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BACKGROUND: Visualization of chromosomal loci location and dynamics is crucial for understanding many fundamental
intra-nuclear processes such as DNA transcription, replication, and repair.

OBJECTIVE: Here, we will describe the development of fluorescence labeling methods for chromatin imaging, including
traditional as well as emerging chromatin labeling techniques in both fixed and live cells. We will also discuss current issues and
provide a perspective on future developments and applications of the chromatin labeling technology.

METHODS: A systematic literature search was performed using the PubMed. Studies published over the past 50 years were
considered for review. More than 100 articles were cited in this review.

RESULTS: Taking into account sensitivity, specificity, and spatiotemporal resolution, fluorescence labeling and imaging has
been the most prevalent approach for chromatin visualization. Among all the fluorescent labeling tools, the adoption of genome
editing tools, such as TALE and CRISPR, have great potential for the labeling and imaging of chromatin.

CONCLUSION: Although a number of chromatin labeling techniques are available for both fixed and live cells, much more
effort is still clearly required to develop fluorescence labeling methods capable of targeting arbitrary sequences non-intrusively
to allow long-term, multiplexing, and high-throughput imaging of genomic loci and chromatin structures. The emerging
technological advances will outline a next-generation effort toward the comprehensive delineation of chromatin at single-cell

level with single-molecule resolution.
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Introduction

Beyond its primary sequence, chromatin is known to package
into higher order structures that play important roles in gene
regulation in both prokaryotes and eukaryotes (Meldi and
Brickner, 2011). At the chromosomal level, chromosomes in
interphase are found to occupy discrete regions named
chromosome territories (CTs). Although there is no apparent
chromatin intermingling between neighboring chromosomes,
the inter-territory contact provides a space for some gene
regulation processes, such as translocation and transcription-
dependent association. Interestingly, the position of indivi-
dual CTs are non-random with gene-poor chromosomes
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localizing to the nuclear periphery and gene-rich chromo-
somes to the interior (Meaburn and Misteli, 2007). Several
studies have suggested that the transcriptional activity of
specific genes is correlated with their nuclear positioning
(Kumaran et al., 2008; Zuleger et al., 2013; Therizols et al.,
2014; Shachar et al., 2015). Within a CT, active genes often
localize on the surface of a territory while repressed genes
often hide in the interior (Cremer and Cremer, 2001). At the
megabase scale, recent sequencing studies have revealed that
chromosomal loci, some of which are genomically distant,
may undergo preferential interaction to organize the loci into
distinct modules called topologically associating domains
(TADs) (Dixon et al., 2012; Nora et al., 2012). Chromatin
organization at the TAD level plays a fundamental functional
role in transcription (Tang et al., 2015) and DNA replication
(Pope et al., 2014).

On the other hand, chromatin is a dynamic structure and
altering its structural organization is closely related to the
regulation of its functions (Hubner and Spector, 2010),
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including DNA transcription, replication, and repair (Lotters-
berger et al., 2015; Dekker and Mirny, 2016). For instance,
upon external environmental stimulation or differentiation,
specific gene regulation is often accompanied by rearrange-
ment or repositioning of the genes relative to the nuclear
envelope or other nuclear marker structures (Aizer et al.,
2008; Noordermeer et al., 2011; Deng et al., 2012; Fabre et
al., 2016).

Investigating chromatin structure and dynamics requires
direct visualization of chromosomal loci in situ (Hubner and
Spector, 2010). When taking sensitivity, specificity, and
spatio-temporal resolution into account, fluorescent labeling
and imaging techniques have been the most prevalent
approaches for chromatin visualization. In the last decade,
fluorescence microscopy techniques have been developed for
chromatin imaging in a wide range of organisms, including
bacteria (Viollier et al., 2004), yeast (Verdaasdonk et al.,
2013), and mammals (Saad et al., 2014). This has made it
possible to visualize and track specific genomic loci,
chromosomal segments, single chromosomes, or even
whole genomes to gather information regarding their
positions and dynamics under different situations, such as
mitosis and embryo development (Marshall et al., 1997;
Tsukamoto et al., 2000; Chuang et al., 2006; Masui et al.,
2011; Lucas et al., 2014; Chacon et al., 2016; Wijchers et al.,
2016). However, these observations are highly dependent on
the development of specific labeling methods, including
fluorescent marker proteins, fluorescence in situ hybridization
(FISH), fluorescent repressor and operator systems (FROS),
and fluorescent programmable, sequence-specific DNA
binding proteins. Herein, we review the development of
different chromatin labeling methods and highlight emerging
methods based on programmable, sequence-specific DNA
binding proteins (Table 1). In addition, we discuss challenges
facing these methods and provide a perspective on future
developments and applications for chromatin labeling
technology in the post-genome era.

Fluorescent labeling of chromatin in fixed
cells

Although fluorescent labeling methods, including the use of
DAPI (Kapuscinski, 1995) and fluorescent dNTPs (Bick and
Davidson,1974; Gratzner, 1982; Waldman et al.,1991; Salic
and Mitchison, 2008), have contributed greatly to the study of
chromatin DNA, they offer little or no specificity. Site-
specific labeling methods are in high demand for situations
where the relationship between DNA sequences and their
relative positions need to be explored. FISH was developed
several decades ago for the purpose of labeling specific
genomic sequences using probes complementary to the target
sequence (Gall and Pardue, 1969; Langer-Safer et al., 1982).
By concentrating multiple FISH probes at the target site, the
signal is amplified to produce a high signal-to-background

ratio (Fig. 1A). Since its invention, FISH has undergone
numerous modifications and optimizations to increase its
specificity, sensitivity, multiplexing, and throughput (Levsky
and Singer, 2003). Nowadays, FISH is used in a wide variety
of applications, from single genomic loci labeling (Tagarro et
al., 1994) to multicolor whole genome painting (Ried et al.,
1998) (Fig. 1B). Owing to its high specificity and relative ease
of implementation, FISH has remained the gold standard for
chromatin DNA labeling.

