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Abstract The aim of the study was to realize a mathe-
matical model of insulin–glucose relationship in type I
diabetes and test its effectiveness for the design of con-
trol algorithms in external artificial pancreas. A new
mathematical model, divided into glucose and insulin
sub-models, was developed from the so-called ‘‘minimal
model’’. The key feature is the representation of insulin
sensitivity so as to permit the personalisation of the
parameters. Real-time applications are based on an
insulin standardised model. Clinical data were used to
estimate model parameters. Root mean square error
between simulated and real blood glucose profiles (Grms)
was used to evaluate system efficacy. Results from
parameter estimation and insulin standardisation
showed a good capability of the model to identify indi-
vidual characteristics. Simulation results with a Grms

1.30 mmol/l in the worst case testified the capacity of the
model to accurately represent glucose–insulin relation-
ship in type 1 diabetes allowing self tuning in real time.

Keywords Physiological model Æ External artificial
pancreas Æ Type 1 diabetes Æ Insulin replacement Æ
Feedback control

1 Introduction

The insulin therapy optimisation for type 1 diabetic
patients can significantly improve their quality of life
and life expectancy [29]. Therefore, since the early 1970s,

an external device capable of tuning insulin infusion to
blood glucose changes was the objective of many studies
[1, 21]. Research in this field has always been model-
based and has moved from the development of the
structure of a model of glucose and insulin dynamics
stepping towards model parameter estimation and
model personalisation to each single patient’s require-
ments. The models thus represented a platform for
the development of insulin control strategies [2] and a
tool for their preliminary testing. The Biostator [7]
is probably the most important example of bedside
extracorporeal artificial pancreas which was developed
almost 30 years ago and is still used for research pur-
poses [13, 19, 20]. Its control algorithms were based on
intravenous glucose sampling and intravenous insulin
infusion. The shift towards the subcutaneous route is
still in progress [10, 11, 17, 22, 25, 33, 31], because whilst
subcutaneous insulin infusion pumps and rapid acting
insulin analogues are a well established reality, stable
and reliable subcutaneous glucose sensors that can finely
and safely detect blood glucose oscillations and drive
insulin feedback are not yet available [6]. In fact, the
subcutaneous sensors obtainable from the market [14]
have many limitations that are not compatible with the
strict requirements of control algorithms. In this con-
text, the study of our mathematical model aimed at
realising the basis for a future external wearable artificial
pancreas intended as a closed loop system using the
subcutaneous route. Model structure and parameter
estimation were tailored towards the further develop-
ment of control algorithms capable of maintaining
euglycaemia in type 1 diabetics, adjusting the insulin
dose in real time by continuous subcutaneous insulin
infusion (CSII). The main objective was the production
of a reliable model representing a ‘‘virtual patient’’ that
may allow the assessment of different control strategies.
But on the other hand, it was clear that the main key to
producing an effective insulin infusion control is the
capability of the model to represent the single patient
(personalisation) following real time changes of the
patient’s physiological responses.
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Consequently the structure of the model and its
estimated parameters must meet the time requirements
imposed by this primary real time personalisation task.

The aim of the present study was the realisation of a
model complex enough to give a close representation of
glucose metabolism pathways but none the less capable
of real time parameter estimation in order to achieve fine
tuning of safe insulin infusion. The model has been
developed on the basis of the so-called minimal model
(MM), proposed for healthy subjects by R.N. Bergman
and C. Cobelli in the late 1970s [5, 8], which is charac-
terized by a bi-linear description of the insulin-depen-
dent glucose metabolism. The model has been modified
to represent type 1 diabetic patients under continuous
insulin infusion and external inputs such as meals and
glucose boles. Its parameters have been estimated and its
accuracy validated by simulations run on data collected
during a clinical experiment.

2 Materials and methods

2.1 Mathematical model

The feedback control must face the changes in patient
sensitivity to exogenous insulin, which occur both daily
(the well-known circadian variation of insulin sensitiv-
ity) and in the long term. The controller must meet the
requirements of self-tuning, i.e. its parameters must
change as a function of the specific patient response. The
key for tuning the controller parameters resides in the
model of insulin and glucose dynamics and kinetics in-
cluded in the controller. Moreover, the same insulin–
glucose model represents a tool for investigating a fea-
sible structure of the controller itself, and the depen-
dence of its parameters on the main features of insulin
dynamics and insulin-dependent glucose metabolism.

