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Abstract Lignin is both the most abundant aromatic (ph-
enolic) polymer and the second most abundant raw mate-
rial. It is degraded and modified by bacteria in the natural
world, and bacteria seem to play a leading role in decom-
posing lignin in aquatic ecosystems. Lignin-degrading
bacteria approach the polymer by mechanisms such as
tunneling, erosion, and cavitation. With the advantages of
immense environmental adaptability and biochemical
versatility, bacteria deserve to be studied for their ligni-
nolytic potential.
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1 Introduction

Lignin is a major component of plant materials and is the
most abundant aromatic substance present in the biosphere
by far. As an integral cell wall constituent, lignin provides
plants strength and resistance (Argyropoulos and Mena-
chem, 1997). Moreover, lignin participates in water
transport in plants and forms a barrier against microbial
destruction by protecting the readily assimilable poly-
saccharides (Monties and Fukushima, 2001). Chemically,
lignin is a heterogeneous, optically inactive polymer,
consisting of phenylpropanoid interunits linked by differ-
ent types of covalent bonds (e.g. aryl-ether, arylaryl, and
carbon-carbon bonds) (Brunow, 2001). β-O-4-linked
ethers, as the predominant structures, make up about half
the total, followed by phenylcoumarans, resinols, and
various minor subunits (Fig. 1). It has been widely
accepted that lignin is racemic (Ralph et al., 1999).
Therefore, even a simple β-O-4-linked dimmer that
contains two asymmetric carbons exists as four stereo-
isomers. Because the number of isomers increases
geometrically with the number of subunits, lignin presents
a complex and non-repeating three-dimensional surface.

Formed by lignin’s various bond types and their hetero-
geneity, an irregular noncrystalline network of the plant
cell wall is very resistant to microbial degradation.
In biosphere, a wide variety of species are involved in

lignin biodegradation, including fungi, plants, animals and
also bacteria (Poulos et al., 1993; Perestelo et al., 1996;
Modi et al., 1998; Nagarathnamma et al., 1999). Among
them, white rot fungi have attracted widespread attention
because of their powerful lignin-degrading enzymatic
systems (Hatakka, 1994). On the other hand, the stability
of fungi are not good in practical treatment under extreme
environmental and substrate conditions, such as higher pH,
oxygen limitation, and high extraction and lignin concen-
trations (Daniel and Nilsson, 1998). Bacteria are worthy of
being studied for their ligninolytic potential due to their
immense environmental adaptability and biochemical
versatility (Chandra et al., 2007). However, details of the
scale and method by which such breakdown takes place are
limited. There is a wide range of examples where
actinomycetes and other bacteria have been identified as
lignocellulose-degrading microorganisms. These strains
come from a great variety of aerobic and anaerobic
sources, including compost soil, terrestrial environments,
and aquatic ecosystems (Tabak et al., 1959; Crawford et
al., 1973; Gibson et al., 1973; Fukuzumi and Katayama,
1977; Haider et al., 1978; Forney and Reddy, 1980; Antai
and Crawford, 1981; Janshekar and Fiechter, 1982;
McCarthy, 1987; Srinivasan and Cary, 1987; Smith and
Ratledge, 1989; Winter et al., 1991; Nilsson and Daniel,
1992; Ajit et al., 1994; Rob et al., 1996; Ruttiman et al.,
1998; Björdal et al., 1999; Watanabe et al., 2003; Ko et al.,
2007; Yang et al., 2007).

2 Bacteria of lignin degradation

Much research has been done on the breakdown of wood
by fungi and the enzymes produced by fungi, while the
degradation of wood cell walls by bacteria was not
ascertained until the 1980s. Although physiological and
taxonomic affiliations of lignin-degrading bacteria are not
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well known, three main morphological forms of cell wall
degradation have been discovered: tunneling, erosion, and
cavitation (Blanchette, 1995). Tunneling bacteria are rare
in waterlogged wood because they appear to require a good
supply of oxygen. They produce minute tunnels to migrate
through the cell wall. Erosion bacteria are responsible for
the predominant form of degradation in waterlogged
archaeological wood, since they seem to tolerate near-
anaerobic or fully anoxic environments (Kim et al., 1996;
Björdal et al., 1999). Erosion bacteria are typically rod-
shaped, and they attack the wall from the lumen into the
secondary walls singly or in small groups (Holt, 1983).
Cavitation bacteria, presenting in the wood cell lumen,
apparently utilize products derived from the activities of
wood degraders (Singh et al., 1990).

