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Abstract The relevance of the complexity of fetal heart
rate fluctuations with regard to the classification of fetal
behavioural states has not been satisfyingly clarified so
far. Because of the short behavioural states, the per-
mutation entropy provides an advantageous complexity
estimation leading to the Kullback–Leibler entropy
(KLE). We test the hypothesis that parameters derived
from KLE can improve the classification of fetal
behaviour states based on classical heart rate fluctuation
parameters (SDNN, RMSSD, ln(LF), ln(HF)). From
measured heartbeat sequences (35 healthy fetuses at a
gestational age between 35 and 40 completed weeks)
representative intervals of 256 heartbeats were visually
preclassified into fetal behavioural states. Employing
discriminant analysis to separate the states 1F, 2F and
4F, the best classification result by classical parameters
was 80.0% (SDNN). After additionally considering
KLE parameters it was improved significantly
(p<0.0005) to 94.3% (ln(LF), KLE_Mean). It could be
confirmed that KLE can improve the state classification.
This might reflect the consideration of different physio-
logical aspects by classical and complexity measures.

Keywords Fetal behavioural states Æ Heart rate
variability Æ Biomagnetic recording Æ Permutation
entropy Æ Kullback–Leibler entropy

1 Introduction

With increasing gestational age, the human fetus devel-
ops progressively synchronised patterns of neurovege-
tative ‘behaviour’ [21, 23]. The patterns have been
categorised into four determined fetal behavioural states
from around 34 weeks of gestation, namely, by means of
heart rate patterns, the occurrence of eye movements
and of gross body movements in accordance with
observations in the newborn [9, 21, 28]. In general, a
shifting window of 3 min length is used for polygraphic
analysis [12, 21, 28]. The determination of the fetal states
is based on the evaluation of cardiotocography (CTG)
recording accompanied by continuous B-mode ultra-
sound observation as the gold standard procedure. The
determination of the actual state of activity is essential in
almost any case when developmental or behavioural
aspects of the fetus are subjects of research. Table 1
summarises the features of the distinct states.

The fetal magnetocardiographic signal contains spa-
ciotemporal properties and a general signal quality that
is unrivalled by any other modality throughout the third
trimester of gestation [11, 22, 32, 40]. Magnetocardiog-
raphy (MCG) provides the necessary resolution of 1 ms
and a reasonable signal-to-noise ratio in pregnant wo-
men beyond 24 weeks of gestation to assess fetal heart
rate fluctuations [11, 13, 22, 32, 35]. Under this cir-
cumstance, the temporal resolution of ultrasound based
CTG is insufficient.

As can be seen from Table 1, heart rate patterns ac-
count for a reasonable state determination particularly
towards term when developmental synchronisation is
high [ 9, 21, 23].

The respective impact of heart rate fluctuation anal-
yses in children and adults was shown and standardised
for time and frequency domain measures [34]. In the last
decade, several complexity measures were introduced
which have improved the heart rate analysis. Their im-
pact on the assessment of fetal behavioural states is an
outstanding question. One aspect, namely the complex-

B. Frank (&) Æ D. Hoyer
Institute for Pathophysiology and Pathobiochemistry,
and Biomagnetic Center, Department of Neurology,
Friedrich Schiller University, Jena, Germany
E-mail: birgit.frank@mti.uni-jena.de
Tel.: +49-36-41938963
Fax: +49-36-41938952

B. Pompe
Institute of Physics, Ernst Moritz Arndt University,
Greifswald, Germany

U. Schneider
Department of Obstetrics and Gynaecology, Friedrich Schiller
University, Jena, Germany

Med Biol Eng Comput (2006) 44: 179–187
DOI 10.1007/s11517-005-0015-z



ity estimation of short states, is the subject of the present
work.

The power spectrum depends on maturation of the
autonomic nervous system [10, 19, 36] and fetal
behavioural states [8]. Furthermore, the respiratory
sinus arrhythmia [39] and the sympatho-vagal balance
[41] were assessed by fetal MCG based heart rate
power spectra. The established complexity measure of
approximate entropy (ApEn) [25, 26] shows an overall
increase and divergence with increasing gestational age
and, hence, fetal maturation [35]. In this sample the
apparent fetal behavioural state was not accounted for.
The observed ApEn increase during maturation was lost
in ApEn of binary heart rate pattern [7].