In order to be used as the kernel of the self-tuning
controller, the model must fulfil the main requirement of
on-line identification on the basis of easily and promptly
measurable biological quantities. Two biological vari-
ables of interest are easily accessible during the patient’s
normal life: blood glucose and plasma insulin concen-
trations. Whilst glucose concentration is easily measured
by precise and stable—even if not yet available for
implantation—electrochemical sensors, evaluation of

insulin concentration at present requires lengthy labo-
ratory analyses that make it useless for feedback control.
Therefore, control action must be performed on the
basis of glucose values only, whilst the whole insulin
dynamics, from its administration site to the sites of
glucose metabolism, hepatic release, etc. must be repre-
sented by a model that standardises individual behav-
iour.

Another important issue is the time required for
model identification, because it affects promptness and
accuracy of the control action. It increases almost
exponentially with the number of estimated parameters
which, consequently, should be minimized. On the
contrary, a negligible time expenditure, is needed for
microprocessor units (even implanted) to perform the
large number of algebraic and logical operations re-
quired by a fairly complex model. Therefore, the model
structure should be as refined as possible, to accurately
reproduce the biological process in spite of the reduced
number of parameters characterizing the patient’s indi-
vidual response. An adequate set of experimental data is
then required to test model accurateness.

The MM describes the glucose metabolism as pro-
portional to the product of glucose and insulin concen-
trations, thus depending on only one coefficient of
‘‘insulin sensitivity’’ subjected to estimation. MM has
been developed and tested on healthy subjects, whose
insulin is released by pancreas depending on the actual
blood glucose concentration. MM was modified to
represent insulin-dependent diabetic patients mainly
substituting pancreatic release of endogenous insulin
with exogenous insulin administration. Renal clearance,
a glucose homeostasis feature peculiar in type 1 diabetes,
was included in the glucose balance. The need to simu-
late food assumption and consequently hepatic balance,
led to the introduction of corresponding submodels.

The complete model block diagram (Fig. 1) shows
the two main subsystems representing, as in the MM,
insulin and glucose dynamics. The insulin block receives
the externally administrated insulin, and generates the
insulin concentrations acting at the interstitial and he-
patic levels. The glucose block receives the glucose
contribution from food ingestion, and includes liver
uptake and release, insulin-independent metabolism and
renal clearance. Moreover, a second interstitial com-
partment was integrated into the description of glucose

Fig. 1 Simulink model
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metabolism following Regitting et al. [23], where insulin-
dependent glucose metabolism is still represented by a
bi-linear term, as in the MM. A third algebraic block
was then added, representing liver glucose uptake and
release and connected to the representation of food
assumption.

Model equations are described below. Their variables
are listed in Table 1, and parameter meaning and values
in Table 2.

2.1.1 Insulin sub-model

The original MM of insulin kinetics includes a plasma
compartment (Eq. 1) and a remote one (Eq. 2). We
chose to maintain the inherited presence of a ‘‘black
box’’ compartment such as the remote one because it
gives the opportunity of taking into account some
complex phenomena that cause a reduction of the
amount of glucose available without increasing the
modelling burden. This is the case of the synthesis of
proteoglycans which has a diffused biological impact
[27, 30, 34] and is responsible for the rate of endo-
thelial glucose uptake. We decided to put this process
in the remote ‘‘black box’’ area and to consider the
global rate of glucose somehow metabolized while
avoiding detailed investigation. The present insulin
sub-model is obtained from MM by suppressing
therein the input of endogenous insulin, and including
the external inputs Viv (lU/h) of exogenous insulin
directly administrated in vein and S (lU/h) of insulin
coming from subcutaneous administration:

dI
dt
¼ 1

Txi
�I þ Ki Viv þ Sð Þð Þ; ð1Þ

dX
dt
¼ 1

Tm
�X þ Ið Þ; ð2Þ

where I (lU/ml) is the plasma insulin concentration and
X (lU/ml) the equivalent concentration in the remote
compartment: only I is measurable. Viv is the rate of
appearance in plasma of insulin administrated by con-
tinuous infusion or by boles.

