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Abstract The Raf/MEK/extracellular signal-regulated kinase (ERK) pathway has a pivotal role in facilitating cell
proliferation, and its deregulated activation is a central signature of many epithelial cancers. However paradoxically,
sustained activity of Raf/MEK/ERK can also result in growth arrest in many different cell types. This anti-proliferative
Raf/MEK/ERK signaling also has physiological significance, as exemplified by its potential as a tumor suppressive
mechanism. Therefore, significant questions include in which cell types and by what mechanisms this pathway can
mediate such an opposing context of signaling. Particularly, our understating of the role of ERK1 and ERK2, the focal
points of pathway signaling, in growth arrest signaling is still limited. This review discusses these aspects of Raf/MEK/
ERK-mediated growth arrest signaling.
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Introduction

Since the discovery of Fus3p, a component of the pheromone
response pathway in the yeastS. cerevisiae, in 1989 and its
mammalian counterpart extracellular signal-regulated kinase
(ERK) 1 in 1991 (Courchesne et al., 1989; Boulton et al.,
1990), a vast amount of knowledge has expanded the
biological significance of the mitogen-activated protein
kinase (MAPK) pathway spanning from early development
to various diseases with tremendous implication in cancer. In
response to the signals from different receptor tyrosine
kinases and other cell surface receptors, the Raf/MEK/ERK
pathway regulates cell survival, cell cycle progression and
differentiation, and its deregulated signaling is a central
signature of many epithelial cancers [reviewed in (Dhillon et
al., 2007; Roberts and Der, 2007; Lawrence et al., 2008;
McCubrey et al., 2012)]. Raf/MEK/ERK is a highly specific
three-layered kinase cascade that consists of the Ser/Thr
kinase Raf (i.e., A-Raf, B-Raf, or C-Raf/Raf-1), the highly
homologous dual-specificity kinases MEK1/MAP2K1 and
MEK2/MAP2K2 (collectively referred to MEK1/2), and the
ubiquitously expressed Ser/Thr kinase ERK1/MAPK3 and its
homolog ERK2/MAPK1 (collectively referred to ERK1/2).
These molecular switches are controlled by a complex

network of regulators, including the small GTPases Ras and
Rap, phosphatases, scaffolds, and other kinases, which affects
the magnitude, duration, and compartmentalization of the
pathway activity. Detailed mechanisms of these regulations
have been extensively reviewed elsewhere (Pearson et al.,
2001; Shaul and Seger, 2007; Wortzel and Seger, 2011;
Roskoski, 2012).
Although mainly known for its critical role in promoting

cell survival and driving cell cycle progression in response to
mitogenic signals, Raf/MEK/ERK can also mediate growth
inhibitory signaling, including cell death and cell cycle arrest
in response to a variety of signals [reviewed in (Cagnol and
Chambard, 2010; Mebratu and Tesfaigzi, 2009; Subramaniam
and Unsicker, 2009)]. This anti-proliferative pathway signal-
ing has significance in different physiological settings,
including early development, neuronal differentiation, and
tumor response to chemotherapy. Most notably, substantial
attention has recently been paid to the potential of Raf/MEK/
ERK-mediated growth arrest as a tumor suppressive mechan-
ism. This review discusses cell types in which aberrant Raf/
MEK/ERK activation can induce growth arrest and some of
recent updates regarding how Raf/MEK/ERK mediates the
opposing context of signal transduction.

Cell types in which aberrant Raf/MEK/ERK
activation can induce growth arrest

Oncogenic Ras- or Raf-mediated growth inhibition was
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initially proposed as a potential tumor suppressive response
based upon the observations made in primary normal human
diploidfibroblast cells. In these cells, oncogenic Ras could
induce senescence-like growth arrest, which was associated
with induction of the tumor suppressor TP53 and the cyclin-
dependent kinase inhibitors p16INK4Aand p21CIP1(Serrano et
al., 1997). Many of these effects were reproduced by
constitutively active Raf mutants, establishing Raf as a
major effector of Ras-induced growth inhibition (Lin et al.,
1998; Zhu et al., 1998). It was then demonstrated that
oncogenic Ras and Raf could also induce growth arrest in
different primary cultured normal epithelial cells, including
keratinocytes (Roper et al., 2001) and mammary epithelial
cells (Olsen et al., 2002). Subsequently, cells in senescence-
like growth arrest state were indeed detected in premalignant
lesions of Ras/Raf-transformed tumors from animal models
and human patients, including K-RasG12V-induced pancreatic
cancer and lymphoma in mice (Braig et al., 2005; Collado et
al., 2005) and B-RafV600E-mutated human melanoma (Micha-
loglou et al., 2005). These phenomena, referred to as
“oncogene-induced senescence,”are now interpreted in a
context such that proliferative programs in mammalian cells
are interfaced with a variety of innate tumor-suppressive
mechanisms, which trigger cell death or senescence-like
growth arrest in response to aberrant cell proliferation signals
[reviewed in (Mooi and Peeper, 2006; Courtois-Cox et al.,
2008; McDuff and Turner, 2011)]. These mechanisms should
be inactivated for carcinogenesis to occur (a conceptual
model depicted in Fig. 1).
Intriguingly, growth inhibitory effects of Raf/MEK/ERK

