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Generalization of a theorem of Gonchar

Peter Pflug and Viêt-Anh Nguyên

Abstract. Let X and Y be two complex manifolds, let D⊂X and G⊂Y be two nonempty

open sets, let A (resp. B) be an open subset of ∂D (resp. ∂G), and let W be the 2-fold cross

((D∪A)×B)∪(A×(B∪G)). Under a geometric condition on the boundary sets A and B, we

show that every function locally bounded, separately continuous on W, continuous on A×B, and

separately holomorphic on (A×G)∪(D×B) “extends” to a function continuous on a “domain of

holomorphy” ̂W and holomorphic on the interior of ̂W.

1. Introduction

In the works [6], [7] Gonchar has proved the following remarkable result.

Gonchar’s theorem. Let D, G⊂C be Jordan domains and A (resp. B) be
a nonempty open subset of the boundary ∂D (resp. ∂G). Let

f : W := ((D∪A)×B)∪(A×(B∪G))−!C

be a continuous function such that f(a, · )|G and f( · , b)|D are holomorphic for all
a∈A and b∈B. Then there is a unique function f̂ continuous on

̂W := {(z, w)∈ (D∪A)×(G∪B) : ω(z, A, D)+ω(w, B, G)< 1},
and holomorphic on

̂W � := {(z, w)∈D×G : ω(z, A, D)+ω(w, B, G)< 1},

such that f̂ =f on W, where ω( · , A, D) and ω( · , B, G) are the harmonic measures
(see Subsection 2.2 below). Moreover, if |f |W <∞ then

|f̂(z, w)| ≤ |f |1−ω(z,A,D)−ω(w,B,G)
A×B |f |ω(z,A,D)+ω(w,B,G)

W , (z, w)∈ ̂W,

where |g|M :=supM |g| for a function g defined on a set M.
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Gonchar’s theorem generalizes the pioneering work of Malgrange–Zerner [15] on
a boundary version of the cross theorem, and other results obtained by Komatsu [8]
and Drużkowski [3]. At the same time as Gonchar’s work in [6], Airapetyan and
Henkin published a version of the edge-of-the-wedge theorem for CR manifolds
(see [1] for a brief version and [2] for a complete proof). Gonchar’s theorem could
be deduced from the latter result.

Recently, the authors have been able to generalize Gonchar’s result to the case
where D and G are pseudoconvex domains in Cn (see [11]).

The main goal of the present work is to establish a generalization of Gonchar’s
theorem for the case where D and G are open subsets of arbitrary complex manifolds
and A⊂∂D and B⊂∂G are open (boundary) subsets.

The proof of the result presented in this work is based on Gonchar’s theo-
rem, the techniques introduced in our previous work [11], the approach “Poletsky
theory of holomorphic discs and Rosay’s theorem” developed in a recent article of
the second author [10], and a thorough geometric study of the plurisubharmonic
measure.

Acknowledgement. The paper was written while the second author was visiting
the Max-Planck Institut für Mathematik in Bonn and the Abdus Salam Interna-
tional Centre for Theoretical Physics in Trieste. He wishes to express his gratitude
to these organizations.

2. Statement of the main result and outline of the proof

In order to state the main result, we need to introduce some notation and
terminology. In fact, we keep the main notation from the previous work [11]

2.1. Topological hypersurfaces in a complex manifold

For every open subset U⊂R2n−1 and every continuous function h : U!R, the
graph

{z = (z′, zn)= (z′, xn+iyn)∈Cn : (z′, xn)∈U and yn = h(z′, xn)}
is called a topological hypersurface in Cn.

Let X be a complex manifold of dimension n. A subset A⊂X is a topological
hypersurface if, for every point a∈A, there is a local chart(U, φ : U!Cn) around a

such that φ(A∩U) is a topological hypersurface in Cn

Now let D⊂X be an open subset and let A⊂∂D be an open subset (with
respect to the topology induced on ∂D). Suppose in addition that A is a topological
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hypersurface. A point a∈A is said to be of type 1 (with respect to D) if, for every
neighborhood U of a there is an open neighborhood V of a such that V ⊂U and
V ∩D is a domain. Otherwise, a is said to be of type 2. We see easily that if a is
of type 2, then for every neighborhood U of a, there are an open neighborhood V

of a and two domains V1 and V2 such that V ⊂U, V ∩D=V1∪V2 and all points in
A∩V are of type 1 with respect to V1 and V2.

