eccentricity of the in-
fected erythrocytes; smoothness of the cell margin (i.e.
crenellated or not); the relative colour of infected ery-
throcytes (in some cases decolourised); texture infor-
mation of infected erythrocytes (i.e. the presence of
stippling—Schüffner’s dots—or Maurer’s dots); the
number of parasites per erythrocyte; the number of
chromatin dots per parasite; morphology of the rings
(large and coarse, or small and fine); the position of the

Fig. 8 Extracted infected
erythrocytes
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parasite in the cell (i.e. accolé forms); and the eccen-
tricity, or the ratio of major axis over minor axis, of the
parasite (i.e. band forms) [11]. The size and shape of the
parasite [18] is also a differentiating factor.

Not all of these features can be quantitatively as-
sessed using an automated method, particularly given
the limitations of the image segmentation stage of the
algorithm. Those that can include measures of the rel-
ative size and eccentricity of infected erythrocytes (rel-
ative to the averages found during image analysis), the
relative colour of infected cells, the number of parasites
per cell, the texture of infected cells, the number of
chromatin dots per parasite, the size and shape of the
parasite and the distance of the parasite from the edge of
the cell.

3.4 Classification

The final classification of an erythrocyte as infected with
malaria or not, and if so, the species of the parasite, falls
to the classifier. The classifier takes the form of a two-
stage tree classifier (Fig. 10), with an infection classified
as positive or negative at the first node, and the species
assigned at the second node.

There are many advantages to using a tree structure
for the classifier: it is more flexible, allowing only the
most relevant features to be used at each stage, accuracy
is higher with fewer features, and the division of classes
follows a more natural, logical form [10].

This is especially true of this problem, which lends
itself to a tree classifier since the two classifications have
significant differences and utilise different features. By
requiring fewer features, the dimensionality problem is
lessened. The dimensionality problem is that with a fixed
sample size the classification accuracy can decrease when

the number of features is increased [7]. This means that
the more features that are used, the more training data
required to give reliable results [4].

The design of a tree classifier follows three steps: the
design of a tree structure (which has already been as-
signed), the selection of features to be used at every
node, and the choice of decision rule at each node [10].
The same type of classifier is used at both nodes, al-
though this need not necessarily be the case.

Biological cell classification problems have previously
used classifiers utilising the quadratic decision rule [10],
minimum Bayes error [6] or scoring systems [17]. Taking
into account the fact that there is no guarantee that the
classes are linearly separable, backpropogation feedfor-
ward (BFF) neural networks are used here.

Backpropogation feedforward networks are designed
by specifying an architecture, and then using a training
rule to train the network using training data to set the

Fig. 9 Erythrocyte masks with
parasite masks (grey)
superimposed

Possible infected
red blood cell
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with malaria?

What species of
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Fig. 10 Structure of the tree classifier
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synaptic weights. An important consideration is to en-
sure the generalisation of the network, i.e. its ability to
classify data that were not presented to it during train-
ing. The generalisation of the network can be compro-
mised by overfitting, which occurs when there are too
many free parameters present in the network, causing it
to adapt specifically to the training data used. To avoid
this problem, the smallest possible network that can
differentiate between the classes must be used. Over-
training also reduces generalisation by adapting the
synaptic weights to the particulars of training data [16].

The first classifier is an 8-5-1 three layer network (two
hidden layers and one output layer), with tan-sigmoid
transfer functions. Three layer perceptron networks are
theoretically able to classify any combination of features
[16], and the BFF network is a differentiable approxi-
mation of a perceptron network.

The output layer is determined by the number of
output classes (two), while the hidden layers were de-
signed by trial and error. The second classifier is a 10-10-
4 three layer network. There are four output classes, and
the hidden layers were again designed by trial and error.

The features selected for the first classifier are those
that describe the colour and texture of the possible
parasites. The features used by microscopists to differ-
entiate malaria species are selected for the second clas-
sifier. Principal component analysis is used to remove
any elements of the feature vectors that account for less
than 0.1% variation in the data set. This decreases the
first feature vector length from 75 to 37, and the second
from 117 to 38.

The networks were trained using the resilient back-
propogation training algorithm, commonly used in
pattern classification problems. The training goal was to
minimise squared errors, and training was stopped when
the error of a validation set increased. This was done to
avoid overtraining.