are not limited to normal cell types. It has long been known
that expression of constitutively active Ras, Raf, or MEK
mutants could induce irreversible growth arrest in different

malignant tumor cells which were not transformed by Ras or
Raf. These cell lines were derived from diverse tumor types,
including small cell lung carcinoma (Mabry et al., 1989; Ravi
et al., 1998; 1999a), medullary thyroid carcinoma (MTC)
(Nakagawa et al., 1987; Carson et al., 1995; Carson-Walter et
al., 1998; Park et al., 2003; Vaccaro et al., 2006), glioma
(Fanton et al., 2001), pheochromocytoma (Wood et al., 1993;
Park et al., 2005b), gastrointestinal carcinoid (Sippel et al.,
2003), prostate carcinoma (Ravi et al., 1999b; Hong et al.,
2011), hepatocarcinoma (Guégan et al., 2013b) and breast
carcinoma (Taylor et al., 2011). In some of these tumor cell
lines, Raf/MEK/ERK activation could lead to expression of
senescence-associatedβ-galactosidase (Ravi et al., 1999b;
Arthan et al., 2010; Taylor et al., 2011), a key marker used for
senescence determination (Gupta and Wajapeyee, 2013).
Moreover, Raf-induced growth arrest was reproducible inin
vivomicroenvironments, as demonstrated by the MTC cell
line, TT, xenograft in mice (Vaccaro et al., 2006). Notably,
the growth inhibitory context of Ras/Raf signaling in MTC
was supported by a genetically engineered mouse model
(Rb [–/+]) of MTC tumorigenesis, in which the loss of N-
Ras was followed by an increased rate of spontaneous MTC
development, although suppression of concurrent pituitary
tumor development was observed simultaneously (Takahashi
et al., 2006).
Of note, along with growth arrest, Raf/MEK/ERK could

induce dramatic suppression of the oncogenes to which these
tumor cells were addicted. For example, in response to Raf/
MEK/ERK activation, the highly malignant human MTC cell
lines TT and MZ-CRC-1 exhibited silenced expression of
oncogenically mutated rearranged during transfection (RET)
while undergoing G0/G1phase cell cycle arrest and expres-
sing increased levels of the neuroendocrine peptide hormone

Figure 1 A conceptual model for tumor suppressive signaling of Raf/MEK/ERK. Oncogenic alterations leading to aberrant activation of
Raf/MEK/ERK can direct the pathway signaling to mediate growth arrest. Progression of tumorigenesis requires inactivation of this tumor
suppressive response. In the absence of this mechanism, deregulated Raf/MEK/ERK activity is exploited to stimulate uncontrolled cell
growth.
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calcitonin (Nakagawa et al., 1987; Carson et al., 1995;
Carson-Walter et al., 1998). The proto-oncogene RET
encodes a receptor tyrosine kinase whose alterations are
mainly etiological to the development of MTC (Pinchot et al.,
2009). Investigation of the underlying mechanism for RET
downregulation and growth arrest identified a leukemia
inhibitory factor/gp130/JAK/STAT/IFI16-mediated auto-
crine/paracrine pathway (Park et al., 2003; Kim et al., 2005;
Park et al., 2005a; Arthan et al., 2010), and revealed the
potential of recombinant leukemia inhibitory factor to
suppress MTC xenografts in mice (Starenki et al., 2013).
Similarly in the human prostate cancer line LNCaP and