We conclude this subsection with a simple example which may clarify the above
definitions. Let G be the open square in C whose four vertices are 1+i,−1+i,−1−i,

and 1−i. Define the domain

D := G\[− 1
2 , 1

2

]

.

Then A:=∂G∪(− 1
2 , 1

2

)

is not only an open subset of ∂D, but also a topological
hypersurface. Every point of ∂G is of type 1 and every point of

(− 1
2 , 1

2

)

is of type 2
(with respect to D).

2.2. Plurisubharmonic measure

Let X be a complex manifold and let D be an open subset of X. For every
function u : D![−∞,∞), let

û(z) :=

⎧

⎪

⎨

⎪

⎩

u(z), z∈D,

lim sup
w∈D
w!z

u(w), z∈∂D.

For a set A⊂D put

hA,D := sup{u : u∈PSH(D), u≤ 1 on D and û≤ 0 on A},
where PSH(D) denotes the set of all plurisubharmonic functions on D.

The plurisubharmonic measure of A relative to D is given by

ω(z, A, D) := ̂h∗
A,D(z), z ∈D∪A,(2.1)

where u∗ denotes the upper semicontinuous regularization of a function u.

Geometric properties of the plurisubharmonic measure will be discussed in
Section 3 below.

2.3. Cross and separate holomorphicity

Let X and Y be two complex manifolds, let D⊂X and G⊂Y be two nonempty
open sets, and let A (resp. B) be either an open subset of ∂D (resp. ∂G) or an open
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subset of D (resp. G). If, moreover, A (resp. B) is an open subset of ∂D (resp. ∂G),
then we assume in addition that A (resp. B) is a topological hypersurface.

We define a 2-fold cross W and its interior W � as

W = X(A, B; D, G) := ((D∪A)×B)∪(A×(B∪G)),

W � = X�(A, B; D, G) := (A×G)∪(D×B).

Moreover, put

ω(z, w) := ω(z, A, D)+ω(w, B, G), (z, w)∈ (D∪A)×(G∪B).

For a 2-fold cross W :=X(A, B; D, G) define its wedge

̂W := ̂X(A, B; D, G) := {(z, w)∈ (D∪A)×(G∪B) : ω(z, w)< 1}.

Then the set of all interior points of the wedge ̂W is given by

̂W � := ̂X�(A, B; D, G) := {(z, w)∈D×G : ω(z, w)< 1}.
We say that a function f : W!C is separately holomorphic on W � and write

f∈Os(W �), if for any a∈A (resp. b∈B) the function f(a, · )|G (resp. f( · , b)|D ) is
holomorphic on G (resp. on D).

We say that a function f : W!C is separately continuous on W and write
f∈Cs(W ), if for any a∈A (resp. b∈B) the function f(a, · )|G∪B (resp. f( · , b)|D∪A)
is continuous on G∪B (resp. on D∪A).

Throughout the paper, for a topological space M, C(M) denotes the space of
all continuous functions f : M!C equipped with the “sup-norm” |f |M :=supM |f |.
Moreover, a function f : M!C is said to be locally bounded on M if, for any point
z∈M, there are an open neighborhood U of z and a positive number K=Kz such
that |f |U <K.

2.4. Statement of the main result and an outline of its proof

We are now ready to state the main result.

Main theorem. Let X and Y be two complex manifolds, let D⊂X and G⊂Y

be two nonempty open sets, and let A (resp. B) be a nonempty open subset of ∂D

(resp. ∂G). Suppose in addition that A and B are topological hypersurfaces. Let
f : W!C be such that:

(i) f∈Cs(W )∩Os(W �);
(ii) f is locally bounded on W ;
(iii) f |A×B is continuous.
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Then there exists a unique function f̂∈C(̂W )∩O(̂W �) such that f̂=f on W.

Moreover, if |f |W <∞, then

|f̂(z, w)| ≤ |f |1−ω(z,w)
A×B |f |ω(z,w)

W , (z, w)∈ ̂W.

It is worth to remark that the formulation of the Main theorem bears a flavor
of Drużkowski’s theorem in [3]. In fact, when D and G are Jordan domains in C,

the Main theorem follows from Gonchar’s theorem and the proof of Drużkowski’s
theorem. Now we give some ideas of how to prove the Main theorem.