The resulting task is the search for a complexity
measure and corresponding estimator appropriate for
fetal behavioural state assessment. This includes the
search for appropriate estimation parameters such as
data length, embedding dimension, time scale, and
coding. The data length is limited by the short duration
of the behavioural states. An optimal embedding
dimension can be found by a minimisation procedure
[27]. Arbitrary time scales can lead to misleading or
wrong complexity measures [16]. Complexity measures
as function of the time scale of the different autonomic
nervous system controllers were introduced in 1998 [14].
Here, the mutual information function was applied to a
piglet’s heart rate during active and quiet sleep as well as
during anesthesia, hypoxia, and vagal blockade. In the
meantime, this approach representing the autonomic
information flow (AIF) was confirmed both by experi-
mental [16] and clinical [15] studies. The relevance of
time scales was also confirmed by the concept of mul-
tiscale entropy [6]. The coding of heart rate by a few
symbols, which improves the statistics for a given data
length, may inflict an oversimplification leading to a loss
of the physiologically relevant pattern [7] or accentuate
relevant dynamics [37].

In order to overcome some of the shortcomings
mentioned above, in the present work, the permutation
entropy is investigated in the context of limited data
length and in dependency on the time scale. The
resulting complexity measures are evaluated with regard
to the fetal behavioural state classification in connection

with the conventional time and frequency domain
measures of heart rate fluctuations. We test the
hypothesis that parameters derived from permutation
entropy can improve the classification of fetal behaviour
states based on classical heart rate fluctuation parame-
ters. Representative approximate entropy results are
shown as reference.

2 Methods

2.1 Data acquisition and processing

From the database of fetal MCGs that was built up
between 1999 and 2003 containing 129 recordings of
apparently healthy fetuses, a sample was drawn of those
subjects with fetuses between 35 and 40 completed weeks
of gestation. Neither of the subjects received medication
with known cardiac side effects. The studies on fetal
MCG were approved by the local ethics committee of
the Medical Faculty of the Friedrich Schiller University
of Jena, Germany, and written informed consent was
obtained from each subject prior to investigation. A
total number of 39 recordings were selected containing
at least one 5 min sequence (needed for visual classifi-
cation) with less than 3% artifacts.

All measurements were taken in the magnetically
shielded room (AK 3b, Vakuumschmelze Hanau, Ger-
many) of the Biomagnetic Centre, Friedrich Schiller
University Jena. The facilities provide a 31 channel
SQUID Biomagnetometer (Philips), consisting of first
order gradiometers (coil diameter 20 mm, baseline
70 mm, diameter of the array 145 mm). The pregnant
women were positioned supine or with a slight twist to
either side to prevent compression of the inferior vena
cava by the pregnant uterus. The dewar was positioned
with its curvature above the fetal heart after sonographic
localisation as close as possible to the maternal
abdominal wall without contact.

The SQUID signal was recorded over a period of 5
min with a sampling rate of 1,000 Hz using a filtering
bandpass between 0.3 and 500 Hz (CURRY, Neuro-
scan, Neurosoft, Sterling, VG, USA). Simultaneously, a

Table 1 Features of the fetal states [9, 21]

Fetal states 1F 2F 3F 4F
quiet sleep active sleep quiet, awake active awake

Percentage
of occurrence

@30% @60% @1–3% @6–8%

Heart rate Normal range, stable Normal range Normal range High, tachycardia possible
Oscillation bandwidth Small/narrow Wider than 1F Wider than 1F Wide
Accelerations Isolated, rare Regular, frequent No Continuous, large,

prolonged, fused
Regularity of heart
rate pattern

Regular Irregular Regular, more than in 2F Irregular, unstable

Gross body
movements

Sporadic, strictly related
to accelerations

Regular, frequent No Continuous
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single lead ECG of the mother was recorded to distin-
guish between maternal and fetal cardiac activity.

The initial raw data underwent smoothing by a
polynomial filter (Savitzky–Goolay, see [29]) to increase
the performance of an algorithm described in detail by
Schneider et al. [30]. Detection of the heartbeats was
based on an algorithm of maximum coherence matching
(MCM) on the basis of a representative QRS complex in
the smoothed data. MCM was then performed in the
maternal ECG first to determine the time instants of all
maternal heartbeats, to average the maternal excitation
cycles in each of the magnetic channels of the raw data
set and, eventually, to subtract the maternal MCG from
the raw data.