CWR22Rv1, sustained Raf/MEK/ERK activation was suffi-
cient to substantially downregulate full length as well as
hormone binding domain-deficient isoforms of androgen
receptor (AR) at mRNA and protein levels, which was
accompanied by growth arrest (Hong et al., 2011). AR is a
member of the nuclear receptor superfamily that controls the
growth regulatory and differentiation pathways in prostate
epithelial cells, and its dysregulation is pivotal to prostate
carcinogenesis (Balk and Knudsen, 2008). Of note, ectopic
expression of a constitutively active AR could inhibit Raf/
MEK/ERK-mediated expression of the cyclin-dependent
kinase inhibitors, p16INK4Aand p21CIP1, suggesting that Raf/
MEK/ERK can specifically inhibit AR-mediated proliferation
in certain prostate cancer types (Hong et al., 2011). These
studies demonstrate that growth inhibitory signaling of Raf/
MEK/ERK can occur in a broad spectrum of cell types, even
including malignant tumor cells, and may be targeted to
suppress some of the key oncogenic events in cancer.
How is it possible that Raf/MEK/ERK can induce growth

arrest in these cancer cells? These tumor lines are generally
derived from the tumor types in which Ras or Raf mutations,
or deregulated MEK/ERK activity is rarely detected. It was
also demonstrated in some of these tumor cells that their basal
levels of MEK/ERK activity are substantially lower than
those detected in primary normalfibroblasts (Hong et al.,
2009). It is therefore conceivable that Raf/MEK/ERK
activation does not provide growth advantage to these
tumor types and, thus, the pathway-associated tumor
suppressive mechanism(s) were not inactivated by an
oncogenic selection pressure in these tumor types. These
characteristics were conducive to study some of the
challenging questions in Raf/MEK/ERK-mediated growth
arrest signaling (discussed more below).

The role of Raf, MEK1/2, and ERK1/2 in
growth arrest signaling

Each layer of the Raf/MEK/ERK pathway consists of
multiple isoforms, i.e., A-Raf, B-Raf, and c-Raf-1 at
MAP3K level, MEK1 and MEK2 at MAP2K level, and
ERK1 and ERK2 at MAPK level. Although additional
isoforms, i.e., MEK1b and ERK1c, have been recently

identified and designated for their subcellular location-
specific roles, e.g., golgi fragmentation and mitotic progres-
sion (Shaul et al., 2009), the distinct roles and biochemical
characteristics in the context of cell proliferation and growth
arrest have been questioned mainly for these classic members
of the pathway.

Raf

Although only B-Raf oncogenic mutations are detected in
cancer, all three Raf kinases can induce oncogenic responses
when constitutively activated, as determined earlier using
their kinase domain (Samuels et al., 1993; Pritchard et al.,
1995). Similarly, expression of any of all three Raf kinases
was sufficient to induce growth inhibition accompanied by
p21CIP1expression (Woods et al., 1997). Therefore, all three
Raf proteins have the intrinsic property to signal cellular
transformation as well as growth inhibition. Of note, titrated
activation of MEK/ERK using the tamoxifen-inducible
ΔRaf-1:ER, a CR3 catalytic domain of C-Raf fused to
hormone binding domain of the estrogen receptor could
induce biphasic responses in NIH3T3 cells, i.e., proliferation
at low Raf activity whereas growth arrest at its high activity,
suggesting that the magnitude of Raf/MEK/ERK activity is an
important factor in determining the physiological output
(Woods et al., 1997). Therefore, there is an upper threshold
where increasing Raf/MEK/ERK activity switches its signal-
ing context from proliferation to growth arrest. This upper
threshold is contrasted with the generally known lower
threshold which determines the minimum pathway activity
required for cell proliferation (Fig. 2). This phenomenon is
consistent with the notion that different duration and strength
of the kinase cascade signal can lead to distinct, and even
opposing, cellular processes because different levels of active
ERK1/2 proteins in cells would results in the activation/
inactivation of various substrates with different affinity (Shaul
and Seger, 2007).