The input S, i.e. the rate of appearance in plasma of
insulin coming from subcutaneous administration, is
generated by a third equation, which has been added to
the previous ones to describe a subcutaneous compart-
ment:

dS
dt
¼ 1

Ti
�S þ Vscð Þ; ð3Þ

where Vsc (lU/h) is the rate of subcutaneous adminis-
tration (infusion or bolus) and S (lU/h) the release rate
to plasma compartment. Therefore, two insulin inputs
are available, subcutaneous Vsc and intravenous Viv.

Txi (h), Tm (h) and Ti (h) are time constants related to
insulin diffusion through the three compartments. The
constant Ti of diffusion in the subcutaneous compart-
ment is not identifiable because the variable X (the
equivalent insulin concentration in the remote com-
partment, lU/ml) is not measurable; it has a value
(Table 2) obtained from literature and depending on the
insulin type [15, 16, 18]. The constants of diffusion in the
plasma and remote compartments, Txi and Tm (whose
reciprocals are both dominant poles of the insulin sub-
model), as well as the gain constant Ki (ml/h), which is
related to the plasma distribution volume, are estimated
to determine the insulin model. The whole model is
shown in Fig. 2.

Table 1 List of variables

Symbol Dimensions Type Meaning

t h Time
Viv lU/h Input Rate of insulin intravenous infusion
Vsc lU/h Input Rate of insulin subcutaneous infusion
S lU/h State Insulin flow from the subcutaneous to the plasma compartment
I lU/ml State Plasma insulin concentration
X lU/ml State Equivalent insulin concentration in the remote compartment
G mmol/l State, output Blood glucose concentration
Y mmol/l State, alt. output Glucose concentration in the interstitial compartment
Giv mmol/h Input Rate of intravenous glucose infusion
Eg mmol/h State Rate of exogenous glucose input in blood (intestinal absorption)
Eb mmol/h Internal Rate of endogenous glucose input in blood (hepatic balance)
Pcirc – Internal Coefficient of the circadian variation of insulin sensitivity
Er mmol/h Internal Rate of renal glucose clearance
Em mmol/h Internal Auxiliary variable in the renal clearance description
Ri mmol/h Input Rate of carbohydrate ingestion during meals
Ag mmol/h State Rate of glucose appearance in blood from sugar
As mmol/h State Rate of glucose appearance in blood from fast absorption starch (starch100)
Am mmol/h State Rate of glucose appearance in blood from slow absorption starch (mixed meal)
Qr mmol/h Internal Rate of hepatic glucose release
Qc mmol/h Internal Rate of hepatic glucose uptake
Erel mmol/h Internal Auxiliary variable in the hepatic release description
Qg mmol/h Internal Auxiliary variable in the hepatic uptake description
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2.1.2 Glucose sub-model

The original MM includes only one blood glucose
compartment. One more interstitial compartment was
added here, following Regitting at al. [23], where
insulin-dependent glucose metabolism takes place
according to the bi-linear rule of MM. Five more
terms have been inserted in the blood compartment
equation (Eq. 4), to refine the overall description: a
constant Mi (h) describing the insulin-independent
metabolism; two input variables Eg (mmol/h) and
Eb(mmol/h), whose generation will be described in the
following sections, accounting for the glucose contri-
butions, respectively, from ingested food and from
hepatic release; the external input Giv (mmol/h), from
intravenous glucose administration (as in intravenous
glucose tolerance tests, IVGTT), and, finally, the glu-
cose subtraction Er (mmol/h) by renal clearance.
Therefore, the equations are:

dG
dt
¼ � G

Tyg
þ Y

Tgy
þ 1

Vg
�Mi þ Eg þ Eb þ Giv

� �
� Er; ð4Þ

dY
dt
¼ Kyg

G
Tyg
� Y

Tgy

� �
� KisPcircXY : ð5Þ

G (mmol/h) and Y (mmol/l) are glucose concentra-
tions, both measurable depending on the glucose sensor
type and location. The term G/Tyg � Y/Tgy describes the