In order to tackle “arbitrary” complex manifolds, the first key technique here is
to apply the beautiful theorem of Rosay [14]. This “Poletsky theory of holomorphic
discs” approach has been explored in the work [10], where the second author suc-
ceeded in removing the “pseudoconvex hypothesis” in the classical cross theorems.
The second key technique is to apply a mixed cross type theorem (see also [11]). The
third key technique is to use level sets of the plurisubharmonic measure (see [10]
and [11]). More precisely, we exhaust D (resp. G) by the level sets of the plurisubhar-
monic measure ω( · , A, D) (resp. ω( · , B, G)), i.e. by Dδ :={z∈D :ω(z, A, D)<1−δ}
(resp. Gδ :={w∈G:ω(w, B, G)<1−δ}) for 0<δ<1.

Our method consists of three steps. In the first step we suppose that G is
a domain in Cm and A is an open subset of D. In the second step we treat the case
where the pairs (D, A) and (G, B) are “good” enough in the sense of the slicing
method. In the last one we consider the general case. For the first step we combine
the mixed cross theorem with the technique of holomorphic discs. For the second
step one applies the slicing method and Gonchar’s theorem. The general philosophy
is to prove the Main theorem with D (resp. G) replaced by Dδ (resp. Gδ). Then
we construct the solution for the original open sets D and G by means of a gluing
procedure (see also [10] and [11]). In the last step we transfer the holomorphicity
from local situations to the global context.

Although our results have been stated only for the case of a 2-fold cross, they
can be formulated for the general case of an N -fold cross with N≥2 (see also [10]
and [11]).

3. Preparatory results

We present here the auxiliary results needed for the proof of the Main theorem.

3.1. Poletsky theory of discs and Rosay’s theorem on holomorphic discs

Let E denote as usual the unit disc in C. For a complex manifold M, let
O(E,M) denote the set of all holomorphic mappings φ : E!M which extend holo-
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morphically to a neighborhood of E. Such a mapping φ is called a holomorphic disc
on M. Moreover, for a subset A of M, let

1A,M(z) :=

{

1, z∈A,

0, z∈M\A.

In the work [14] Rosay proved the following remarkable result.

Theorem 3.1. Let u be an upper semicontinuous function on a complex man-
ifold M. Then the Poisson functional of u defined by

P [u](z) := inf
{

1
2π

∫ 2π

0

u(φ(eiθ)) dθ : φ∈O(E,M) and φ(0)= z

}

,

is plurisubharmonic on M.

Special cases of Theorem 3.1 have been considered, for the first times, by
Poletsky (in [12] and [13]), and then by Lárusson–Sigurdsson (see [9]) and Edigar-
ian (see [4]).

The following result is an immediate consequence of Rosay’s theorem.

Proposition 3.2. Let M be a complex manifold and A a nonempty open
subset of M. Then ω(z, A,M)=P [1M\A,M](z), z∈M.

Proof. See, for example, the proof of Proposition 3.4 in [10]. �

The following result is simple but very useful.

Lemma 3.3. Let T be an open subset of E. Then

ω(0, T∩E, E)≤ 1
2π

∫ 2π

0

1∂E\T,∂E(eiθ) dθ.

Proof. See Lemma 3.3 in [10]. �

3.2. Slicing method

Let X be a complex manifold of dimension n, let D be an open subset of X

and let A⊂∂D be an open boundary subset which is also a topological hypersurface.
We like to study the “slicing” property of D near an arbitrary point a∈A. Since
our study is local, we look at sufficiently small open neighborhoods V of a such
that V is contained in a chart. Therefore, V ∩D may be identified with an open
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neighborhood of 0 in Cn. In addition, we may choose V so that there are an open
subset U⊂R2n−1 and a continuous function h : U!R such that

V ∩∂D = V ∩A= {z = (z′, zn)= (z′, xn+iyn)∈Cn : (z′, xn)∈U and yn = h(z′, xn)}.

Assume without loss of generality that [−1, 1]2n−1⊂U and that a:=0∈Cn. By
shrinking U and V (if necessary), and using the continuity of h, we may find an
ε>0 such that there are only the following two cases:

Case 1. All points of A∩V are of type 1 and

Ez′ := {z = (z′, zn)= (z′, xn+iyn)∈Cn :−ε < yn−h(z′, xn)< 0}⊂D∩V

for all z′∈(−1, 1)2n−2.

Case 2. All points of A∩V are of type 2 and

Ez′ := {z = (z′, zn)= (z′, xn+iyn)∈Cn :−ε < yn−h(z′, xn)< 0

or 0 < yn−h(z′, xn)< ε}⊂D∩V

for all z′∈(−1, 1)2n−2.