MEK1/2

MEK1 and MEK2 are activated by Raf-mediated phosphor-
ylation of two Ser residues (i.e., Ser217/221 for MEK1 and
Ser222/226 for MEK2). While single phosphorylation can
induce kinase activity of MEK, dual phosphorylation
increases MEK activity to its maximum capacity. MEK1
and MEK2 are abundant in cells, present around 1μM
depending upon cell types, similarly to the levels of ERK1/2
(Ferrell, 1996). In contrast, Raf is not as abundant as MEK.
Therefore, signal amplification in the Raf/MEK/ERK path-
way occurs at the Raf-MEK step due to the greater molar ratio
between Raf-MEK than between MEK-ERK (Ferrell, 1996).
MEK1 and MEK2 are>86% identical at the amino acid
level, and early evaluation of constitutively active mutants,
MEK1-ΔN3/S218E/S222D and MEK2-ΔN4/S222D/S226D
revealed their functional redundancy (Mansour et al., 1996).
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Nevertheless, increasing evidences indicate that MEK1 and
MEK2 can have distinct functions in determining the
physiological output of pathway signaling. For example,
MEK1 and MEK2 have been known for being subject to a
selective regulation by ERK1/2 (Eblen et al., 2004), A-Raf
(Wu et al., 1996), and the scaffold MP1 (Schaeffer et al.,
1998). Gene deletion in mice also revealed a critical
difference in their requirement at an early developmental
stage (Giroux et al., 1999; Bélanger et al., 2003; Nadeau et al.,
2009). Further, their unique functions in epidermal neoplasia
or hepatocarcinoma growth have been reported (Scholl et al.,
2009; Guégan et al., 2013b), although activation of MEK1 or
MEK2 was equally sufficient to transform intestinal epithelial
cells and to induce the formation of metastatic tumors (Voisin
et al., 2008). It is noteworthy that determination of functional
specificity of MEK1 and MEK2 can be affected by their
intrinsic properties as well as gene dosage effects.
Although MEK1/2 accounts for most of Raf effects, Raf

can mediate MEK1/2-independent growth inhibitory signal-
ing, e.g., Raf-mediated apoptotic cell death (Chen et al., 2001;
Dhillon et al., 2003). However, Raf-induced cell cycle arrest
was abrogated by the MEK1/2 specific inhibitors or RNA
interference, indicating that MEK1/2 activation is necessary
for Raf-induced growth arrest (Carson-Walter et al., 1998;
Ravi et al., 1998; Zhu et al., 1998; Park et al., 2003; Hong et
al., 2009). In addition, ectopic expression of constitutively
active MEK1 or MEK2 mutant was equally sufficient to
induce growth arrest in different cell types (Hong et al., 2009;
Guégan et al., 2013b), suggesting that MEK1 and MEK2
have redundant roles in the context of growth arrest signaling.

ERK1/2

ERK1 and ERK2 are activated by MEK1/2 via sequential
phosphorylation of Tyr and Thr residues on the activation

loop, which induces activation conformational changes.
Although functioning as a Ser/Thr kinase, ERK can also
autophosphorylate the Tyr residue in the activation loop
(Rossomando et al., 1992; Robbins et al., 1993). ERK1 and
ERK2 account for most, if not all, effects mediated by MEK1/
2, and thus MEK1/2 and ERK1/2 are usually inseparable in
addressing their physiological effects. This high specificity
between MEK and ERK is a typical characteristic of the
MAPK pathways due to the strikingly high affinity between
MEK and ERK relative to a typical enzyme-substrate
interaction (Fukuda et al., 1997). Upon activation, ERK1/2
can phosphorylate more than 160 substrates identified to date,
which contain including transcription factors, kinases,
phosphatases, cytoskeletal proteins, scaffolds, receptors and
other molecular switches [reviewed in (Yoon and Seger,
2006)]. ERK substrates contain the signature, Ser/Thr-Pro
(preferentially Pro-Xaa-Ser/Thr-Pro in which Xaa is any
amino acid), which is found in approximately 80%of cellular
proteins. Therefore, more ERK targets are likely to be
identified. While essential biochemistry of ERK1/2 has been
established, our understanding of how ERK1/2 process
signals for proliferation or growth arrest is still limited.
Some of the prominent questions recently addressed include:

Do ERK1 and ERK2 have redundant roles in mediating
growth arrest signaling?
Serving as the focal point of the Raf/MEK/ERK pathway
signaling, ERK1 and ERK2 have been investigated for their
potential distinct role in a variety of physiological contexts.
ERK1 and ERK2 are>84%identical at the amino acid level
and have highly overlapping functions under most physiolo-
gical conditions. Nevertheless, gene deletion studies in mice
have revealed distinct roles of ERK1 and ERK2 in
developmental biology, including embryonic stem cell line-
age commitment, T cell development, thymocyte maturation,
and trophoblast development, with the characterization of
ERK2 as being more important (Pagès et al., 1999; Saba-El-
Leil et al., 2003; Fischer et al., 2005; Binétruy et al., 2007). In
vitro studies of cell lines have also distinguished the role of
ERK1 and ERK2 (Bessard et al., 2008; Krens et al., 2008;
Lefloch et al., 2008; Shin et al., 2010; Guégan et al., 2013a;
Hamilton et al., 2013; Radtke et al., 2013; Shin et al., 2013).
In the context of growth arrest signaling, ERK1 and ERK2