exchanges between compartments; the values of Vg

(distribution volume of blood glucose compartment,
9.91 l), Kyg (rate between the distribution volume 0.952),
Tyg (=0.194 h) and Tgy (=0.194 h) are obtained by a
best-fit of the experimental responses of Regitting at al.
[23]. The insulin sensitivity coefficient Kis (ml/lU/h), in
Eq. 5, rules the glucose metabolism according to a bi-
linear law which, as already stated, is the main
assumption of MM. The non-dimensional coefficient
Pcirc allows the description of circadian sensitivity vari-
ation, assumed to be sinusoidal:

Pcirc ¼ 1þ Ac sin
p t
12
þ Pc

� �
: ð6Þ

The values of Kis and, if necessary, of the amplitude
Ac and phase Pc of the circadian rhythm are estimated,
and characterize the model of the individual subject. It
should be borne in mind that the amplitude Ac has some
meaning only if the set of experimental values covers a
reasonable length of time, i.e. it includes the times of
minimum and maximum sensitivity; in that case, it is
bound to 1 as Kis cannot become negative; moreover, no
circadian variation should be computed if the model is
inserted in a self-tuning controller, where Kis is evaluated
on-line at a frequency much higher than the circadian
rhythm: in that case Pcirc=1. After computing Pc, also
the time of minimum insulin sensitivity can be deter-
mined off-line:

Table 2 List of parameters

Symbol Dimensions Value Meaning

Ki ml/h Estimated Constant related to the plasma insulin distribution volume
Txi h Estimated Time constant of insulin diffusion in the plasma compartment
Tm h Estimated Time constant of insulin diffusion in the remote compartment
Ti h Case dependent Time constant of insulin diffusion in the subcutaneous compartment

(insulin-dependent: regular insulin 1.52, lispro 0.152)
Tyg h 0.194 Time constant of glucose diffusion from blood to interstitial compartment
Tgy h 0.194 Time constant of glucose diffusion from interstitial to blood compartment
Kis ml/lU/min Estimated Sensitivity coefficient in the insulin-dependent glucose metabolism
Vg l 9.91 Distribution volume of the blood glucose compartment
Kyg – 0.952 Rate between the distribution volumes of interstitial and blood compartments
tini h Case dependent Starting time of the experiment
Pc – Estimated Phase of the circadian rhythm
Ac – Estimated Relative amplitude of circadian rhythm
Mc h Computed Time of minimum insulin sensitivity
Fs – Case dependent Starch fraction in the total meal carbohydrate amount
Fm – Case dependent Fraction of mixed meal in the starch absorption model
I0 lU/ml Estimated Initial value of plasma insulin in the infusion suppression phase
Ins lU/ml Estimated Root-mean-square error of plasma insulin estimation during

the infusion suppression phase
Irms lU/ml Estimated Root-mean-square error of plasma insulin estimation in the whole experiment
Grms mmol/l Estimated Root-mean-square error of blood glucose estimation in the whole experiment

Fig. 2 Insulin sub-system
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Mc ¼ tini þ 24
Pc

2p
� 1

4

� �� �

mod24

; ð7Þ

where tini (h) is the starting time of the experiment.
The renal clearance in hyperglycemic conditions is

described by a non-linear feedback loop:

Em ¼ 0:117 0:87þ tanhð0:0045ðG� 175ð Þ;

Er ¼
Em if Em � 0
0 else

�
:

ð8Þ

Numerical coefficients have been chosen so as to
reproduce the well-known mean course of renal clear-
ance [26]. The whole model is shown in Fig.3.