For a subset S⊂Cn, let (S)n denote the image of S under the canonical pro-
jection of Cn onto the nth coordinate. Observe that in Case 1, (Ez′)n is a Jordan
domain, but in Case 2, (Ez′)n is a disjoint union of two Jordan domains. For all
z′∈(−1, 1)2n−2, let

(A∩V )z′ := {z = (z′, zn)= (z′, xn+iyn)∈Cn : yn = h(z′, xn)}.

Definition 3.4. Under the above hypothesis and notation, (D∩V, A∩V ) is said
to be a good pair.

In summary, we have shown the following result.

Proposition 3.5. Let X be a complex manifold, let D be an open subset of X

and let A⊂∂D be an open boundary subset which is also a topological hypersurface.
Then for all points a∈A, there is an open neighborhood V of a such that the pair
(D∩V, A∩V ) is good.

Using the construction above and the continuity of h, we may apply Radó’s the-
orem (see Theorem 2 in [5, p. 59]). Consequently, the family of harmonic measures
ω( · , ((A∩V )z′)n, (Ez′)n) depends “continuously” on the parameter z′∈(−1, 1)2n−2.
Therefore, we obtain the following result.
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Proposition 3.6. We keep the above hypothesis and notation. Consider the
set

(A∩V )δ :=

int
(

⋃

z′∈(−1,1)2n−2

{z = (z′, zn) : zn ∈ (Ez′ )n, ω(zn, ((A∩V )z′)n, (Ez′)n)< δ}
)

,

where intS denotes the set of all interior points of S⊂Cn. Then (A∩V )δ∪(A∩V )
is a neighborhood of A∩V in D∪(A∩V ).

The above result has several useful consequences.

Proposition 3.7. Let X be a complex manifold, let D be an open subset of X

and let A⊂∂D be an open boundary subset which is also a topological hypersurface.
For all 0≤ε<1, let

Dε := {z∈D : ω(z, A, D)< 1−ε}.
Then:

(1) A is also an open set of ∂Dε and limz!ζ ω(z, A, D)=0 for all ζ∈A.

(2) Moreover,

ω(z, A, Dε)=
ω(z, A, D)

1−ε
, z ∈Dε.

(3) (The Uniqueness theorem) If f∈O(Dε) is such that limz!ζ f(z)=0 for all
ζ∈A, then f≡0.

Proof. Applying Proposition 3.6 locally, the first assertion follows. Using the
first assertion, the second and third ones follow from standard arguments. �

3.3. A mixed cross theorem

Theorem 3.8. Let D be the unit disc in C, let G be an open subset in Cm, let
A be an open subset of D, and let B be an open subset of ∂G. Suppose in addition that
B is a topological hypersurface. Put W :=X(A, B; D, G) and ̂W := ̂X(A, B; D, G).
Let f : W!C be such that:

(i) f∈Cs(W )∩Os(W �);
(ii) f is locally bounded on W ;
(iii) f |A×B is continuous.
Then there exists a unique function f̂∈C(̂W )∩O(̂W �) such that f̂=f on W.

Moreover, if |f |W <∞, then

|f̂(z, w)| ≤ |f |1−ω(z,w)
A×B |f |ω(z,w)

W , (z, w)∈̂W.
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Proof. Using Proposition 3.7, the proof of Theorem 4.1 and Theorem 4.2 in [11]
also works in the present context after making the obviously necessary changes. In
fact, the hypothesis on D (i.e. D=E) implies that D is pseudoconvex. Therefore,
we are able to apply the classical method of doubly orthogonal bases of Bergman
type. �

4. Part 1 of the proof of the Main theorem

The main purpose of this section is to prove the following mixed cross theorem.

Theorem 4.1. Let D be a complex manifold, let G be an open subset in Cm,
let A be an open subset of D, and let B be an open subset of ∂G. Suppose in
addition that B is a topological hypersurface. Put W :=X(A, B; D, G) and ̂W :=
̂X(A, B; D, G). Let f : W!C be such that:

(i) f∈Cs(W )∩Os(W �);
(ii) f is locally bounded on W ;
(iii) f |A×B is continuous.
Then there exists a unique function f̂∈C(̂W )∩O(̂W �) such that f̂=f on W.

Moreover, if |f |W <∞, then

|f̂(z, w)| ≤ |f |1−ω(z,w)
A×B |f |ω(z,w)

W , (z, w)∈ ̂W.