Due to the poor availability of samples of P. vivax,
P. ovale and P. malariae, half the slides from these
samples had to be used for training. Two samples of
P. falciparum were also used for training, giving a total
training set of 350 images (120 P. falciparum, 120
P. vivax, 70 P. ovale and 40 P. malariae) with approxi-
mately 950 possiblly infected erythrocytes. Since differ-
ent slides from the same samples of P. vivax, P. ovale
and P. malariae are used for training and assessment,
only the performance of P. falciparum samples that were
not used for training are an indication of the general-
isation of the network.

4 Results

The performance of three stages of the algorithm is
analysed: the image segmentation stage that detects
possible infected blood cells, the first classifier stage that
confirms infections and the second classifier stage that
differentiates species. Two measures of algorithm per-

formance and accuracy are used: sensitivity, the ability
of the algorithm to detect a parasite present; and posi-
tive predictive value (PPV), the success of the algorithm
at excluding non-infected cells . These values are ex-
pressed in terms of true positives (TP), false positives
(FP) and false negatives (FN):

Sensitivity ¼ TP

TPþ FN
ð1Þ

PPV ¼ TP

TPþ FP
ð2Þ

The results of the algorithm with regards to segmenting
possible parasites from the images, and after the first
neural network classifier, as compared to a human
operator, are summarised in Table 1 (their outputs from
processing the sample image can be seen in Fig. 11a, b,
respectively). Note that the performance of the image
segmentation stage indicates initial parasite detection for
all samples, while the training samples were excluded
from the assessment of the first classifier.

The presence of infected erythrocytes in images of a
blood smear can then be used to determine, using a
suitable decision rule, whether the sample is positive.
This decision will require that the number of detected
parasites sufficiently exceeds the amount of false posi-
tives that will normally be found in negative samples. To
compare the system to other diagnostic methods, the
success of the system at correctly identifying full samples
and not individual infected erythrocytes, must be
ascertained.

A Bayesian argument can be used to estimate the the
sensitivity and positive predictive value of the algorithm
on a full sample. The sensitivity of the system after
classification (as shown in Table 1) can be represented as
the conditional probability of measuring a cell as in-
fected (m), given that it is infected (p), i.e. PðmjpÞ:

Assuming that it is necessary and sufficient to find a
single infected cell to diagnose the sample as positive,
then the probability of diagnosing a positive sample as
positive [or the sample sensitivity (SS)] is

SS ¼ 1� PðmjpÞN ð3Þ

where the probability of misdiagnosing an infected cell is
given by

PðmjpÞ ¼ 1� PðmjpÞ ð4Þ

Table 1 Results for detecting and confirming individual erythro-
cyte infections

Measure Initial parasite
detection
(all samples)

After first classification
(excludes training samples)

True positives 905 481
False positives 1,378 114
False negatives 78 84
Sensitivity (%) 92.07 85.13
Positive predictive
value (PPV) (%)

39.64 80.84
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and N is the number of infected cells examined by the
algorithm.

Clearly from (3), as N fi ¥, SS fi 1. Since the
number of infected cells examined is proportional to the
product of the parasitaemia level of the sample and the
number of views examined, it is possible to achieve high
sensitivities by considering a large number of views. A
similar argument can be used to estimate the sample
positive predictive value.

This is a fundamental limitation of microscopy: the
ability to detect malaria depends on the number of
microscope fields examined [11]. The higher the para-
sitaemia of the infection, the greater the chance of
detecting a parasite in a fixed number of slides.

A simulation can be performed to assess the ability of
the system to diagnose full slides by assuming that there
are 40 erythrocytes per slide and simulating the occur-
rence of infections in the sample at a low parasitaemia
level (0.1%) and the reported sensitivity of the program
(85%) using uniformly distributed random numbers. In
a simulation where only 200 microscope fields are
examined, 10 out of 11 infected cells would be detected
by the algorithm.

The advantage of the automated technique is that
coupled with an automated image acquisition system, it
is possible to examine an entire slide, whereas techni-
cians generally examine a slide for a set time or a fixed
number of fields (e.g. 200) before declaring a sample
negative. Furthermore, once the algorithm has identified
infected erythrocytes, they are easily available for tech-
nicians to confirm the diagnosis (by viewing Fig. 11, for
example) without having to search through fields of the
slide themselves.