2.1 Aerobic bacteria

Phylogenetically and taxonomically, bacteria of several
genera, including Alcaligenes, Arthrobacter, Nocardia,
Pseudomonas, and Strepomyces, have been found degrad-
ing single ring aromatic substrates (Mahadevan, 1991).
Radioactive methods are usually used in quantitative lignin
degradation studies, while, with the disadvantage of rough
estimation, non-isotopic methods are usually restricted to
qualitative lignin degradation studies (Crawford et al.,

1980). The radioactive lignins play an important role in the
initial steps of studies on lignin degradation. After
microbial degradation, the fate of the 14C-label could be
measured by using 14C-labelled lignins, i.e. in mineralizing
lignin, in solubilizing lignin, in forming 14CO2, etc.
(Crawford et al., 1980).
The data from early determinations with non-isotopical

experiments was disappointing, thus radioactive methods
began to be used widely for their superiority. Nocardiawas
reported to have released between 4% and 7% 14CO2 from
14C-ring labeled maize lignin or synthetic lignins in 15
days, and 6% to 15% of the label was present in the side
chains and methoxyl groups of the same substrates
(Trojanowski et al., 1997), whereas Pseudomonas set
free only 1% 14CO2, irrespective of the location of the label
(Kaplan and Hartenstein, 1980). Distinctly, Bacillus
megaterium mineralized 12% of 14C-side chain labeled
spruce lignin, but only 0.3% of 14C-ring dehydrogenative
polymerizates (DHPs) in 20 days (Robinson and Crawford,
1978). Later, Nocardia, Pseudomonas, and Corynebacter-
ium strains were reported to degrade 1.0%–10% of four
different lignin preparations, as measured with a spectro-
photometer. In this case, the lignin was unlabelled, so the
value may overestimate the actual degradation (Janshekar
and Fiechter, 1982). Kerr et al. (1983) reported that
Arthrobacter sp. KB-1, cultured on four lignin prepara-

Fig. 1 Chemical structures and reactions discussed in the text. (a) The principal α-O-4 structure of lignin and the pathway for its Cα-Cβ
cleavage by LiP. (b) A phenylcoumaran lignin structure. (c) A resinol lignin structure. (d) LiP-catalyzed oxidation of the fungal metabolite
veratryl alcohol. Gymnosperms contain lignins in which most subunits have R1 = OCH3 and R2 = H. Angiosperm lignins also contain
these structures but have, in addition, subunits in which R1 = OCH3 and R2 = OCH3. Grass lignins contain both types of structures but
have, in addition, some subunits in which R1 = H and R2 = H. These nonmethoxylated lignin structures are more difficult to oxidize than
those that contain one or two methoxyl groups. In the predominating nonphenolic structures of lignin, R3 = lignin, whereas R3 = H in the
minor phenolic structures. (Hammel and Cullen, 2008)
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tions from peanut hulls, mineralized 2.9% of the lignin
component of S. alternifolia (14C-lignin) lignocellulose in
10 days. (14C)DHP, (O14CH3)DHP, and (

14C-ring)DHP can
be mineralized by resting cells of Xanthomonas sp.,
wherein about 30% of the label of substrates had evolved
as 14CO2 after 20 days, and the oxidation of the methoxyl
groups was slightly faster than that of the rings and the side
chains (Kern, 1984). Oxygen was a necessity in the
degradation of DHPs, and the degradability in pure oxygen
was equal to that in air. The label was not only evolved as
14CO2, but also incorporated into RNA, DNA, and protein
by Xanthomonas sp., indicating that the bacterium utilized
synthetic lignin as a carbon source (Archana and
Mahadevan, 2002). Kern and Kirk (1987) further char-
acterized the lignin degrading activity of Xanthomonas sp.
Using 14C-methylated spruce lignin plus five DHP
preparations of different molecular sizes, degrees of
methylation, and locations of the label, the bacterium
merely degraded substrates of molecular weight up to 1000
daltons, apparently.
Tunneling bacteria, mentioned above, are also capable

of mineralizing synthetic lignins. Separate strains can
reach values of 14CO2 evolution of 11%, 10.4%, and 6.0%
from ring-, side chain-, and methoxyl labeled lignins,
respectively, although these bacteria have not been
identified yet. Actinomycetes have been the subject of
the greatest research effort in this field (McCarthy, 1987).
Crawford gained the first evidence of lignin mineralization
by Streptomyces strains and demonstrated up to 3.5% oxi-
dation to 14CO2 of (14C-β) lignin-labeled maple lignocel-
lulose after 41 days. The ability of Streptomyces to attack
lignin was confirmed later by Phelan et al. (1979) and by
Crawford et al. (1982), who showed that these micro-
organisms mineralize side chain- and ring-labeled lignins.
Moreover, they bring about decay of the glucan component
of lignocellulose.