FISH probe detection was originally based upon radio-
active signals (Gall and Pardue, 1969), but quickly turned to
fluorescence signal detection using fluorophores such as
cyanine, Alexa Fluor, and quantum dots. Fluorophores are
usually attached to the probe nucleotide by the hydroxyl-
amino reaction or biotin-streptavidin conjugation. The high
quality and low cost of probes are key features for FISH, with
three methods currently utilized for probe preparation. The
first method is direct synthesis of nucleic acid oligomers or
peptide nucleic acids (PNAs), which are suitable for repetitive
sequences such as telomeres and centromeres. The second
method is nick translation, which prepares FISH probes from
cloned genomic regions, such as cosmids (30—40 kb), P1-
artificial chromosomes (PAC, 130-150 kb), bacterial artificial
chromosomes (BAC, 100-1000 kb) (Simonis et al., 2004),
yeast artificial chromosomes (YAC, 100-1000 kb), and a
flow-sorted chromosomes (Cremer et al., 2000). Nick
translation is marginally less expensive and more convenient
to operate, but bears lower efficiency.

The third probe preparation method is based on PCR and is
usually conducted in the following three ways: (i) Degenerate
oligonucleotide primed PCR (DOP-PCR)-based FISH probes
(Cremer et al., 2000; Bolzer et al., 2005), which are based on
a random six nucleotide (nt) sequence on the 3’ end of the
degenerate oligonucleotide primer that can potentially bind
anywhere along the genomic DNA sequence and thereby
amplify multiple loci or even the whole chromosome; (ii) a
versatile genome-scale PCR-based pipeline for high-defini-
tion DNA FISH probes (Bienko et al., 2013), which are based
on 200-220 nt amplicons. This method provides a database of
over 4.8 million primer pairs targeting the human genome that
are readily usable for the rapid and flexible generation of
probes. While this method has high labeling efficiency, it
suffers from high cost and complexity; and (iii) in order to
improve probe labeling efficiency and throughput, Beliveau
et al. developed a new method, named “Oligopaints.” This
method uses a complex oligo pool as a renewable source of
FISH probes that carry only 32 bases of homology to the
genome and are labeled by PCR with fluorophore-conjugated
PCR primers (Beliveau et al., 2012). In 2015, a modified
strategy was reported that introduced secondary oligonucleo-
tides (oligos) to produce and enhance the fluorescence signal.
This modified method was then applied to single-molecule
super-resolution imaging of chromosomes (Beliveau et al.,
2015). In 2016, the Wu laboratory further optimized the
“Oligopaints” strategy by utilizing a unique pair of index
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Figure 1

AlexaFluor 488 (1°) TYES63 (2°) Merge + DAPI

100%

Conventional intrusive labeling of chromatin loci in fixed and living mammalian cells. (A) Several commonly used FISH

methods. (D: probes each contains several dye molecules were generated by nick translation or PCR. @): probes each contains one dye
molecule were synthesized by commercial companies. ®: Oligopaint, a new technology that uses secondary oligo nucleotides to produce
and enhance fluorescence signals. (B) Upper: a 52 kb DNA fragment in diploid human WI-38 cells was labeled by oligopaint with both
primary and secondary probes. Lower: X chromosomes were painted by multiple probes covering the whole chromosome. (C) Working
mechanism of the FROS system. 256x LacO array were inserted into the targeted chromosome loci and GFP fused Lacl can be recruited to
the site to accumulate the fluorescent signals by removing IPTG. (D) Living cells tracking of the double strand break (DSB) repair process

by inserting LacO-IScel-TetO into the chromosome.

primers in a PCR reaction so as to selectively amplify the
probe set of interest from a complex pool of custom, array-
derived oligos. This modification was then applied in
visualizing chromatin structures (Boettiger et al., 2016;
Wang et al., 2016).

In traditional FISH, probe hybridization requires harsh
treatments using heat and formamide to denature global DNA
that could also distort cell morphology and DNA structure.
Recently, two novel approaches have been developed based
on the highly specific and efficient enzymatic DNA binding
ability of CRISPR/Cas9 under mild conditions. In 2013, Chen
et al. applied modified FISH to verify CRISPR/Cas9 DNA
labeling signals by transfecting living cells with CRISPR/
Cas9 expression plasmids, and then using FISH probes to
bind a complementary sgRNA binding strand in fixed cells at
37°C (Chen et al., 2013). In 2015, Deng et al. reported the
development of CASFISH in which Cas9 and sgRNA
complexes were able to be constituted in vitro as probes to
label sequence-specific genomic loci without global DNA

denaturation (Deng et al., 2015). The rapid, less intrusive,
cost-effective, and convenient method of CASFISH has great
potential for future application in the study of chromatin
structure.