2.1.3 Food intake

The variable Eg (mmol/h), describing glucose input from
meals, is obtained by processing a time dependent input
representing the rate of food intake. According to Arleth
et al. [3, 4], gut absorption is split in three terms, each
one corresponding to a class of carbohydrates with dif-
ferent absorption rates: sugar Ag (mmol/h), fast
absorption starch As (mmol/h), and slow absorption
starch Am (mmol/h), as derived from mixed meals, where
the presence of different nutrients slows down the
absorption of carbohydrates:

Eg ¼ Ag þ As þ Am; ð9Þ

where Ag, As and Am are obtained by filtering the
ingestion rate Ri by appropriate transfer functions,
which were obtained by numerical fitting of the results of
Arleth et al. [3]:

AgðsÞ ¼ 1� Fsð Þ 16:6

sþ 1:44ð Þ sþ 135ð ÞRiðsÞ; ð10Þ

AsðsÞ ¼ Fs 1� Fmð Þ 467

sþ 1:61ð Þ sþ 7:20ð Þ sþ 7:18ð ÞRiðsÞ;

ð11Þ

AmðsÞ ¼ FsFm
75:1

sþ 0:466ð Þ sþ 5:54ð Þ sþ 5:86ð Þ sþ 6:43ð ÞRiðsÞ;

ð12Þ

where Fs is the fraction of starch (and, therefore, 1�Fs

the fraction of sugar) and Fm is the fraction of mixed
meal in the total amount of starch. An oral glucose
tolerance test (OGTT) is easily represented by a meal of
pure sugar, i.e. by putting Fs=0.

2.1.4 Hepatic balance

The need to handle food input also requires the repre-
sentation of liver uptake and release, which play a
considerable role in post-prandial glucose homeostasis.
A non linear block describes the hepatic balance taking
into account glycogenosynthesis, glycogen storage and
hepatic release due to glycogenolysis [9, 12, 24] and
gluconeogenesis [32], as depending on blood glucose,
plasma insulin and gut absorption rate:

Eb ¼ Qr � Qc; ð13Þ

where Qr (mmol/h) describes the glucose release:

Erel ¼ 840=I � 10

Qr ¼
52:6 if Erel > 52:6
Erel if 52:6 � Erel � 0
0 else

8
<

:
ð14Þ

and Qc (mmol/h) the uptake:

Qg ¼
3:64G� 15 if 3:64G� 15 � 14

14 else

�

Qc ¼ 0:25Eg þ Qg:
ð15Þ

The equation structure, and coefficient values, have
been obtained by fitting several average responses re-
ported in [9, 12, 24, 32].

2.2 Clinical data set

Parameters Txi, Tm (time constants of insulin diffusion in
plasma and remote compartments), Ki (constant related
to plasma insulin distribution volume, ml/h), Kis (sensi-
tivity coefficient in the insulin-dependent glucose
metabolism, ml/lU/min) and Pc (phase of circadian
rhythm) were estimated on the basis of data collected
during a 10 h clinical trial on six type 1 diabetic patients
(identified according to the WHO criteria) on continu-
ous subcutaneous insulin infusion therapy (CSII) with
lispro insulin. All patients had a diabetes history of at
least 5 years, were C-peptide negative, and were treated
with CSII for at least 6 months before the study. The
study was conducted in the outpatient metabolic re-
search unit of the Department of Internal Medicine
(DIMI) of Perugia University (Perugia, Italy). Patients
arrived at the Hospital at 7:30 a.m. after an overnight
fast; during the following 30 min the insulin infusion
rate was kept constant. The experiment included two

Fig. 3 Glucose sub-system
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phases, lasting 4 and 6 h, respectively: an infusion sup-
pression phase, used for estimation of Txi (time constant
of insulin diffusion in plasma compartment, h), and a
recovery phase. The remaining parameters have been
estimated on the whole 10 h trial. At 8:00 a.m., starting
time of the suppression phase, the CSII was interrupted;
at noon it was re-established, a s.c. bolus was adminis-
tered according to the level of metabolic deterioration
and a standard meal (40 g of carbohydrates) was given.
The bolus was followed by the reprise of the usual basal
insulin infusion. Insulin infusion rate was changed every
30 min during the recovery phase; blood glucose sam-
ples were collected every 30 min, plasma insulin every
hour. The study ended at 6.00 p.m. after 6 h of recovery.