2.2 Anaerobic bacteria

It is not only in aerobic conditions, but also in anaerobic
conditions that the 14C-labeled lignin could be degraded by
bacteria. The microorganisms causing the decay have not
been characterized. However, both 14CO2 and

14CH4 have
been detected. It is assumed that they might consist
primarily of bacterial consortia (Holt and Jones, 1983).
After anaerobic incubation with various microbial sam-
ples, no conversion of alkyl-, aryl-, or methoxyl 14C-
labeled DHPs to 14CO2 plus

14CH4 was found (Hackett et
al., 1977). However, Zeikus et al. (1982) found that with
14C-Kraft lignin and highly depolymerized synthetic ring-
U-14C-labeled lignin, the degradation occurred under
anaerobic conditions. After 16 days of anaerobic incuba-
tion of synthetic lignins of low MW with microbial
samples from lake sediments, about 15% of the lignins
were converted to 14CO2 plus

14CH4, while the higher MW
component remained intact.

Under anaerobic conditions, the conversion of radi-
olabeled lignin substrates to gaseous products is very slow.
Benner et al. (1984) found that the degradation of ring-
U-14C-labelled DHPs by two mesophilic microbial popula-
tions was only 1.8% and 3.7%, after about 10 months.
Thermophilic bacteria decomposed 4% of the labeled
synthetic lignin to 14CO2 plus

14CH4 in 60 days. However,
the mineralization of pine lignin was below 2.7%. It was
found that at least in some anaerobic cultures, the labeled
gases may evolve from non-lignin contaminants present in
the substrates or from low MW lignin structures released
abiotically (Kirk and Farrell, 1987). Furthermore, degrada-
tion of lignin by bacteria in natural anoxic environments
may be slow but significant.

3 Enzymes of lignin degradation

Lignin, with a highly complex and relatively random
structure, is tenaciously resistant to degradation (Ralph,
2005). Depending on the degree of crystallization of the
lignin, enzymes can cleave the various specific bonds
within lignin but vary in effectiveness, and each enzyme is
specific to a particular chemical bond. Lignin’s wide
varieties of chemical bonds make specific cleavage by the
active site of an enzyme difficult, and it requires many
enzymes, each with a specific active site, for degradation.

3.1 Enzyme of aerobes

There are two major groups of intracellular enzymes of
aerobes involved in lignin degradation under aerobic
conditions: peroxidases and phenol oxidases. Both
enzymes are glycosylated, which could increase the
stability of the enzymes (Nie et al., 1999).

3.1.1 Peroxidases

Peroxidases (EC 1.11.1.7) are haem-containing enzymes
that catalyze a number of oxidative reactions and
hydroxylations, using hydrogen peroxide (H2O2) as the
electron acceptor (Ralph, 2005). Peroxidases exist in
bacteria, fungi, plants, and animals. In consideration of the
sequence similarity and structural divergence, they are
viewed as belonging to a super-family consisting of three
major classes (Welinder, 1992): mitochondrial yeast
cytochrome c peroxidase, chloroplast and cytosol ascor-
bate peroxidases, and gene duplicated bacterial peroxidase
(class I); secretory fungal peroxidases (class II); classical,
secretory plant peroxidases (class III).
Peroxidases are enzymes defined as oxidoreductases

using hydroperoxides as electron acceptor, and are able to
catalyze the oxidation of a large variety of substrates such
as phenol, aromatic amines, and other compounds such as
alkyl peroxides and aromatic peracids (Sjoblad and Bollag,
1981). Most of them have a common catalytic cycle
(Everse et al., 1991):
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Native peroxidaseðFe3þÞ þ H2O2