showed redundancy in different cell lines models. For
example, in LNCaP, TT, and the glioma line U251 cells,
RNA interference of ERK1 or ERK2 had only partial effects
whereas simultaneous knockdown of ERK1 and ERK2 was
required to effectively inhibit Raf/MEK-induced growth
arrest (Hong et al., 2009). In contrast, it was suggested that
ERK2, but not ERK1, is necessary for oncogenic Ras-
induced senescence based upon the effects of shRNA-
mediated depletion of ERK1 and ERK2 in mouse embryonic
fibroblasts (Shin et al., 2013). This discrepancy may be due to
the differences in cell type-specific expression levels of ERK1

Figure 2 Two different thresholds of Raf/MEK/ERK activity
determine cell fate to proliferation or growth arrest. In this model,
not only too low but also too high Raf/MEK/ERK activity restricts
cell proliferation. Different cell types may maintain different
extent of pathway activity between these thresholds, displaying
heterogeneous sensitivity to pathway activity.
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and ERK2. In support of this notion, activation of ERK1, but
not ERK2, had predominant role in mediating cisplatin-
induced death effects in hepatocarcinoma cells (Guégan et al.,
2013a). A similar situation is encountered when studying the
opposite context of ERK1/2 signaling. For example, although
the significance of ERK2 over ERK1 for cell proliferation and
survival was suggested based upon the effects of RNA
interference of ERK1/2 in NIH3T3 cells (Vantaggiato et al.,
2006), later studies concluded that ERK1 and ERK2 activities
are indistinguishable and that the expression levels of ERK1
and ERK2 determine their biological differencesin vitroand
in vivo(Lefloch et al., 2008; Voisin et al., 2010). Determina-
tion of ERK1 and ERK2 for their specific function also
requires evaluation of exogenously expressed ERK1 or
ERK2. A good example was demonstrated when exogenously
expressed ERK2, but not ERK1, displayed sufficient effects
on epithelial-to-mesenchymal transformation (Shin et al.,
2010; von Thun et al., 2012). Indeed, evaluation of
exogenously expressed ERK1 and ERK2 revealed their
redundant roles, and unexpected effects, in Raf/MEK-
induced growth arrest signaling, as discussed below.

Does ERK1/2 have non-kinase effects on growth arrest
signaling?
Although kinase activity of ERK1/2 is central in activation or
inactivation of these ERK targets, it was also demonstrated
that ERK, in an in vitro reaction, can mediate non-catalytic
activation of DNA topoisomerase Iα(Shapiro et al., 1999).
Consistent with this, recent reports have demonstrated that
ERK1/2 can mediate kinase-independent effects in cells
[reviewed in (Rodríguez and Crespo, 2011)]. For example,
profiling the human protein-DNA interactome revealed the
ability of kinase-inactive ERK2 to interact with DNA and act
as a transcriptional repressor of interferon signaling (Hu et al.,
2009). It was also demonstrated that ERK2 can stabilize dual-
specificity phosphatase 5 via its physical interaction but
independently of its kinase activity (Kucharska et al., 2009).
In addition, ERK1/2 could promote cell cycle entry via
kinase-independent disruption of retinoblastoma-lamin A
complexes (Rodríguez et al., 2010). These results are
consistent with a notion that ERK interactions with proteins
are not necessarily predictive of whether efficient phosphoryl
transfer will occur (Burkhard et al., 2011).
Kinase-independent effects of ERK1/2 were also deter-

mined in the context of Raf/MEK-induced growth arrest
signaling (Hong et al., 2009; Guégan et al., 2013b). Briefly,
decreases in ERK1/2 activity can arrest proliferation of many
cell types, as determined by expression of kinase-deficient
ERK mutants (Pagés et al., 1993; Kortenjann et al., 1994) or
gene knockdown (Vantaggiato et al., 2006; Bessard et al.,
2008; Lefloch et al., 2008). In contrast, some of those
aforementioned Ras/Raf-responsive tumor lines mentioned
above (i.e., LNCaP, TT, and U251) could tolerate substantial
ERK1/2 knockdown. In these ERK1/2-knocked down yet
proliferating cells, Raf could no longer induce growth arrest