It is worth to remark that Theorem 4.1 removes the hypothesis “pseudoconvex” in
Theorem 3.8.

Proof. It follows essentially the proof of Theorem 4.1 in [10]. We begin the
proof with the following lemma.

Lemma 4.2. We keep the hypothesis of Theorem 4.1. For j∈{1, 2}, let φj∈
O(E, D) be a holomorphic disc, and let tj∈E such that φ1(t1)=φ2(t2) and

1
2π

∫ 2π

0

1D\A,D(φj(eiθ)) dθ < 1, j = 1, 2.

Then:
(1) For j∈{1, 2}, the function (t, w) 	!f(φj(t), w) belongs to

Cs(X(φ−1
j (A)∩E, B; E, G))∩Os(X�(φ−1

j (A)∩E, B; E, G)),

and is continuous on (φ−1
j (A)∩E)×B, where φ−1

j (A):={t∈E :φj(t)∈A}.
(2) For j∈{1, 2}, in virtue of Part (1) and applying Theorem 3.8, let f̂j be the

unique function in

C(̂X(φ−1
j (A)∩E, B; E, G))∩O(̂X�(φ−1

j (A)∩E, B; E, G))
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such that f̂j(t, w)=f(φj(t), w), (t, w)∈X(φ−1
j (A)∩E, B; E, G). Then

f̂1(t1, w)= f̂2(t2, w)

for all w∈G such that (tj , w)∈ ̂X(φ−1
j (A)∩E, B; E, G), j∈{1, 2}.

Proof. Part (1) follows immediately from the hypothesis. Therefore, it re-
mains to prove Part (2). To do this fix w0∈G∪B such that (tj , w0)∈ ̂X(φ−1

j (A)∩
E, B; E, G) for j∈{1, 2}. We need to show that f̂1(t1, w0)=f̂2(t2, w0). Observe that
both functions w∈G 	!f̂1(t1, w) and w∈G 	!f̂2(t2, w) belong to O(G), where G is the
connected component which contains w0 of the following open set

{

w∈G : ω(w, B, G)< 1− max
j∈{1,2}

ω(tj , φ
−1
j (A)∩E, E)

}

.

On the other hand, for any j∈{1, 2} and w∈B, (tj , w)∈ ̂X(φ−1
j (A)∩E, B; E, G).

This, combined with the equality φ1(t1)=φ2(t2), implies that

f̂1(t1, w)= f(φ1(t1), w)= f(φ2(t2), w)= f̂2(t2, w), w∈B.

Therefore, by the Uniqueness theorem (see Part (3) of Proposition 3.7), f̂1(t1, w)=
f̂2(t2, w), w∈G. Hence, f̂1(t1, w0)=f̂2(t2, w0), which completes the proof of the
lemma. �

Now we return to the proof of the theorem. We define f̂ as follows: Let W be
the set of all pairs (z, w)∈D×(G∪B) with the property that there are a holomorphic
disc φ∈O(E, D) and t∈E such that φ(t)=z and (t, w)∈ ̂X(φ−1(A)∩E, B; E, G). In
virtue of Theorem 3.8, let f̂φ be the unique function in

C(̂X(φ−1(A)∩E, B; E, G))∩O(̂X�(φ−1(A)∩E, B; E, G))

such that

f̂φ(t, w)= f(φ(t), w), (t, w)∈X(φ−1(A)∩E, B; E, G).(4.1)

Then the desired extension function f̂ is given by

f̂(z, w) := f̂φ(t, w).(4.2)

In virtue of Part (2) of Lemma 4.2, f̂ is well-defined on W . We next prove that

W = ̂W.(4.3)

Taking (4.3) for granted, f̂ is well-defined on ̂W.
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Now we return to (4.3). To prove the inclusion W⊂̂W, let (z, w)∈W . By
the above definition of W , one may find a holomorphic disc φ∈O(E, D), a point
t∈E such that φ(t)=z and (t, w)∈ ̂X(φ−1(A)∩E, B; E, G). Since ω(φ(t), A, D)≤
ω(t, φ−1(A)∩E, E), it follows that

ω(z, A, D)+ω(w, B, G)≤ω(t, φ−1(A)∩E, E)+ω(w, B, G)< 1.