! Compound� Iþ H2O ðlaÞ
Compound� Iþ AH2

! Compound� IIþ AH� ðlbÞ
Compound� IIþ AH2

! Native peroxidaseðFe3þÞ þ AH� þ H2O ðlcÞ
In the first reaction (la), there is a two-electron oxidation

of the ferriheme prosthetic group of the native peroxidase
by H2O2 (or organic hydroperoxides). Compound-I
(oxidation state + 5) is an intermediate derived from the
first reaction, consisting of oxyferryl iron (Fe4+= O) and a
porphyrin π cation radical. In the following reaction (1b),
compound-I is reduced by the first electron donor AH2,
receives one electron, and forms compound-II (oxidation
state + 4). Then compound-II accepts an additional elec-
tron from AH2 in the third step (lc), whereby the enzyme is
returned to its native resting state, ferriperoxidase. During
the peroxidase reaction, different oxidation products are
formed, depending on the various natures of the substrates.
Electron donors such as aromatic amines and phenolic
compounds are oxidized to free radicals, AH* (reactions
(lb) and (1c)) (Dunford and Adeniran, 1986). When
reaction (la) occurs on an electrode surface, compound-I
can be directly reduced into ferriperoxidase by a hetero-
geneous electron transfer (ET) which comes from the
electrode material, instead of redox mediators. The aim of
these approaches is to lead to a reduction current correlated
with the concentration of peroxide in the solution. At high
concentrations of peroxide, the peroxidases turn into an
enzymatically inactive form, denoted as compound-III
(oxidation state + 6) (Adeiran and Lambeir, 1989).
Because lignin peroxidase can catalyze the oxidation of

substrates with a reduction potential greater than 1.3 volts,
the range of its substrates is extremely broad. The enzymes
have been proven to utilize lignin monomers, dimers, and
trimers as well as polycyclic aromatic compounds as
substrates (Haemmerli et al., 1986). Side-chain fragmenta-
tion (C-C cleavage) caused by the radicals (compounds I
and II) results in the breakdown of the lignin polymer
(Evans and Fuchs, 1988). They can also catalyze lipid
peroxidative pathways, which are capable of oxidizing
substrates such as lignin-model dimers and polycyclic
aromatic hydrocarbons.

3.1.2 Phenol oxidases

Phenol oxidases (PO) are excreted mainly by microorgan-
isms. They use oxygen as the final electron acceptor to
catalyze the oxidation of recalcitrant aromatic compounds
such as lignin into more readily available substrates
(Cullen and Kersten, 1996). Many studies have found
that purified PO are involved in the biodegradation and

detoxification processes of some aromatic pollutants
(Criquet et al., 2000; Farnet et al., 2004). Moreover,
these enzymatic activities can be inhibited or induced by
various xenobiotic compounds, such as heavy metals
(Baldrian and Gabriel, 2002; Tuomela et al., 2005).
Therefore, PO immobilized on supports are increasingly
applied to investigate water and soil pollution in conjunc-
tion with bioremediation (Durán and Esposito, 2000;
Gianfreda and Rao, 2004; Novotny et al., 2004). Based on
substrate specificity, the phenol oxidases can be divided
into laccases and polyphenol oxidases.

3.1.2.1 Laccase

Laccase, as a cuproprotein, is a member of a small group of
enzyme, denominated blue oxidases (Karam and Nicell,
1997). Laccase (E.C. 1.10.3.2, p-benzenediol: oxygen
oxidoreductase), an oxidoreductase, is able to catalyze the
oxidation of various aromatic compounds (particularly
phenols) with the reduction of oxygen to water (Fig. 2)
(Thurston, 1994; Karam and Nicell, 1997). Four copper
atoms, exhibited in laccases in general, play important
roles in enzyme catalytic mechanisms. According to
specific spectroscopic and functional characteristics,
copper atoms are located in different binding sites and
are classified into three types (Yaropolov et al., 1994; Xu,
1996; Durán, 1997; McMillin and Eggleston, 1997).
The molecular weight of laccase is quite large (MW

70000) (Bourbonnais et al., 1997), which makes it
impossible to penetrate deep into wood. Moreover, due
to its rather low-redox potential (0.5–0.8 V), laccase is
unable to oxidize non-phenolic (C4-etherified) lignin units
with a high-redox potential (> 1.5 V) (Galli and Gentili,
2004). In view of these limitations, laccase alone can only
oxidize phenolic lignin units (Sjöström, 1993) at the
substrate surface. Therefore, laccase is often used with an
oxidation mediator, a small molecule that is able to extend
the effect of laccase to non-phenolic lignin units and to
overcome the accessibility problem (Galli and Gentili,
2004). The mediator, called LMS, is first oxidized by
laccase and then diffuses into the cell wall to oxidize
lignin, which is inaccessible to laccase (Fig. 3). Laccase-
mediated oxidation of non-phenolic lignin units can fol-
low an electron transfer, a radical hydrogen atom transfer,
or an ionic mechanism, depending on the mediator
(Barreca et al., 2004). Several organic and inorganic
compounds, such as thiol and phenol aromatic derivatives,
N-hydroxy compounds and ferrocyanide, have been repor-
ted as effective mediators for the above-mentioned pur-
poses (Susana and José, 2006). Claus et al. (2002) found
that the LMS strengthened dye decolorization and some
dyes resistant to laccase degradation were decolorized.
Laccase is not only widely distributed in higher plants