Although this technology has made significant contribu-
tions to illuminating the organization of the crowded nucleus,
and elucidating the sophisticated structure of chromatin
folding, the inextricable limitation with FISH-based methods
remains their incompatibility with living cells. This limitation
restricts the application of this method in its ability to monitor
the dynamic processes of chromatin.

Fluorescent labeling of chromatin in living
cells

Fluorescent marker proteins

A straightforward approach to labeling and imaging chroma-
tin in living cells is by tagging chromatin binding proteins
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with fluorescent proteins. This approach allows the non-
intrusive labeling of whole chromatin or certain special
chromosomal segments, such as centromeres and telomeres
(Belmont, 2001). For example, as a constitutive component of
nucleosomes, histone H2B fused with GFP facilitated the
fluorescence imaging of chromosomes without perturbation
of chromosomal structure and function (Kanda et al., 1998).
This histone labeling method was also applied to study
chromosomal dynamics during mitosis, including condensa-
tion, pairing, and decondensation (Held et al., 2010).
Moreover, this method was adapted to provide the first
insight into chromatin fiber movement during interphase
using fluorescence recovery after photobleaching (FRAP) of a
small region in the nucleus (Abney et al.,1997). When
coupled with photo-convertible fluorescent proteins for
super-resolution imaging, nucleosome density along the
chromatin fiber in single nuclei can be visualized and
characterized quantitatively at ultra-high spatial resolution.
Using this approach, nucleosomes were found to assemble in
heterogeneous groups called “clutches,” which are inter-
spersed with nucleosome-depleted regions. The compaction
and number of nucleosomes inside individual clutches varied
in a cell-type-specific manner (Ricci et al., 2015).

However, several drawbacks limit the application of
histone-based chromatin labeling methods. First, fluorescent
histones are indistinctly incorporated into all chromosomes
with no sequence or chromosome information. Second, all
fluorescent protein tagged histones are exogenously
expressed by transient transfection or random integration,
which can introduce labeling artifacts. For example, over-
expressed fluorescent protein-histone may change the pack-
ing density of native histones and thus the unbound fraction
may contribute to false-positive localization. Even with the
advanced genome editing technology available nowadays, the
multi-copy nature of histone genes in the genome makes
tagging of the endogenous gene challenging.

Besides histones, other DNA binding proteins can also be
used to label special regions of chromatin. As examples,
telomeres and centromeres can be respectively labeled by
TRF1/2 and CENPA in mammal cells (Kepten et al., 2015). In
Escherichia coli, chromosome organization can be studied by
labeling nucleoid-associated proteins, H-NS or HU (Wang et
al., 2011).

Fluorescent Repressor and Operator System (FROS)

To circumvent the constraints caused by the non-specificity of
fluorescent histones and limited number of specialized
chromatin binding proteins, the Fluorescent Repressor and
Operator System (FROS) method was developed for in situ
DNA sequence localization (Robinett et al.,1996). FROS
takes advantage of the high binding affinity and specificity of
repressor proteins to operator sequences, which are inserted in
the genome in either a targeted or random manner. The most
commonly used FROS systems are the Lac operator (LacO),

from the lactose operon (Gilbert and Muller-Hill,1966), and
the Tet operator (TetO), from the tetracycline operon, of E.
coli (Hillen et al., 1982). To amplify the fluorescent signal, as
many as 256 tandem repeats of the operators are inserted into
the genome. In practice, a higher number of tandem repeats of
the operators may be integrated into the genome as multiple
plasmid copies tend to insert at the same site. FP-fused lac
repressor expressed in live cells allows direct in vivo
visualization of targeted chromosomal loci dynamics
(Fig. 1C). More importantly, the high orthogonality of
many FROS systems can be utilized simultaneously in a
single living cell without crosstalk, allowing multiple loci to
be tagged with different fluorescent proteins (Backlund et al.,
2014).

FROS has been widely applied in studies of the highly
advanced genetic manipulation systems in bacteria and yeast,
which allow for the insertion of long tandem repeats in any
desired location of the chromosome. Viollier et al. con-
structed 112 Caulobacter crescentus strains, each with a
LacO repeat inserted at an individual locus dispersed over the
circular chromosome. Tracking results demonstrated that
each locus had a specific subcellular address in living cells,
and individual chromosomal loci move rapidly and sequen-
tially to specific subcellular locations during bacterial DNA
replication (Viollier et al., 2004). Similar experiments have
also been conducted in budding yeast, where chromosome
motion was indicated to vary in a predicted manner along the
length of the chromosome in such a way that local mobility
was established to be a function of distance from the tether
(Verdaasdonk et al., 2013).

However, the application of FROS in mammalian cells has
been restrained by the lack of efficient genome editing tools
for locus-specific knock-in of operator array long tandem
repeats. Current methods are also deemed unreliable for their
tendency to introduce repeat truncations during homologous
recombination. In the past few years, several studies have
employed embryonic stem (ES) cells owing to their relatively
high efficiency for homologous recombination. For example,
Masui et al. integrated the TetO/TetR system into the Xic loci
by gene targeting to investigate homologous pairing events
controlling asymmetric Tsix expression, and to visualize the
dynamics of Xic and other genomic loci during X chromo-
some inactivation of ES cells. Results from this study found
the Xic loci to show markedly reduced movements during
pairing (Masui et al., 2011). In a separate study, Lucas et al.
explored the three-dimensional (3D) trajectories adopted by
the coding and regulatory DNA elements of the immunoglo-
bulin gene, during B lymphocyte development, by inserting
the TetO array into the IgH locus, using the ES cell gene
targeting technique (Lucas et al., 2014).