MCM of the fetal signals was, consecutively, per-
formed in the magnetic channel with the highest signal-
to-noise ratio following the same basic principles.
Matching criteria were in some cases varied in order to
obtain a close-to-complete list of beat-to-beat intervals.
The beat-to-beat variability plot was used for plausibil-
ity control indicating false inter-beat intervals in the case
of positive artefact matching [11, 30, 33].

2.2 Visual determination of the fetal state

Sonographic observation of the fetus is impossible dur-
ing fetal MCG [38]. Therefore, under the assumption of

high temporal coincidence of the state variables between
35 and 40 completed weeks of gestation, the actual fetal
state was visually determined by classifying the heart
rate pattern. The heart rate pattern was visualised from
the train of beat-to-beat intervals and presented in a
CTG like fashion (Fig. 1). State classification was based
on visual integration of the pattern information over
5 min continuous CTG applying the criteria stated in
Table 1 (‘the clinician’s eye’) by an obstetrician with
daily routine experience of non-stress test assessment.
From each train, a representative sequence of 256
heartbeats was chosen. The necessity to proceed in such
fashion is illustrated in the examples in Fig. 1. If the
pattern changed during the 5 min of recording, the 256
beats sequence was taken from only one of the patterns.
The number of fetal heartbeat sequences in each state is
shown in Fig. 1.

2.3 Permutation entropy

Permutation entropy is a complexity measure for time
series operating on an ordinal level, i.e., only the ranks
of the data in the time series are regarded, not the dis-
tances (metric) of the data. Its main features are (1)
robustness with respect to some noise possibly corrupt-
ing the data, and (2) its easy computation (estimation).
Permutation entropy measures the entropy of sequences
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Fig. 1 Typical heart rate patterns for the fetal behavioural states. Vertical lines indicate the 256 beat intervals, used for the statistical
analysis
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of ordinal patterns derived from m-dimensional delay
embedding vectors. In the following, we briefly sum-
marize the definition of the permutation entropy. A
more detailed introduction can be found in [3, 5].

The scalar time series {x(t)}t=1
T is embedded into an

m-dimensional space Xt = [x(t), x(t+ L),..., x(t+ (m �
1)L)], where m is called the embedding dimension and L
the embedding delay time. For m=2, there are two
possible ordinal patterns of Xt, namely p1 = x(t) < x(t
+ L) and p2 = x(t + L) < x(t). (For this moment, we
suppose that there are no equal values in Xt, i.e., no tied
ranks.) For m=3, Xt can attain one of six different order
patterns,

p1 ¼ xðtÞ\xðt þ LÞ\xðt þ 2LÞ; p2

¼ xðt þ LÞ\xðtÞ\xðt þ 2LÞ; . . . ; p6

¼ xðt þ 2LÞ\xðt þ LÞ\xðtÞ:

In general, there are just m! possible order patterns,
which is the number of permutations of the m coordi-
nates in Xt. Now, let p(p) denote the relative frequency
of order pattern p,

pðpÞ ¼ # tj1 � t � T � ðm� 1ÞL; where Xt has type pf g
T � ðm� 1ÞL :

ð1Þ

Then, for fixed embedding dimensions m‡2, and fixed
delay L, permutation entropy is defined as

Hðm; LÞ ¼ �
X

p

pðpÞ log2 pðpÞ; ð2Þ

where the sum runs over all m! patterns p.
Equal values in the time series, which can occur be-

cause of the limited accuracy of measurement, will be
treated as follows. In case Xt contains two equal values
xa(t + aL) = xb(t + bL), a, b = 0,1,...,(m � 1), the
relative frequency of the permutations which correspond
to the cases xa < xb and xa > xb is increased by 1/2. For
n equal values the respective n! permutations are in-
creased by 1/n!. Practically, this can be done by adding a
random number to the data, which is smaller than the
accuracy of measurements.

For convenience we normalize H (m, L) by its max-
imum value log2 m!

0 � Hðm; LÞ
log2ðm!Þ � 1: ð3Þ

Now we introduce the (normalized) Kullback–Leibler
entropy (KLE, [20])

KLE ¼ 1� Hðm; LÞ
log2ðm!Þ ; ð4Þ

which is an information measure for the distance be-
tween the probability distribution of the ordinal patterns
(permutations) and the uniform distribution. With
increasing complexity of the time series, KLE decreases
until it reaches zero for noise [independent and identi-

cally distributed (iid) process] that corresponds to a
uniform distribution of all patterns. Note that due to
our handling of tied ranks, a constant series would also
provide KLE=0.