(Hong et al., 2009). Surprisingly, upon expression of active
site-disabled ERK1 or ERK2 mutant, these cells could
selectively restore Raf-induced growth arrest responses.
Under this condition, overexpression of kinase-deficient
ERK further depleted cells of residual ERK kinase activity,
as determined by the ERK substrates p90RSK and Elk1,
strongly supporting the presence of a non-kinase ERK effect.
Intriguingly, expression of the ERK mutants with disabled
activation loop was not effective in restoring the growth arrest
signaling, suggesting that phosphorylation-mediated confor-
mational changes are still required for this ERK effect (Hong
et al., 2009). These effects are in contrast with the effects of
kinase-deficient ERK on Raf-induced transformation or
growth factor-stimulated cell proliferation, for which the
necessity of ERK kinase activity was obvious (Pagés et al.,
1993; Kortenjann et al., 1994). Therefore, a key mechanistic
distinction between Raf/MEK/ERK pathway-mediated pro-
liferation and growth arrest signaling appears to be
determined at the level of ERK1/2.
It is important to understand the mechanism underlying

these intriguing non-kinase ERK effects. It appears that
kinase-deficient ERK1/2 has specific but limited effects in
mediating Raf/MEK-induced growth arrest signaling. Most
notably, kinase-deficient ERK1/2 could upregulate p21CIP1

levels and subsequently induce G0/G1 phase cell cycle arrest
in response to Raf/MEK activation, although it could not
mediate other effects of Raf/MEK activation relevant to
growth arrest signaling, e.g., c-MYC downregulation in
LNCaP, and RET downregulation in TT cells (Hong et al.,
2009). A recent study also demonstrated similar non-kinase
ERK-mediated p21CIP1 regulation in different cell types,
including the hepatocarcinoma lines Huh-7D12 and HepG2,
and the breast cancer cell line MCF7 (Guégan et al., 2013b).
Moreover, this study demonstrated that kinase-deficient ERK
could regulate p21CIP1 translation by regulating p70 S6
kinase, a key effector of mTOR complex 1 (mTORC1),
suggesting an involvement of mTORC1-mediated transla-
tional regulation in this ERK effect. Importantly, in the
context of cell proliferative signaling, ERK2, albeit not
ERK1, phosphorylated Thr57 and Ser130 of p21CIP1, which
subsequently induced nuclear export, ubiquitination, and
proteasomal degradation of p21CIP1 (Hwang et al., 2009).
These effects of ERK1/2 on p21CIP1in mediating growth
arrest versus proliferation are in stark contrast, suggesting that
a distinct mode of ERK1/2 signaling is involved in the
opposing contexts of signal transduction (Fig. 3).
Noteworthy is that interpretation of the results in the

context of non-kinase ERK function is limited by the
presence of residual endogenous ERK in the ERK1/2-
knocked down cell models. It may be possible that over-
expression of kinase-deficient ERK facilitates subcellular
location-specific activation of the residual ERK1/2 despite the
decreases in net ERK kinase activity in cells. Indeed, it was
reported that not all ERK in active state mediate catalytic
reaction but substantial portion of them serve as the adaptor
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for those that phosphorylate substrates (Casar et al., 2008).
Currently, the model to address this issue is not available
because cells cannot tolerate complete ablation of ERK1/2
(Pagés et al., 1999; Saba-El-Leil et al., 2003).

Concluding remarks

Although mechanistic dichotomy of Raf/MEK/ERK path-
way-mediated proliferation and growth arrest is still incom-
plete, it has been rigorously studied by what mechanism(s)
growth arrest signaling is inactivated in the course of
tumorigenesis. While a number of carcinogenic molecular
alterations occur at upstream and downstream levels of the
pathway [reviewed in (Courtois-Cox et al., 2008; McDuff and
Turner, 2011)], growing evidences suggest that alteration of
Raf/MEK/ERK activity through other kinases, scaffolds, and
molecular chaperones also contribute to bypassing growth
arrest (Cheung et al., 2008; Duhamel et al., 2012; Wu et al.,
2013). Remarkably, it seems possible to reactivate Raf/MEK/
ERK-mediated senescence-like growth arrest signaling in
cancer by targeting an alteration in these regulators (Wu et al.,
2013). Of note, activation of Raf/MEK/ERK can induce
growth arrest even in the cancer cells defective of the key
tumor suppressor (s), Rb, TP53, p16INK4A, or p21WA F,
suggesting that multiple parallel independent tumor suppres-
sive mechanisms are networked to Raf/MEK/ERK. Better
understanding of the connection between Raf/MEK/ERK and
these mechanisms may allow the development of a novel
therapeutic strategy.
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