Another beneficial means by which to use the FROS
system is based on random integration. An elegant study,
aimed at visualizing and quantitatively analyzing the
dynamics of single double stand breaks (DSBs) in living
mammalian cells, was carried out by randomly inserting 256
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x LacO-IScel-96 x TetO arrays into NIH3T3 cells randomly
(Fig. 1D). By selecting a cell colony with only one integration
site and inducing IScel restriction endonuclease expression to
cut the IScel locus and thereby generate a DSB, the broken
ends were found to be constrained in space before undergoing
translocation with neighboring chromosomes (Soutoglou et
al., 2007; Roukos et al., 2013).

In summary, although it is a powerful tool to visualize and
track chromosomal loci in all living organisms, FROS suffers
some intrinsic constraints that prevent it from becoming the
routine method for genomic loci labeling in live mammalian
cells. First, the gene targeting process is labor-intensive and
time-consuming thus limiting the throughput for library-level
investigation. Second, the introduction of long exogenous
fragments (~10 kb) may inadvertently alter the local
chromosome structure (Guo et al., 2015). Further efforts are
therefore required to develop versatile and robust methods
that can achieve site-specific chromosomal loci labeling
methods in live cells.

Programmable, sequence-specific DNA binding proteins

Several new, endogenous genomic labeling approaches,
based on gene targeting techniques, have recently been
developed for use in living cells. These new techniques
include zinc-finger nucleases (ZFNs), transcription activator-
like effectors (TALE), and the clustered regulatory inter-
spaced short palindromic repeats (CRISPR/Cas9) system.
These non-intrusive imaging techniques can be visualized by
programmable, sequence-specific DNA binding modules
fused to fluorescent proteins by various linkers (Badique et
al.,2013; Chen et al., 2013; Hsu et al., 2014; Li et al., 2015;
Shalem et al., 2015; Wan et al., 2015; Wu et al., 2015).

Zinc fingers (ZF) are artificial DNA binding proteins
containing Cys,His, domains that recognize trinucleotides
(Segal et al.,1999). A stretch of more than 10 nucleotides can
be specifically targeted by constructing a fusion protein
consisting of multiple ZF domains, such that ZF domain order
determines the length of the DNA recognition site. In 2007,
Lindhout et al. developed a ZF-based chromatin labeling
method and applied it to live cell visualization of endogenous
genomic sequences in both Arabidopsis thaliana and mouse
cells (Lindhout et al., 2007). However, the complete
recognition code for all 64 possible trinucleotide combina-
tions did not possess the same affinity and specificity, thereby
restricting its application in chromatin labeling. In contrast,
TALE, a new generation of programmable DNA binding
proteins, emerged with robust performance in chromatin
labeling. TALE consists of 34 amino acid long tandem repeats
that are nearly identical, except for two variable amino acids
referred to as repeat-variable diresidues (RVDs). RVDs define
the base-recognition specificity of each unit (Boch et al.,
2009). An array of different repeat unit combinations
therefore allows for the generation of TALEs with user-
defined specificity for chromatin imaging (Fig. 2A).

In 2013, Miyanari et al. applied TALEs to visualize
endogenous repetitive genomic sequences in mouse cells.
This technology, referred to as TAL effector-mediated
genome visualization (TGV), allows labeling of specific
repetitive sequences and tracking of nuclear remodeling
through mitosis in living cells (Fig. 2B). Additionally, by
taking advantage of single-nucleotide polymorphisms
(SNPs), the parental origin of chromosomes could specifi-
cally be resolved (Miyanari et al., 2013). Since targeting
specificity is determined by TALE repeat order, multicolor
labeling of different loci can be easily visualized by fusing
individual TALEs with different fluorescent proteins (Ma et
al., 2013; Miyanari, 2014; Pederson, 2014; Thanisch et al.,
2014). To further improve the signal-to-background ratio of
TGV, Hu et al. combined TGV with bimolecular fluorescence
complementation (BiFC) to develop a new technique named
BiFC-TALE (Hu et al., 2017). Ren et al. also recently
discovered that conventional TALEs tend to aggregate in live
cell imaging, and thus fused TALEs with thioredoxin to
improve TGV specificity and accuracy (Ren et al., 2017).

However, the repetitive building block assembly process of
TALE is labor-intensive and costly, thus making the
technique suitable for labeling of repetitive sequences only.
In contrast, the CRISPR/Cas9 system recognizes target DNA,
using a short guide RNA sequence through Watson-Crick
base pairing. This approach makes it easier to perform gene
targeting in a high-throughput manner.

CRISPR/Cas9 is an innate immunity system used by most
bacteria and archaea to protect themselves against exogenous
plasmid and virus invasion. Adaptation of the CRISPR
system to genome editing toolkits in mammal cells has picked
up momentum since its working mechanism was established.
The type II CRISPR system, the simplest and thus most
popular, consists of an endonuclease termed Cas9, which cuts
DNA, and a short RNA sequence referred to as the single
guide RNA (sgRNA), which determines targeting specificity.
Any genomic sequence can generate a DSB if it possesses a
trinucleotide (NGG, where N can be any base) called a proto-
spacer adjacent motif (PAM) (Horvath and Barrangou, 2010).
An induced DSB can be repaired endogenously via the error-
prone non-homologous end-joining (NHEJ) pathway, which
can induce insertion or deletion mutations (indels) for
knockout applications, or the homologous recombination
(HR) pathway, which integrates exogenous repair templates
into the cutting site for precise knock-in applications (Mali et
al., 2013). This technology has since been rapidly extended to
almost all model organisms for genome engineering applica-
tions.