Hence (z, w)∈̂W. This proves the above mentioned inclusion.
To finish the proof of (4.3), it suffices to show that ̂W⊂W . To do this, let

(z, w)∈̂W and fix an ε>0 such that

ε < 1−ω(z, A, D)−ω(w, B, G).(4.4)

Applying Theorem 3.1 and Proposition 3.2, there is a holomorphic disc φ∈O(E, D)
such that φ(0)=z and

1
2π

∫ 2π

0

1D\A,D(φ(eiθ)) dθ < ω(z, A, D)+ε.(4.5)

Observe that

ω(0, φ−1(A)∩E, E)+ω(w, B, G) ≤ 1
2π

∫ 2π

0

1D\A,D(φ(eiθ)) dθ+ω(w, B, G)

< ω(z, A, D)+ω(w, B, G)+ε < 1,

where the first inequality follows from Lemma 3.3, the second one from (4.5), and
the last one from (4.4). Hence, (0, w)∈ ̂X(φ−1(A)∩E, B; E, G), which implies that
(z, w)∈W . This complete the proof of (4.3). Hence, the construction of the extension
function f̂ on ̂W has been completed.

Using (4.1)–(4.3), the proof given in Steps 2 and 3 of Section 4 in [10] still
works in the present context after making the obviously necessary changes. This
gives that f̂=f on W and f̂∈C(̂W )∩O(̂W �). Consequently, arguing as in the proof
of Theorem 4.2 in [11], the desired estimate of the theorem follows.

This completes the proof of Theorem 4.1. �

5. Part 2 of the proof: local result

The main purpose of this section is to prove the following “local” result.

Theorem 5.1. Let (D, A) and (G, B) be two good pairs. Let f : W!C be
such that:

(i) f∈Cs(W )∩Os(W �);
(ii) f is locally bounded on W ;
(iii) f |A×B is continuous.
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Then there exists a unique function f̂∈C(̂W )∩O(̂W �) such that f̂=f on W.

Moreover, if |f |W <∞, then

|f̂(z, w)| ≤ |f |1−ω(z,w)
A×B |f |ω(z,w)

W , (z, w)∈̂W.

Proof. We assume without loss of generality that D⊂Cn and G⊂Cm.

For every 0<δ< 1
2 , z′∈(−1, 1)2n−2 and w′∈(−1, 1)2m−2 define

Ez′,δ := {z = (z′, zn) : zn ∈ (Ez′)n and ω(zn, (Az′)n, (Ez′ )n)< δ},
Ew′,δ := {w = (w′, wm) : wm ∈ (Ew′)m and ω(wm, (Bw′)m, (Ew′)m)< δ},

Dδ := {z∈D : ω(z, A, D)< 1−δ},
Gδ := {w∈G : ω(w, B, G)< 1−δ},

Aδ := int
(

⋃

z′∈(−1,1)2n−2

Ez′,δ

)

,

Bδ := int
(

⋃

w′∈(−1,1)2m−2

Ew′,δ

)

.

(5.1)

The proof is divided into two steps.

Step 1. G is a Jordan domain. Firstly, we apply the slicing method: For all
z′∈(−1, 1)2n−2, consider the function

fz′(zn, w) := f(z, w), (zn, w)∈X((Az′∩∂Ez′)n, B; (Ez′)n, G).(5.2)

Applying Gonchar’s theorem, we obtain an extension function

f̂z′ ∈C(̂X((Az′∩∂Ez′)n, B; (Ez′)n, G))∩O(̂X�((Az′∩∂Ez′)n, B; (Ez′)n, G))

such that

f̂z′(zn, w)= fz′(zn, w), (zn, w)∈X((Az′∩∂Ez′)n, B; (Ez′ )n, G).(5.3)

Using (5.1)–(5.3), we are able to define a new function f̃δ on X(Aδ , B; D, Gδ) as
follows

f̃δ(z, w) :=

{

f̂z′(zn, w), (z, w)∈Aδ×Gδ,

f(z, w), (z, w)∈D×B.
(5.4)

Applying Theorem 4.1, we obtain an extension function

f̂δ ∈C(̂X(Aδ, B; D, Gδ))∩O(̂X�(Aδ, B; D, Gδ))
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such that

f̂δ(z, w)= f̃δ(z, w), (z, w)∈X(Aδ , B; D, Gδ).(5.5)

On the other hand, using Proposition 3.7 and (5.1), we see that

lim
δ!0+

ω(z, Aδ, D)= ω(z, A, D) and lim
δ!0+

ω(w, B, Gδ)= ω(w, B, G).(5.6)

We are now in a position to define the desired extension function f̂ . Indeed, one
glues (f̂δ)0<δ<1/2 together to obtain f̂ in the following way

f̂ :=

{

limδ!0 f̂δ on ̂W �∪(D×B),

f on A×G.
(5.7)

Using (5.2)–(5.6) and a gluing argument as in Lemma 6.5 in [10], it can be checked
that the limit (5.7) exists and possesses all the required properties.