2.3 Estimation procedure

2.3.1 Insulin sub-model

In order to estimate Txi (time constants of insulin dif-
fusion in remote compartment, h), an explicit model has
been deduced from the implicit one of Eqs. 1 and 2.
During the suppression phase, the insulin subsystem is
not fed by any input, and, therefore, the output of the
plasma insulin block evolves in free response bi-expo-
nentially with the time constants Ti of the subcutaneous
compartment (Ti=0.152 h for lispro insulin) and Txi of
the plasma compartment. If, as in our case, the infusion
rate has been kept constant for at least 15 min before
stopping, plasma insulin is given thereafter by:

I ¼ I0 1þ Ti

Txi

� �
exp � t

Txi

� �
� Ti

Txi
exp � t

Ti

� �� �
;

ð16Þ

where I0 is the initial value, which is also estimated.
Estimation was performed by minimizing the RMS error
Err between computed and experimental values.

The constant Ki, which does not appear in Eq. 16,
was then determined by minimizing the RMS error, Irms,
between computed and experimental plasma insulin
values, on the whole experiment time. Finally, the third
time constant Tm of insulin sub-model was estimated,
together with the main parameter Kis of the glucose sub-
model, by minimizing the glucose RMS error, Grms.

2.3.2 Glucose sub-model

The insulin sensitivity coefficient of glucose metabolism
Kis (ml/lU/min), and the circadian variation parame-
ters, Ac and Mc were computed (together with the
remaining time constant Tm of the insulin sub-model) on
the 10 h glucose response of the model, equipped with
the previously computed values of Txi and Ki. Estimated
and experimental glucose profiles were compared to
assess the quality of estimation, the RMS error Grms

between real data and simulated blood glucose values
was chosen as quality index.

The model was programmed in Matlab 6 language
and Simulink 3 graphic toolbox and simulated on per-
sonal computers. All values were estimated by a simplex
algorithm (Matlab Fminsearch function), which has also
been used for the best-fit of literature data on glucose
exchanges between compartments, renal clearance, gut
absorption and hepatic balance.

3 Results

3.1 Parameter estimation

Three different methods were considered to estimate the
unknown model parameters:

1. All parameters were estimated patient by patient,
their mean values were then computed (Table 3);

2. A unique value of Txi, (time constant of insulin dif-
fusion in plasma compartment, h), was evaluated for
the whole group of patients on the set of the 6·5
insulin values during the suppression phase; then Ki

(constant related to the plasma insulin distribution
volume, ml/h) and all the remaining parameters were
estimated for each individual patient;

3. After evaluating Txi and Ki as in (2), the remaining
individual parameters were computed by using the
mean value Ki=0.0101 ml/h in place of its individual
values (Table 4).Two ways were tested for evaluating
Txi in cases (2) and (3): estimating individual values
for each patient, as in case (1), and computing the
mean Txi=3.96 h of the 6 estimated values; or di-
rectly computing Txi=1.81 h on the whole set of 30
experimental values, after normalizing each individ-
ual data series with respect to its mean. The second
way was preferred as it produced a lower mean value
of the root mean square error Irms between experi-
mental and simulated plasma insulin profiles
(4.15±1.17 lU/ml, mean ± SD, vs. 4.72±1.24 lU/
ml) while estimating Ki, with equal values of the root
mean square error Grms between measured and sim-
ulated blood glucose profiles.

Method (1), i.e. individual estimation of all parame-
ters, was implemented only for comparison with the
remaining ones, as it requires evaluation of insulin
concentration case by case and, therefore, is useless for
on-line application; moreover, it produces the highest
RMS error in the estimation of the glucose parameters
(Grms=1.03 mmol/l). Both methods (2) and (3) pro-
duced the same glucose error, Grms=0.88 mmol/l, and
the third one was preferred as it does not involve case-
by-case computation of Ki from the insulin values. Ta-
bles 3 and 4 also include phase Pc of circadian rhythm
and time Mc of minimum Cs off-line computed by Eq. 7.