In addition to using the catalytic activity of Cas9, a mutated
nuclease-deficient Cas9, termed dCas9, enables the repurpos-
ing of the system for targeting genomic DNA without
cleaving it. A huge body of recent work suggested that the
engineered dCas9, acting as a flexible, site-specific RNA-
guided DNA recognition platform, enabled precise, repro-
grammable, and robust transcription regulation (Zalatan et al.,
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2015), DNA and RNA imaging (Chen et al., 2013; Nelles et
al., 2016), and chromatin and RNA pull-down (O'Connell et
al., 2014; Fujita and Fujii, 2013). By transfecting cells with
dCas9, tagged with a fluorescent protein, and the correspond-
ing sgRNA targeting the desired locus, both repetitive and
non-repetitive DNA sequences have been successfully
labeled (Chen et al., 2013). This powerful imaging technique
allowed live cell tracking of the diffusion behavior of
telomeres and genes with repetitive sequences, which enabled
the comparison of telomere length under different conditions,
counting of gene copy number, and calculation of the physical
distance between two loci along the same chromatin fiber
with different genomic distances (Chen et al., 2013).

To date, Streptococcus pyogenes (SP) has been favored by
almost all biology scientists owing to its simplicity and ease
of implementation. Meanwhile, since the targeting specificity
of the CRISPR system is solely determined by sgRNA base
pairing instead of the Cas9 protein, different chromosomal
loci cannot be resolved using multiple fluorophores that are
dependent on SP Cas9 alone. To further expand its
application in probing chromatin organization and dynamics,
such as spatial resolving of individual alleles (Miyanari et al.,
2013), DSB-induced translocations (Soutoglou et al., 2007;
Roukos et al.,, 2013), and promoter-enhancer looping
(Fanucchi et al., 2013; Levine, 2014; Lucas et al., 2014),
capacity for multicolor imaging with the CRISPR system is
desired. One possible solution is to use orthogonal CRISPR
systems originating from different species (Fig. 2C), which
guarantees no crosstalk is present when visualizing inter- and
intra-chromosomal repetitive sequences (Ma et al., 2015;
Chen et al., 2016) (Fig. 2D and 2E). However, unlike SP
Cas9, the efficiency of NM (Neisseria meningitidis), ST1
(Streptococcus thermophilus), and SA (Staphylococcus
aureus) Cas9 requires further optimization (Esvelt et al.,
2013; Ran et al., 2015). Additionally, the required PAM
sequences of NM, ST1, and SA Cas9 are more complicated
than that of SP Cas9, making it difficult to design a pool of
sgRNAs for the target regions (Esvelt et al., 2013; Ran et al.,
2015). Another solution is to load different fluorescent
proteins with different sgRNAs, since they determine
targeting specificity (Fig. 2F and 2G).

Shechner et al. developed a technique called ‘CRISPR-
display’, which permitted the recruitment of long non-coding
RNA to a special chromatin locus via the sgRNA insertion
(91). Using a similar concept, RNA aptamers, such as MS2
(Bertrand et al.,1998), PP7 (Larson et al., 2011), AN (Daigle
and Ellenberg, 2007), com (Daigle and Ellenberg, 2007), and
spinach (Strack et al., 2013), could also be inserted in the 5,
3’, tetraloop, or loop2 regions to recruit functional effectors to
the destination. Interestingly, compared with the dCas9-based
labeling method, the fast exchange kinetics of fluorescent
effectors with RNA aptamers makes this modified sgRNA
method more suitable for long-term tracking of chromosomal
dynamics, particularly for short repeats or non-repetitive
sequences, which would be more prone to suffering from

photobleaching under continuous exposure (Shao et al.,
2016). Moreover, the engineered multi-functional sgRNAs
can be used to regulate gene expression and simultaneously
monitor gene position and dynamics. To bypass the limited
number of well-characterized RNA aptamers, Cheng et al.
invented a versatile CRISPR-Cas9-Pumilio hybrid technique,
termed Casilio, for gene regulation and genomic labeling
(Cheng et al.,, 2016). In addition to multicolor CRISPR
imaging, tracking multiple genomic loci in single cells can be
achieved by combining CRISPR imaging with sequential
DNA FISH (Guan et al., 2017; Takei et al., 2017).

Challenges and prospects

By and large, most quantitative measurements of chromatin
structure and dynamics have primarily relied on the
implementation of fluorescence labeling and imaging techni-
ques. Imaging-based technologies have several advantages
over traditional biochemistry- or sequencing-based technol-
ogies for the study of chromatin structure and dynamics. First,
imaging-based techniques can provide critical spatial and
temporal information. Second, conclusions obtained from
optical imaging experiments are based on the interpretation of
multiple single cell data, thereby avoiding the averaging
effects of cell-population-based measurements.