(Mayer and Harel, 1979) and fungi (Xu, 1996; Karam and
Nicell, 1997), but also found in some bacterial strains of
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Azospirillum lipoferum (Givaudan et al., 1993) and
Alteromonas sp. (Sanchez-Amat and Solano, 1997).
Recently, following exhaustive BLAST searches of the
non-redundant protein sequence database (http://www.
ncbi.nlm.nih.gov/index.html) and unfinished microbial
genomes (http://www.tigr.org), using fungal laccase
sequences as queries, Alexandre and Zhulin (2000)
found that several sequences of microbial proteins showed
a significant similarity to fungal laccases (Table 1).
Sequences with significant similarity to fungal laccases
throughout the entire length were taken for further
analysis. It was proved that laccases, soluble and excreted
in bacteria, are widespread in bacteria.

3.1.2.2 Polyphenol oxidases

Polyphenol oxidases or tyrosinases (PPO), containing a
dinuclear copper center, are able to insert oxygen in a
position ortho- to an existing hydroxyl group in an
aromatic ring with the concomitant oxidation of the
diphenol to the corresponding quinone (Alfred, 2006).
The structure of the active site of the enzyme is highly
conserved, in which copper is bound by six or seven
histidine residues and a single cysteine residue (Alfred,
2006). Shahriar et al. (2007) found that the reactions
catalyzed by PPO were as follows. All of the reactions
utilize molecular oxygen.

a) Reaction with monophenols (e.g. p-cresol):

b) Reaction with diphenols (e.g. catechol):

c) Reaction with triphenols (e.g. pyrogallol):

Fig. 3 The redox cycle of laccase-catalyzed oxidation of the LMS. (Adapted from Petri and Andreas, 2008)

Fig. 2 Typical reaction of laccase: phenol oxidation. It shows a typical laccase reaction, where a phenol undergoes a one electron
oxidation to form a free radical. This active oxygen species can be transformed into a quinone in a second oxidation step. The quinone as
the free radical product can undergo polymerization. (Adapted from Rosana et al., 2002)
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Apparently, the enzyme extensively exists in bacteria,
fungi, plants and animals (Alfred, 2006). In vitro studies
have proven that polyphenol oxidase is involved in the
degradation of natural phenols with more complex
structures such as anthocyanins and flavanols (Finger,
1994). However, these compounds cannot be oxidized by
the enzymes directly but by the quinones formed by
polyphenol oxidase from catechol and catechin (Jiménez
and García-Carmona, 1999).

3.2 Enzymes of anaerobes

A wide variety of aromatic compounds, including phenols
related to lignin, have been found to be biodegradable in
strict anaerobic conditions (Balba and Evans, 1977; Evans,
1977). In aerobic bacteria, molecular oxygen is used as a
common cosubstrate for key enzymes of aromatic meta-
bolism. In contrast, in anaerobic bacteria, all oxygen-
dependent reactions are replaced by a set of alternative

enzymatic processes. Using nitrate, sulfate or Fe(III) as
terminal electron acceptors, anaerobic bacteria comprise
organisms with anaerobic respiratory chains. It is
suggested that some of the enzymatic processes involved
in the degradation of phenol by anaerobes uniquely exist in
the aromatic metabolism of anaerobic bacteria (Matthias
and Georg, 2005).
The initial steps of anaerobic phenol metabolism are

composed of the following reactions (Fig. 4):
Two different enzymes are involved in the carboxylation

of phenol: a phenylphosphate synthase that transforms
phenol with ATP into phenylphosphate, forming AMP and
phosphate (Schmeling et al., 2004) and a phenylphosphate
carboxylase that transforms phenylphosphate with CO2

into 4-hydroxybenzoate and phosphate, using Mn as the
metal cofactor (Lack et al., 1991; Schühle and Fuchs,
2004).
By a specific AMP-forming carboxylic acidcoenzyme A