Step 2. The general case. Firstly, we apply the slicing method: For all z′∈
(−1, 1)2n−2 and w′∈(−1, 1)2m−2, consider the functions

fz′(zn, w) := f(z, w), (zn, w)∈X((Az′∩∂Ez′)n, B; (Ez′)n, G),

fw′(z, wm) := f(z, w), (z, wm)∈X(A, (Bw′∩∂Ew′)m; D, (Ew′)m).
(5.8)

Applying the result of Step 1, we obtain extension functions

f̂z′ ∈ C(̂X((Az′∩∂Ez′)n, B; (Ez′)n, G))∩O(̂X�((Az′∩∂Ez′)n, B; (Ez′)n, G)),

f̂w′ ∈ C(̂X(A, (Bw′∩∂Ew′)m; D, (Ew′)m))∩O(̂X�(A, (Bw′∩∂Ew′)m; D, (Ew′)m))

such that

f̂z′(zn, w) = fz′(zn, w), (zn, w)∈X((Az′ ∩∂Ez′)n, B; (Ez′)n, G),

f̂w′(z, wm)= fw′(z, wm), (z, wm)∈X(A, (Bw′∩∂Ew′)m; D, (Ew′)m).
(5.9)

Using (5.1)–(5.3) and (5.8)–(5.9), it can be checked that

f̂z′(zn, w)= fw′(z, wm), (z, w)∈Aδ×Bδ.

Therefore, we are able to define a new function f̃δ on X(Aδ , Bδ; Dδ, Gδ) as follows

f̃δ(z, w) :=

{

f̂z′(zn, w), (z, w)∈Aδ×Gδ,

f̂w′(z, wn), (z, w)∈Dδ×Bδ.
(5.10)
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Applying Theorem A or Theorem 5.1 in [10], we obtain an extension function
f̂δ∈O(̂X�(Aδ, Bδ; Dδ, Gδ)) such that

f̂δ(z, w)= f̃δ(z, w), (z, w)∈X(Aδ , Bδ; Dδ, Gδ).(5.11)

We are now in a position to define the desired extension function f̂ . Indeed,
one glues (f̂δ)0<δ<1/2 together to obtain f̂ in the following way

f̂ :=

{

limδ!0 f̂δ on ̂W �,

f on W.
(5.12)

Using the first identity in (5.6) and (5.8)–(5.11) and applying Lemma 6.5 in [10], we
can prove that the function given by the limit (5.12) exists. Moreover, f̂=f on W

and f̂∈C(̂W )∩O(̂W �). Consequently, arguing as in the proof of Theorem 4.2 in [11],
the desired estimate of the theorem follows. Hence, the proof is complete. �

6. Proof of the Main theorem

By Proposition 3.5, for all a (resp. b∈B) we may fix an open neighborhood Ua

of a (resp. Vb of b) such that (D∩Ua, A∩Ua) (resp. (G∩Vb, B∩Vb)) is a good pair.
For any 0<δ< 1

2 , define

Ua,δ := {z∈Ua∩D : ω(z, A∩Ua, Ua∩D)< δ}, a∈A,

Vb,δ := {w∈Vb∩G : ω(w, B∩Vb, Vb∩G)< δ}, b∈B,

Aδ :=
⋃

a∈A

Ua,δ,

Bδ :=
⋃

b∈B

Vb,δ,

Dδ := {z∈D : ω(z, A, D)< 1−δ},
Gδ := {w∈G : ω(w, B, G)< 1−δ}.

(6.1)

We divide the proof into two steps.

Step 1. (G, B) is a good pair. Suppose without loss of generality that G⊂Cm.