However, many challenges remain for imaging-based
single cell studies. For example, it is generally difficult to
simultaneously achieve both high spatial and temporal
resolution while minimizing laser phototoxicity to cells
(Waldchen et al., 2015). Moreover, low throughput may
restrict the application of imaging-based techniques in
investigating whole genome organization. More importantly
though, gaps between different spatial and temporal scales
remain open and undefined. For example, both chromosome
territories and chromosomal loci have been explored, yet little
knowledge has been gained regarding the architecture in-
between. Additionally, chromosomal loci movements have
been tracked over both short (~20 ms) (Levi et al., 2005) and
extended time scales (~h) (Chuang et al., 2006), but further
efforts are needed to accurately combine these two scales.
Last, but not least, most imaging experiments were based on a
phenomenon observed in cultured cell lines ex vivo and it is
difficult to visualize sub-cellular images in living organisms
owing to the scattering of light. The culture and acclimation
of tissue cells in culture dishes may also cause dramatic
alteration of nuclear rigidity and chromosome organization,
which could lead to a misinterpretation of the relationship
between structure and function.

To explore the particular scientific questions and technical
challenges in the nucleus, the US National Institutes of Health
(NIH, USA) initiated the four-dimensional (4D) nucleome
project in December 2014 (Dekker et al., 2017). Representing
the emerging field of chromatin research, the project aims “to
understand the principles behind the 3D organization of the
nucleus in space and time (the 4th dimension), the role
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nuclear organization plays in gene expression and cellular
function, and how changes in the nuclear organization affect
normal development as well as various diseases.” Consider-
ing the current stages of studying each of the methods
described above, we offer a few prospects regarding the future
development of chromatin labeling methods.

Reduced cellular perturbation

A critical consideration when choosing a labeling method is
to confirm that the natively existing structure is truly being
investigated instead of artifacts caused by the labeling
method. Taking FISH as an example, some of the finest
cellular details may be destroyed by the harsh treatments of
heat denaturation and formamide required to obtain single
stranded target DNA for fluorescent probe hybridization. This
makes little difference when solely examining the nuclear
position of a specific locus or when calculating the distance
between two loci (Cremer et al., 2008; Solovei and Cremer,
2010); however, if the packing morphology of a chromatin
segment was to be painted, the denaturation treatments may
disrupt local chromatin integrity and attenuate the association
with its interaction partners. To circumvent this limitation of
FISH, the CASFISH technique mentioned above takes
advantage of the CRISPR-based mechanism for rapid DNA
hybridization to label genomic loci in fixed cells (Deng et al.,
2015). Additional artifacts may also come from the cell
fixation process, causing a significant chromatin shrinkage
effect. However, Boettiger et al. demonstrated that using
osmotically balanced, methanol-free formaldehyde in PBS
can largely preserve native structure when fixing cells
(Boettiger et al., 2016).

Minimal perturbation of chromatin labeling and imaging
makes use of genetically encoded fluorescent proteins in
living cells, including fluorescent histones, FROS, TALE, and
CRISPR. For FROS, insertion of operator sequences into the
integration site may disturb the interaction of local chromatin
structures. Taken together, the CRISPR labeling system
would be the most suitable and promising method for the non-
intrusive study of chromatin structure and dynamics.

Long-term tracking

The 4D nucleome project highlights the application of the
dimension of time since it is essential to measure chromatin
dynamics, such as chromatin condensation and decondensa-
tion, chromatin loci diffusion, and pre-mRNA splicing and
transport in this dimension. One of the most formidable tasks
in live cell imaging is to carry out long-term tracking, as most
of live-cell compatible fluorescent probes tend to rapidly
photobleach. Several strategies, both in probes and imaging
methodologies, have been developed to extend the duration of
live cell imaging. An important development for probes is the
signal amplification system based on the principle of protein
multimerization. Recently, Tanenbaum et al. developed the

SunTag array consisting of 24 copies of a small peptide
epitope (GCN4) that can recruit as many as 24 cognate single-
chain variable fragment antibodies (scFV) fused to a sfGFP
(super fold GFP) (Tanenbaum et al., 2014). Coupling the
SunTag system with dCas9 established that telomeres could
be labeled with a nearly 20-fold higher intensity compared to
those labeled by dCas9 directly, without altering telomere
mobility (Tanenbaum et al., 2014) (Fig. 3A). These signal
amplification systems allow for both a lower laser power and
shorter exposure time to be used, while maintaining the same
image quality. This enables long-term tracking of probes with
reduced photobleaching and phototoxicity side effects.

Another strategy is based on background fluorescence
reduction, which is often implemented by bimolecular
fluorescence complementation (BiFC). As an example,
Kamiyama et al. developed a protein tagging system using
split sSfGFP, which reduces background fluorescence since the
diffusive FP fragments are non-fluorescent (Kamiyama et al.,
2016) (Fig. 3B). Interestingly, continuous re-supplementation
of fluorescent probes to the site of interest also enables long-
term imaging. Our previous work has also demonstrated a
chromatin labeling method based on modified sgRNA, which
exhibits significant resistance to photobleaching owing to the
fast exchange rate of RNA aptamers and its target binding
proteins (Shao et al., 2016). Based on these results, multiple
MS2/PP7 stem loops have been inserted into modified
sgRNA to amplify the fluorescent signal (Qin et al., 2017).