We have to choose appropriate values for m and L.
The value of m should be at least three, the maximum is
limited by the length of time series. For an accurate
estimation of KLE, the length of the time series must be
considerably larger than the factorial of the embedding
dimension. This allows for short series of 256 heartbeats
only embedding dimensions m=3 and m=4. We tried
both values and could not find significant differences in
the discriminatory impact of the respective entropy
measures. On account of computation rate and memory
requirements we chose m=3. To get an equidistant time
scale, all data were resampled with a sampling frequency
of 10 Hz; in this way, the time base of the autonomic
modulations is suitably considered [16].

Figure 2 shows the KLE of order 3 for varying delay
time L, grouped by the visual classified behavioural
states 1F, 2F and 4F.

2.4 Discrimination parameters

For the classification of the behavioural states, the fol-
lowing complexity parameters were calculated for each
256-heartbeat sequence: The term KLE_1 indicates the
KLE for a delay time of 0.4 s. That corresponds to
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Fig. 2 The KLE of order 3 for varying delay time L, grouped by
the behavioural states 1F, 2F, and 4F. The whiskers indicate the
standard error of the mean. For this calculation resampled data
(10 Hz) have been used
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about one heartbeat period in the NN-interval time
series reflecting beat-to-beat variability. The term
KLE_Mean indicates mean KLE, averaged over
embedding delays in the short-term range up to 2 s
reflecting the structure of the KLE(L) curves around the
first maximum (Fig. 2).

As reference we include two parameters from the
approximate entropy, which has been employed in the
past to infant heart rate data [26].

The ApEn was calculated from heartbeat interval
series by means of the software of Kaplan [18] setting the
embedding lag to 1 and the embedding dimension to 2.
Analogous to Pincus [26], we determined the parameters
ApEn_sub and ApEn_pop. For the calculation of
ApEn_sub, the filter factor r, which sets the length scale
over which to compute the approximate entropy, is ad-
justed to 0.2 of the standard deviation of each individual
data set. ApEn_pop is determined with the same r for all
data taken from 0.2 of the population average standard
deviation.

In addition to these complexity parameters, the
classical parameters for the measurement of heart rate
fluctuation [34] have been determined. We consider the
following four parameters in the time and frequency
domain corresponding to different time scales: In the
time domain SDNN, the standard deviation of the NN-
intervals, reflects the overall variability in the time series,
RMSSD is the square root of mean squared differences
of successive NN intervals (both values in ms). In the
frequency domain, LF is the power in the range between
0.04 and 0.15 Hz and HF describes the power in the
range between 0.15 and 0.4 Hz. We consider the natural
logarithm of these values (in ms2).

2.5 Statistical analysis

The discrimination parameters have been evaluated with
different statistical methods contained in the statistical
software package SPSS [31].

Firstly, we visualised the discriminating power of
each parameter by means of boxplots (Fig. 3).

Secondly, statistical tests have been applied to each
pair of parameters (Table 2). Because the t-test can only
be applied in case of homogeneous variances we used
Levene’s test to check the homogeneity of variances
(p>0.1) for each pair of states and all parameters. In
case, the homogeneity assumption has been met, the t-
test, otherwise Welch’s test, which can deal heteroge-
neous variances also, was used to decide if the respective
parameter value allows a significant discrimination
(p<0.05) of the states.

The crucial evaluation of the discriminating power
was done by means of linear discriminant analysis [1, 4,
31]. All results have been cross-validated. That means,
each case is classified by functions derived from all cases
other than that case (leave-one-out method). We
accomplished for each parameter and for each possible
bivariate parameter set a statistical discriminant analy-

sis. Furthermore, we have performed a stepwise analysis.
In the latter case, variables are added to the discriminant
functions one by one until it is found that adding extra
variables does not give significantly better discrimina-
tion. The selection of the variables is based on Wilks’
lambda (entry criteria p<0.05). Using a Bayesian ap-
proach the software package SPSS permits prior prob-
abilities of group memberships to be taken into account.
Prior probabilities for the states have been taken from
Table 1.

Finally, the parameter space of the best separating
parameters is graphically presented.