The results of the second classifier stage, which per-
forms species differentiation per infected erythrocyte, are
shown in Table 2. In this case, it is possible to determine
the accuracy of the system at classifying complete sam-

ples, because the diagnosis of each sample, performed
and validated by experts, is known.

The species for every infected erythrocyte is deter-
mined, and the sample species is the species of the
highest number of parasites in the sample. Eleven of the
fifteen samples tested were correctly diagnosed, giving
an accuracy of 73% for the second classifier.

Although the sample accuracy is reasonable, clearly
the success of the system at evaluating individual cells
(and hence the ability to detect mixed infections) is
problematic. The threshold selection technique currently
used to find the parasites in the cells is primarily to
blame. This technique does not identify enough of the
entire parasite, but only fragments of it (see Fig. 9).
Species classification is largely determined from the
parasite shape, so a better thresholding technique that
creates more accurate binary masks is required.

However, given that many methods of malaria
detection currently in use, such as rapid antigen tests,
have only limited success at differentiating between
species, or are even specific only to certain species, the
shortcomings of the algorithm at differentiating species
does not invalidate the potential for this method as a
diagnostic tool.

Another problem experienced relates to the detection
of P. malariae. Unlike the other species, which are de-
tected by the presence of trophozoites in the erythro-
cytes, P. malariae parasites form characteristic ‘band
forms’. Due to significant differences between these
forms and the trophozoites of the other species, the
features used are not well-suited to classifying them. A
separate algorithm should be used to detect P. malariae,
and the current system should be limited to the other
three species.

5 Summary

An automated image processing and classification
technique is able to detect erythrocytes infected with
malaria parasites, and differentiate between the species
of the infection. Images of thin blood smears are ac-
quired using a CCD camera connected to a light
microscope.

Following pre-processing, images are analysed to
determine the size distribution of objects by granulom-

Fig. 11 Infected erythrocytes
(circled) detected by the
algorithm in the sample image

Table 2 Results for species differentiation of infected erythrocytes

Species Sensitivity (%) PPV (%)

Plasmodium falciparum 57 81
P. vivax 64 54
P. ovale 85 56
P. malariae 29 28
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etry. Parameters generated in this way are processed
using morphological techniques. This is combined with a
novel local and global thresholding algorithm to seg-
ment possible infected erythrocytes from the image. The
method of Di Ruberto et al. [3], modified to avoid the
intermediate step involving the watershed transform to
make it simpler and more efficient, separates clustered
erythrocytes.

Features based on image characteristics such as col-
our, texture and geometry, as well as original features
that mimic the qualities used by microscopists when
diagnosing malaria, are generated from the erythrocytes
which are candidates for infection. A tree classifier with
two nodes using BFF neural networks determines whe-
ther or not a cell is infected, and if so, the species of the
malaria.

Potential parasites are segmented from the image
with a sensitivity of 92% and a PPV of 40%. The clas-
sifier is able to positively identify malaria parasites with
a sensitivity of 85% and a PPV of 81%. A Bayesian
argument that relates these results to examination of a
full sample shows that a high sample sensitivity would be
achieved by examining a large number of slides. The
species was correctly determined for 11 out of 15 sam-
ples (a classification accuracy of 73%).

Problems arise due to inherent limitations of
microscopy such as the degradation of slide quality with
time, and the dependence on the number of microscopic
fields of the sample. The thresholding used to identify
parasite morphology is also a limiting factor, and
P. malariae parasites should be diagnosed using a
separate algorithm.

6 Conclusion

Compared to other diagnostic techniques, there are
many advantages to using the proposed algorithm. It
avoids the problems associated with rapid methods, such
as being species-specific and having high per-test costs,
while retaining many of the traditional advantages of
microscopy, viz. species differentiation, determination of
parasite density, explicit diagnosis and low per-test
costs.

The biggest detraction of microscopy, namely its
dependence on the skill, experience and motivation of a
human technician, is removed. Used with an automated
digital microscope, which would allow entire slides to be
examined, it would allow the system to make diagnoses
with a high degree of certainty. High capital costs and
the necessity of electricity are some of the principle
obstacles to using the system in the field.

There are, however, many possible applications
where it would be suitable, such as performing an initial

assessment for validation in a clinical laboratory. It
would also constitute a diagnostic aid for the increasing
number of cases of imported malaria in traditionally
malaria-free areas, where practitioners lack experience
of the disease.
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