An additional strategy employs genetically encoded self-
labeling tag proteins that can be coupled to cell-permeable
synthetic dyes inside living cells. This results in brighter and
more photostable reporters than fluorescent proteins alone
(Grimm et al., 2015). In addition to probe optimization, the
development of novel imaging methods can also improve
long-term tracking performance. The newly developed
methods of reflecting light-sheet microscopy and lattice
light-sheet microscopy have demonstrated significant poten-
tial in improving both spatial and temporal resolution, while
reducing specimen phototoxicity. This has, in turn, allowed
for rapid 3D scanning of large fields as well as long-term
tracking with negligible photobleaching outside of the focal
plane, at extremely low excitation intensities (Gebhardt et al.,
2013; Chen et al., 2014).

High spatial resolution

As a result of light diffraction, the spatial resolution of
conventional fluorescence microscopy is limited to a scale
comparable to the wavelength of light, making it unable to
resolve structures smaller than ~200 nm. This scale, which is
smaller than chromosome territories but larger than chromo-
somal loci and some functional domains (TAD, LAD), is
insufficient for studying chromatin ultrastructure. With the
advent of super-resolution microscopy in the last decade,
several techniques, including STORM, PALM, STED, SIM,
and RESOLFT, have been developed to “break” the
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Figure 3 Future development of the non-intrusive CRISPR-based chromatin labeling: signal amplification and multiplexing. (A) With
the signal amplification device Suntag system, one dCas9 molecule is able to recruit more effectors at target site with one sgRNA. The
SunTag array, which consists of 24 copies of a small peptide epitope (GCN4), can recruit as much as 24 cognate single-chain variable
fragment antibody (scFV) fused to a sftGFP (scFV—sfGFP). (B) By splitting super-fold green fluorescent proteins into 1st-10 th and 11th -
strand and multimerizing the 11th B-strand in a tandem manner, a dCas9 can also recruit multiple sSfGFP molecules with one sgRNA. Both
(A) and (B) can be utilized to label the non-repetitive sequence. (C) Schematic diagram of a multiplexing chromosomal loci labeling
strategy combining the modified sgRNAs and the orthogonal Cas9s. Increasing the SNR of labeling by fusing the same fluorescent protein
with dCas9 and the modified sgRNA (dashed arrows). Combination of the orthogonal dCas9 proteins and the modified sgRNAs with
different fluorescent proteins allows live-cell high multiplexing labeling by color coding (solid arrows).

diffraction limit to nanometer resolution. Multicolor-SIM was
the first super resolution technique used to study the relations
between chromatin and lamina, nuclear pore complex and
nuclear compartmentalization (Schermelleh et al., 2008), and
X chromosome inactivation (Smeets et al., 2014). PALM and
STORM have both been used to resolve the spatial
organization of chromatin by labeling core histones with
fluorescent protein or antibody (Bohn et al.,2010; Ricci et al.,

2015). One of the most exciting results came from a
combination of the high spatial resolution of STORM with
the high specificity of FISH techniques to systematically
investigate the folding of chromatin in different epigenetic
states (Boettiger et al., 2016).

However, to date, only static information has been obtained
from these super-resolution imaging analyses. Imaging the
dynamic regulation of chromatin structures at the sub-
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chromosome scale would provide an enhanced understanding
as to how chromatin folding affects its functional output. In
particular, as the modular basis for higher-order chromosomal
structures, TADs have only been detected by population-
average Hi-C or FISH studies in fixed cells. A fascinating
research area would be to visualize TADs in single, live cells
and investigate in real time how or whether TADs form and
disassemble dynamically. This goal will need further imaging
technique development that could give consideration to both
spatial and temporal resolution. Considering the techniques
available nowadays, specific labeling by CRISPR-Suntag,
coupled with light-sheet based super-resolution imaging,
would be the best choice for uncovering the dynamics of
chromatin ultrastructure in living cells (Li et al., 2015).

Non-repetitive sequence labeling in living cells

Most genes contain non-repetitive sequences; however, the
most promising non-intrusive chromatin labeling methods,
based on TALE and CRISPR, have primarily been limited to
repetitive sequence labeling. Although the non-repetitive part
of MUC4 has been successfully targeted with multiple
sgRNAs targeting the genomic locus of interest in a cell
line with minimal dCas9-EGFP expression (Chen et al.,
2013), there have been no reports of other genes with non-
repetitive sequences that could be labeled and imaged in live
cells. The major problem is likely to be poor transfection
efficiency as multiple sgRNAs need to be simultaneously
transfected into one cell to reach a sufficiently high labeling
density. Using an ultra-high titer lenti-virus library, Zhou et al.
painted one chromosome in live cells with CRISPR imaging
(Zhou et al., 2017). However, current co-transfection sgRNA
co-expression systems remain poorly efficient and virus-
based transfection approaches are relatively costly and labor
intensive. We thus argue that it would be more feasible to
label non-repetitive sequences by combining multiple sgRNA
co-expression and signaling amplification systems, such as
with SunTag (Cremer et al., 2008). Recently, we established a
vector-independent method allowing multiple sgRNA expres-
sion cassettes to be assembled in series into a single plasmid.
This synthetic biology-based strategy excels in its efficiency,
controllability, and scalability. In combination with the
SunTag system, we successfully labeled several non-repeti-
tive genomic loci (Shao et al., 2017).