3 Results

Because of the small sample size of 3F data (n=4), the
3F data sets have been excluded from statistical state
classification. Concerning states 1F (n=11), 2F (n=16),
and 4F (n=8), Fig. 2 shows that KLE allows assessment
of the complexity of heart rate fluctuations on different
time scales. KLE shows significant changes with L,
especially in the short-term range (up to about 5 heart-
beat periods or 2 s). Starting from a delay time that suits
the mean heartbeat interval (0.42 s), all curves raise to a
local maximum at about 1.2 s. (For smaller values of the
delay time L fi 0 the curves approach KLE(L=0)=1.
This is a consequence of the definition of KLE and has
no physiological meaning.) For large delay times all
curves approach zero, that means, all ordinal patterns
comply with a uniform distribution. The curves corre-
sponding to active states 2F and 4F are clearly above the
curves corresponding to quiet state 1F.

Boxplots in Fig. 3 give an overview on how the se-
lected parameters might discriminate between the fetal
states. All parameters appear to be able to separate at
least some of the states. SDNN and ln(LF) seem to
separate between the states 1 and 2 whereas the com-
plexity measures between states 2 and 4.

The results of t-test (Table 2) indicate that none of
the linear parameters alone is able to separate all states.
Only the complexity parameters (KLE_Mean, KLE_1)
discriminate all states considered.

The crucial method used for state discrimination was
discriminant analysis. Results are shown in Table 3.
Employing univariate analysis SDNN (80.0%) and
KLE_Mean (77.1%) show the best prediction rates.
Employing bivariate analysis the best prediction rate has
been achieved using the pair KLE_Mean and ln(LF)
(94.3%), followed by the pairs KLE_Mean and RMSSD
(88.6%), KLE_Mean and ln(HF) (88.6%). A multivar-
iate analysis with more than two parameters could not
improve the best result.

The significance of these differences between pre-
diction rates has been evaluated by the entry criteria
of the stepwise discrimination procedure. Starting
from linear variables (SDNN or pairs of linear
parameters) and adding the parameter KLE_Mean,
this parameter gives a significantly better discrimina-
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tion for all cases (p<0.0005). The other way around,
starting from the variables KLE_Mean and ln(LF),
none of the linear parameters SDNN (p=0.067),
RMSSD (p=0.875), ln(HF) (p=0.906) give a signifi-
cant improvement.

For the best parameter pair in the discriminant
analysis KLE_Mean and ln(LF) the classification results
are shown in more detail in Table 4, a graphical repre-
sentation is given in Fig. 4. Classification errors oc-
curred for one of the 2F data and one of the 4F data.
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4 Discussion

The focus of the present work was the improvement of
fetal state classification by complexity measures in

comparison to classical HRV measures under particular
consideration of appropriate time scales. For this pur-
pose, permutation entropy has been used because of its
methodological advantages. A main challenge of heart
rate complexity estimation of sleep states is their short
duration. The permutation entropy and, hence, the de-
rived KLE is able to handle short data sequences and
different time scales. In Fig. 2 it is shown that the pre-
diction over special time horizons plays a crucial role for
the classification and offers possibilities of physiological
interpretation. Higher values of KLE for the active
states 2F and 4F than for the quiet state 1F reflect the
better predictability of heart rate fluctuations in 2F and
4F. This is pronounced at the local maxima of the curves
between 0.5 and 2 s. It points to sympathetic modula-
tions of slow rhythms, which are less pronounced for
shorter prediction horizons (beat-to-beat). The KLE of
the probability distribution of ordinal patterns (order
m=3) with respect to the uniform distribution, averaged
over embedding delays between 0.1 and 2 s (KLE_-
Mean), is found to be a suitable complexity measure
with high discriminating value on the behavioural states.

The active states 2F and 4F are characterised by
accelerations and decelerations, which lead to higher
bandwidths and decreased complexity. State 4F is dis-
tinguishable from State 2F only by the length and fre-
quency of accelerations. The relative number of
monotone ordinal patterns increases with increasing
length and frequency of accelerations and decelerations.
Therefore, all complexity measures (KLE_Mean,
KLE_1, ApEn_sub, ApEn_pop) discriminate clearly
between states 2F and 4F whereas classical measures
cannot discriminate between these both states.