ligase, 4-hydroxybenzoate is first activated to 4-hydro-

Table 1 Putative bacterial laccases

species protein namea protein sequence analysis

similarity to laccaseb length/aa signal peptide TMc copper-binding sitesd

Mycobacterium tuber culosum Rv0846c_2916905 3e–36 504 K K +

Escherichia coli PcoA_1073341 1e–29 605 + K +

Caulobacter crescentus Contig_122e 6e–29 ND ND K +

Pseudomonas syringae CopA_116921 8e–28 609 + K +

Bordetella pertussis Contig_449e 9e–28 591 + K +

Xanthomonas campestris CopA_1073083 3e–26 635 + K +

Pseudomonas aeruginosa Contig_52e 4e–26 ND ND K +

Mycobacterium avium Contig_982e 1e–22 ND ND K +

Pseudomonas putida CumA_4580028 2e–22 459 + K +

Rhodobacter capsulatus 3128288 1e–16 491 + K +

Yersinia pestis Contig_768e 5e–15 ND ND K +

Campylobacter jejuni Contig_1e 3e–12 512 + K +

Escherichia coli YacK_2506227 9e–09 516 + K +

Aquifex aeolicus Sufl_2983586 1e–07 527 + K +

aProtein name and GenBank identification numbers are given (separated by underscores). bE (expected) value (Ref. 7) for the closest hit with a fungal laccase. cTM, the

presence of transmembrane regions according to hydrophobicity analysis. dConservation of copper-binding sites can be viewed at www.llu.edu/llu/medicine/micro/

laccase/. eTiGR preliminary identification numbers. Abbreviation: ND, not determined. (Adapted from Alexandre and Zhulin, 2000)

Fig. 4 Enzymatic reactions involved in anaerobic phenol metabolism. Reactions catalyzed by (1) phenylphosphate synthase, (2)
phenylphosphate carboxylase, (3) 4-hydroxybenzoate CoA ligase, (4) 4-hydroxybenzoyl-CoA reductase, (5) benzoyl-CoA reductase and
(6) enzymes involved in modified β-oxidation reactions (Adapted from Matthias and Georg, 2005).
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xybenzoyl-CoA (Biegert et al., 1993; Gibson et al., 1994).
Then the phenolic coenzyme A ester is dehydroxylated to
benzoyl-CoA by 4-hydroxybenzoyl-CoA reductase
(Brackmann and Fuchs, 1993).
Benzoyl-CoA is reduced to a non-aromatic, cyclic

dienoyl-CoA compound by benzoyl-CoA reductase (Boll
et al., 2000). According to the hydrolyzation of two
molecules of ATP, benzoyl-CoA reductase couples aro-
matic ring dearomatization to a stoichiometric hydrolysis
(Boll and Fuchs, 1995; Boll et al., 1997). Then the product
is further converted to three molecules of acetyl-CoA and
one molecule of CO2.

4 Genetic manipulation of lignin
degradation bacteria

The genes encoding protocatechuate 3, 4-dioxygenase
from a marine isolate from Bacillus subtilis have been
successfully cloned and expressed (Gold et al., 1998). The
enzymes produced by the bacteria can catalyze the clea-
vage of interunit linkages, according to bacteria cultured
on model dimmers (Archana and Mahadevan, 2002).
Some researchers constructed genomic libraries of

ligninolytic strains to clone specific genes. The advantage
of this strategy is that it allows cloning of genes, which
code for enzymes that might not have been isolated
(Vicuna, 1988). Bacillus sp., isolated from decaying coir, is
able to utilize 0.25% indulin (kraft pine lignin) as the sole
carbon source. The genomic library of Bacillus sp. has
been constructed into the high copy number plasmid vector
pUC19. The two clones of MBA5 and MBA23 were
selected based on the ability of utilizing indulin (Archana
and Mahadevan, 2002).

5 Conclusions

Lignin degradation involves multiple biochemical reac-
tions. Though the role of fungal lignin peroxidases has
been well established only in recent years, the study of
bacterial lignin degradation has become increasingly
important. Bacteria of several genera such as Alcaligenes,
Arthrobacter, Nocardia, Pseudomonas, and Strepomyces
readily degrade single ring aromatic substrates. The genes
involved in lignin degradation have been cloned and
expressed.
However, the involute chemical structure of lignin

requires that the enzymes be highly versatile, and they use
free radicals as a means to attack lignin, which makes them
able to break down a very wide range of other compounds.
Furthermore, the enzymes involved in lignin degradation
in bacteria do not seem to closely resemble those of the
better understood fungi, which have limited the use of
bioinformatics in the identification of potential lignin
degrading enzymes.
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