Multi-functional imaging

For the study of chromatin structure and nuclear dynamics,
the relationship between gene transcription and genomic
position remains a complicated question (Chakalova and
Fraser, 2008). In particular, when nuclear positioning affects
gene expression, do genes move to specific functional
compartments to be activated or silenced, or is relocation a
consequence of the process of being activated or silenced?
To reach a casual conclusion, it is essential to measure

transcriptional activity and simultaneously monitor the
nuclear position and dynamics of endogenous genes. To
answer such questions, a multi-functional system needs to be
constructed to allow the manipulation of a specific gene to
any desired destination inside the nucleus and monitor
transcription in real time. The ‘Real-time Observation of
Localization and Expression’ (ROLEX) system has been
established to enable the detection of sub-genome-wide
mobility changes that depend on the state of Nanog
transactivation in embryonic stem cells (Ochiai et al., 2015).
In 2008, three groups developed similar systems based on
the random insertion of LacO repeats to support the inducible
tethering of genes to the inner nuclear membrane and
measurements of transcription output. However, the conclu-
sions reached were not in agreement (Finlan et al., 2008;
Kumaran and Spector, 2008; Reddy et al., 2008), with the
random, intrusive insertion potentially disturbing the local
structure and thereby leading to the inconsistent conclusions.
In contrast, the chromatin imaging system, based on
modified sgRNAs, has offered an admirable opportunity to
address these questions because of the system’s polyvalency.
Imaging of gene position and dynamics can be achieved using
the dCas9 channel, while perturbation or manipulation can be
loaded to the sgRNA channel. owing to the ease of
implementation, any gene that is targetable by the CRISPR
system can be investigated using this multi-functional
imaging system. We believe this platform will provide
important insights to the questions discussed above.

Multiplexing toward imagomics

Most current studies probe only one set of specific loci at a
time. Global chromosome organization and dynamics thus
remain unclear. To fill this gap, it is essential to fully automate
the entire workflow to achieve high-throughput, time-
resolved characterization, including imaging acquisition and
data analysis of a large set of genomic loci dynamics in single
cells. Shachar et al. constructed a FISH-based, high-
throughput platform that could determine the spatial position
of a gene in the 3D nuclear space and discover protein factors
that determine genome organization (Shachar et al., 2015).
However, data from fixed cells cannot provide information
about the dynamic regulation of gene localization and
transcription. Currently, high-throughput live cell genomic
loci labeling largely remains difficult due to the aforemen-
tioned problem of non-repetitive sequence labeling.
Strategically speaking, high-throughput genomic loci
labeling can be achieved by multiplexing labeling approaches
in single cells. By inserting different RNA aptamers in
the same sgRNA, Ma et al. developed a technology
called CRISPRainbow, which allowed six chromosomal
loci to be imaged simultaneously (Ma et al., 2016). Taken
together, all current multicolor chromosomal CRISPR
labeling methods are complementary to each other. Combin-
ing orthogonal Cas9 and modified sgRNA methods to achieve
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the capabilities of higher levels of multiplexing labeling of
multiple chromosomal loci simultaneously in single, living
cells is of significant potential (Fig. 3C).

Combining imaging and sequencing

Although imaging techniques are powerful for understanding
the structure and dynamics of chromatin, their application has
apparently been constrained by insufficient throughput. In
contrast, the newly developed sequencing-based chromosome
conformation capture techniques have been able to reveal
paired interaction maps of any given genomic locus and thus
provided global views of chromatin topology at the genome-
wide level. The low throughput of imaging can be
compensated to some extent by the combination of sequen-
cing methods.

A multitude of elegant works have demonstrated the
advantage of coupling imaging and sequencing. To name a
few, the discovery and verification of lamina associated
domains (LADs), by a powerful tool termed DamID, helped
map the binding of chromatin DNA to the nuclear lamina in
mammalian cells (Vogel et al., 2007). However, the spatial
distribution and temporal dynamics of LADs were unknown
until the development of imaging techniques based on the
‘contact and memory’ ™A-tracer. The imaging results
showed that LADs remain constrained to the nuclear
periphery in interphase and their positions are not detectably
inherited, but instead are stochastically reshuffled upon
mitosis (Kind et al., 2013). To further verify the existence
of internal TAD domain organization, individual TADs have
been visualized by multicolor 3D FISH with sets of
differentially labeled TAD specific probes in combination
with super-resolution microscopy (Fabre, et al., 2016).
Further, the combination of super-resolution imaging and
the ChIP-seq technique helped uncover the influence of
histone epigenetic modification on the 3D folding of local
chromatin DNA (Boettiger et al., 2016).

Concluding remarks

In the post-genome era, the 4D nucleome project aims to
understand fundamental intra-nuclear processes with high
spatiotemporal sensitivity. To this end, live cell genomic loci
labeling and imaging are of crucial importance. Although a
number of traditional, and emerging, chromatin labeling
techniques are available for both fixed and live cells, much
more effort is still clearly required to develop fluorescence
labeling methods capable of targeting arbitrary sequences
non-intrusively to allow long-term, multiplexing, and high-
throughput imaging of genomic loci and chromatin structures.
The new generation of genome editing tools, such as TALE
and CRISPR, have begun to offer such opportunities. In
conjunction with the development of new probes and imaging
methods, it would not be too far to reach our current goals. It

is also worth noting that rapid advances in super-resolution
imaging and genome sequencing techniques will further open
the possibilities for studying chromatin structure and
dynamics. Taken together, these emerging technological
advances will outline a next-generation effort toward the
comprehensive delineation of chromatin at single-cell level
with single-molecule resolution.
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