3.2 Standard insulin model

As seen above, standard values of Txi (time constant of
insulin diffusion in plasma compartment, h) and Ki
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(constant related to the plasma insulin distribution vol-
ume, ml/h) are required for on-line use of the model,
while Tm (time constant of insulin diffusion in remote
compartment, h) could be estimated, together with Kis

(sensitivity coefficient ml/lU/min), on the glucose re-
sponse. Nevertheless, using the mean value Tm=2.45 h
resulting from Table 4 reduces the burden of on-line
computation of two parameters on the basis of the
measurement of glucose only, and avoids its loss of
accuracy. Therefore, a standard model of insulin kinetics
has been characterized by the estimated Txi and the
mean values of Ki and Tm, i.e. Txi=1.81 h,
Ki=0.0101 ml/h, Tm=2.45 h. Such values were used to
compute once again the parameters of the glucose sub-
model: they are listed in Table 5; the mean insulin sen-
sitivity is Kis=0.0481 ml/lU/h. Parameters of circadian
variation have also been computed: Table 5 lists, as
Tables 3 and 4, phase Pc as well as the time of minimum
insulin sensitivity. Tables 3, 4 and 5 do not list the
estimated values of the amplitude Ac as they are mean-
ingless, because the times of minimum and maximum
insulin sensitivity are outside the experimental interval
(sometimes Ac was larger than 1). Figure 4 shows the
glucose courses, compared with the simulated responses,
of two cases, no.1 with the lowest Grms (0.66 mmol/l)
and no.2 with the highest one (1.33 mmol/l).

4 Discussion and conclusions

The present study proposes a mathematical model of
insulin and glucose metabolism in type I diabetes which
is, first of all, a very easy-to-handle tool, with person-

alization facilities that allow a quick estimation of its
parameters (Kis and, if necessary, Mc and Ac) based only
on the blood glucose response of the individual patient.
The Simulink structure increases the user-friendliness of
the model without affecting the computer performance
over time.

Estimation results The graphs of Fig. 4 show that the
model, equipped with the standard insulin parameters,
seem capable of producing a satisfactory approximation
even in the worst case, where the RMS error Grms be-
tween measured and simulated blood glucose profiles is
1.33 mmol/l.

Standard insulin model Comparison between Tables 3
and 5 show that the use of the standard insulin model
does not appreciably affect the accuracy of representa-
tion, as measured by glucose RMS error Grms: the use of
the standard value of Tm, time constant of insulin dif-
fusion in remote insulin compartment, in place of its
value estimated case by case, slightly reduces the accu-
racy (Grms=0.94 vs 0.91 mmol/l). The individual values
of the insulin sensitivity are rather different, but their
mean values are almost indistinguishable
(Kis=0.0481±0.0189 vs 0.0441±0.0188 ml/lU/min,
mean ± SD). The same is valid even for case (1)
(Kis=0.0426±0.0214 ml/lU/min). Therefore, the stan-
dard insulin model that makes possible the on-line
tuning of the model can be assumed as a mean repre-
sentation of the insulin kinetics, robust enough to be
used for different subjects. As a consequence, it can be
adopted for developing self-adaptive control algorithms
based on on-line model tuning. This inference is also

Table 3 Parameter estimation
case by case Case Txi Err Ki Irms Tm Kis Pc Mc Grms

1 0.43 0.010 0.0047 7.27 0.025 0.0781 4.95 7.08 1.10
2 3.93 0.064 0.0123 2.48 0.696 0.0206 4.92 7.20 1.29
3 3.04 0.084 0.0120 1.80 0.612 0.0360 5.72 5.15 0.90
4 1.41 0.239 0.0125 3.59 1.976 0.0357 5.34 5.60 0.83
5 12.99 0.161 0.0179 3.88 0.231 0.0541 4.90 7.78 1.30
6 1.97 0.070 0.0194 4.05 2.427 0.0242 5.45 5.17 0.41
Mean 3.96 0.105 0.0131 3.85 0.995 0.0426 6.33 1.03
SD 4.59 0.082 0.0052 1.89 0.977 0.0214 1.16 0.34

Table 4 Parameter estimation with fixed Txi and Ki

Case Txi=1.81

Ki Irms Ki=0.0101

Tm Kis Pc Mc Grms

1 0.0046 3.41 1.06 0.0653 4.73 7.92 0.61
2 0.0095 4.11 0.71 0.0237 4.82 7.57 1.28
3 0.0102 2.50 0.61 0.0423 5.80 4.85 0.80
4 0.0097 4.78 2.87 0.0436 5.24 5.97 0.83
5 0.0074 5.92 2.10 0.0659 4.80 8.16 1.17
6 0.0190 4.16 7.37 0.0236 5.42 5.30 0.59
Mean 0.0101 4.15 2.45 0.0441 5.30 0.88
SD 0.0048 1.17 2.56 0.0188 2.80 0.29