Best classification result for the states could be
reached by means of a bivariate discriminant analysis

Table 2 p values of statistical tests for the separation of two states, each, for the parameters SDNN, RMSSD, ln(LF), ln(HF), KLE_-
Mean, KLE_1, ApEn_sub, ,ApEn_pop

States SDNN RMSSD ln(LF) ln(HF) KLE_Mean KLE_1 ApEn_sub ApEn_pop

1F–2F 0.000 0.000 0.000 0.000 0.000 0.000 0.064 0.009
1F–4F 0.000 0.096 0.000 0.025 0.000 0.000 0.000 0.505
2F–4F 0.137 0.590 0.180 0.992 0.001 0.007 0.000 0.000

Bold p values indicate significant discrimination (p<0.05)

Table 3 Results of univariate (main diagonal elements) and bivariate discriminant analysis for the behavioural states 1F, 2F and 4F with
all parameter pairs

SDNN RMSSD ln(LF) ln(HF) KLE_Mean KLE_1 ApEn_sub ApEn_pop

SDNN 80.0
RMSSD 77.1 68.6
ln(LF) 77.1 74.3 71.4
Ln(HF) 80.0 62.9 68.6 62.9
KLE_Mean 85.7 88.6 94.3 88.6 77.1
KLE_1 82.9 65.7 74.3 62.9 71.4 65.7
ApEn_sub 77.1 57.1 82.9 68.6 74.3 71.4 45.7
ApEn_pop 74.3 60.0 77.1 62.9 82.9 71.4 68.6 62.9

The table shows the percentage of correctly classified cases applying the leaving-one-out technique and prior probabilities from Table 1
(values >85% bold)
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Fig. 4 Graphical representation of the states classification in the
parameter space of ln(LF) and KLE_Mean. The visual estimated
state classification is indicated by symbols. Boundaries between the
classification regions are shown by solid lines. Two classification
errors occurred (2F state in 1F region, 4F state in 2F region)

Table 4 Detailed results of discriminant analysis for the behavio-
ural states with parameters KLE_Mean and ln(LF) applying the
leaving-one-out technique and prior probabilities from Table 1

State Predicted state Total

1F 2F 4F

1F 11 0 0 11
2F 1 15 0 16
4F 0 1 7 8
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combining the complexity parameter KLE_Mean with
the classical parameter ln(LF) (Table 3). The results of
univariate analysis show that parameters describing
slow heart rate variations (SDNN, ln(LF), KLE_-
Mean) contribute better to the discrimination than
parameters describing fast variations (RMSSD,
ln(HF), KLE_1). This shows the importance of selec-
tion of appropriate time scales that could be the rea-
son of the observed advantages of KLE in comparison
with ApEn. However, a systematical comparison of
both methods was not the subject of this work.

The presented technique of fetal behavioural state
classification by including a short window assessment
of heart rate complexity provides a remarkable
development of the established methods. Previous at-
tempts of sleep state classification from HRV patterns
were based on CTG recordings and were done using
linear HRV measures [17]. As far as we know, com-
plexity of fetal heart rate fluctuations was assessed for
longer data sets only and by disregarding the inevi-
tably shorter sleep states [24, 26, 35]. A corresponding
first approach of complexity estimation of sleep state
dynamics in a newborn piglet is described by Hoyer
et al. [14]. The different discriminatory value of dif-
ferent time scales of KLE, found in the study pre-
sented here, confirm the physiological and
discriminatory relevance of time scale dependent
complexity measures such as found in the prognosis of
multiple organ dysfunction syndrome patients [15].

In the present study, the subjective visual state clas-
sification was done based on objective criteria and it was
reproducible within the investigator groups of the
Friedrich Schiller University. Furthermore, it was done
prior the statistical analysis and, therefore, did not
influence it.

Because of the small sample size, the 3F state was
excluded from the statistical discrimination. Reasons are
the small overall amount of data in connection with the
distribution of the states 1F–4F, which correspond to
findings of other authors. Also Arabin and Riedewald
have neglected the 3F state because of its low appear-
ance [2]. The analysis of data sets representative for the
3F state require the acquisition of much more data
which might require a multicenter study. Otherwise, the
low appearance of 3F state makes its importance in
clinical routine diagnostic questionable.

We conclude that the KLE of heart rate fluctuations
contributes to improved automatic behavioural state
classification and the analysis of fetal behavioural
dynamics.
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