Table 5 Parameter estimation, standard insulin model

Case Txi=1.81, Ki=0.0101, Tm=2.45

Kis Pc Mc Grms

1 0.0706 4.88 7.37 0.66
2 0.0263 4.88 7.37 1.33
3 0.0397 5.68 5.31 1.01
4 0.0395 5.29 5.81 0.84
5 0.0725 4.72 8.48 1.15
6 0.0401 5.40 5.37 0.66
Mean 0.0481 6.62 0.94
SD 0.0189 1.31 0.27
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supported by the fact that the mean value of Tm is
indistinguishable from the corresponding parameter of
MM (1.52 h). In other words, the diffusion through
compartments of exogenous insulin in diabetics looks
quite similar to that of endogenous insulin in healthy
subjects.

Circadian rhythm The values of Mc, time of minimum
insulin sensitivity, cannot be assumed as being quanti-
tative evaluations of patients’ circadian rhythm, as the
experiment time covers only the ascending segment of
the sinusoid of Eq. 6; but their mean values, all situated
around 6 a.m., are in accordance with the well-known
dawn phenomenon [28]. Anyway, they indicate at least a
general increase of sensitivity with time, which is more
relevant during the first part of the experiment, in
accordance with the physiological knowledge.

Virtual patient The set of Eqs. 1, 2, 3, 4, 5 (with
Pcirc=1) and 8, 9, 10, 11, 12, 13, 14 and 15, once
equipped with the standard insulin coefficients of

Table 4, and the mean Kis value of Table 5, fully char-
acterizes a ‘‘virtual patient’’, which is a useful tool for
first approximation theoretical studies on the structure
of a feedback controller. Moreover, variation ranges of
the controller parameters can be argued to depend on
the range of Kis values. The control algorithm could be
designed on such a virtual patient resulting from the
average values of the estimated parameters for the
cluster of patients. This operation will represent a fur-
ther error filter. Introducing the standard values of
insulin model also improves the estimation quality by
filtering insulin measurement noise.

Closed loop system A closed loop external artificial
pancreas would basically constitute: (1) a glucose sensor,
(2) a micro-controller equipped with a mathematical
algorithm able to control insulin infusion as a function
of the measured glucose values, and (3) an insulin
infusion pump. At present two major obstacles impair
the realization of a fully automated artificial pancreas
usable in daily life: implanted sensors cannot yet be
considered sufficiently reliable for securing the quality of
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Fig. 4 Time courses of blood
glucose. Solid line experimental;
dashed simulated. a Case no. 1,
Grms=0.66 mmol/l; b case no.
2, Grms=1.33 mmol/l
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continuous glucose monitoring required to close the
loop, and studies on control algorithms are still in pro-
gress towards satisfactory results. This mathematical
model was conceived with the global aim of making a
step towards the realization of a closed loop artificial
pancreas. From this general purpose spring two imme-
diate and connected objectives. The model must support
studies for the development of control algorithms and
must be a tool for their testing, either by simulation or
during clinical trials. The capability of the model to be
effective in the development of control algorithms is
related to its accuracy in representing a diabetic subject.
The results in terms of the main accuracy index (Grms)
seem to ensure a suitable closeness between real and
simulated data but it has to be said that only successive
studies on algorithms will finally testify that this range
provides the adequate accuracy of diabetes pathophysi-
ology representation and the filtering of measurement
artefacts.

Conclusion At the state of the art of the present study
we can conclude that a useful tool has been developed
for the purpose of further simulation studies on glucose
feedback control algorithms. The model is an adequate
representation of diabetic subjects. Technical charac-
teristics of the model ensure that it can be used during a
clinical trial on real patients, where the model can work
on-line as a virtual interface, representing a particular
patient, towards other devices. The model of a virtual
patient then gives the possibility of testing control
algorithms before applying them to people, improving
the expectations and reducing the risk of experimental
activities on real patients.
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