For each a∈A, let fa :=f |X(A∩Ua,B;D∩Ua,G). Using the hypothesis on f we deduce
that fa is locally bounded,

fa ∈Cs(X(A∩Ua, B; D∩Ua, G))∩Os(X(A∩Ua, B; D∩Ua, G))
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and that fa|(A∩Ua)×B∈C((A∩Ua)×B). Recall that (D∩Ua, A∩Ua) and (G, B) are
good pairs. Consequently, applying Theorem 5.1 to fa yields that there is a unique
function

f̂a ∈C(̂X(A∩Ua, B; D∩Ua, G))∩O(̂X�(A∩Ua, B; D∩Ua, G))

such that

f̂a(z, w)= fa(z, w)= f(z, w), (z, w)∈X(A∩Ua, B; D∩Ua, G).(6.2)

Arguing as in Lemma 6.4 in [10] and using Definition 6.3 therein, we can show that
the family (f̂a|Ua,δ×Gδ

)a∈A is collective for all 0<δ< 1
2 . In virtue of (6.1), let

˜̃fδ ∈O(Aδ×Gδ)(6.3)

denote the collected function of this family. In virtue of (6.2)–(6.3), we are able to
define a new function f̃δ on X(Aδ , B; D, Gδ) as follows

f̃δ :=

{ ˜̃
fδ on Aδ×Gδ,

f on D×B.

Using this and (6.2)–(6.3), we see that f̃δ∈Os(X(Aδ , B; D, Gδ)), and

f̃δ = f on D×B.(6.4)

Since Aδ is open in D, and B is not only an open subset of ∂Gδ, but also a topological
hypersurface (by Proposition 3.7), we are able to apply Theorem 4.1 to f̃δ in order
to obtain a function

f̂δ ∈C(̂X(Aδ, B; D, Gδ))∩O(̂X�(Aδ, B; D, Gδ))

such that

f̂δ = f̃δ on X(Aδ, B; D, Gδ).(6.5)

We are now in a position to define the desired extension function f̂ . Indeed,
one glues (f̂δ)0<δ<1/2 together to obtain f̂ in the following way

f̂ :=

{

limδ!0 f̂δ on ̂W �,

f on W.
(6.6)
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Using (6.2)–(6.6) and arguing as in (6.12)–(6.14) in [10], we see that f̂ is well-defined
and possesses all the required properties.

Step 2. The general case. For each a∈A, let fa :=f |X(A∩Ua,B;D∩Ua,G). Using
the hypothesis on f and the fact that (D∩Ua, A∩Ua) is a good pair, we are able to
apply the result of Step 1 to fa. Consequently, there is a unique function

f̂a ∈C(̂X(A∩Ua, B; D∩Ua, G))∩O(̂X�(A∩Ua, B; D∩Ua, G))

such that

f̂a(z, w)= f(z, w), (z, w)∈X(A∩Ua, B; D∩Ua, G).(6.7)

Let 0<δ< 1
2 . In virtue of (6.1) and (6.7), we may apply Lemma 6.4 in [10]. Conse-

quently, we can collect the family (f̂a|Ua,δ×Gδ
)a∈A in order to obtain the collected

function f̃A
δ ∈O(Aδ×Gδ).

Similarly, for each b∈B, one obtains a unique function

f̂b ∈C(̂X(A, B∩Vb; D, G∩Vb))∩O(̂X�(A, B∩Vb; D, G∩Vb))

such that

f̂b(z, w)= f(z, w), (z, w)∈X(A, B∩Vb; D, Vb).(6.8)

Moreover, one can collect the family (f̂b|Dδ×Vb,δ
)b∈B in order to obtain the collected

function f̃B
δ ∈O(Dδ×Bδ).

Arguing as in the proof of (6.17)–(6.18) in [10], we can show that

f̃A
δ = f̃B

δ on Aδ×Bδ.

Consequently, we are able to define a new function f̃δ on X(Aδ, Bδ; Dδ, Gδ) as
follows

f̃δ :=

{

f̃A
δ on Aδ×Gδ,

f̃B
δ on Dδ×Bδ.

(6.9)

Using formula (6.9) it can be readily checked that f̃δ∈Os(X(Aδ , Bδ; Dδ, Gδ)). Since
we know that Aδ (resp. Bδ) is an open subset of Dδ (resp. Gδ), we are able to
apply Theorem A or Theorem 5.1 in [10] to f̃δ for every 0<δ< 1

2 . Consequently, one
obtains a unique function f̂δ∈O(̂X(Aδ, Bδ; Dδ, Gδ)) such that

f̂δ = f̃δ on X(Aδ, Bδ; Dδ, Gδ).(6.10)
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We are now in a position to define the desired extension function f̂ .

f̂ :=

{

limδ!0 f̂δ on ̂W �,

f on W.
(6.11)

To prove that f̂ is well-defined, f̂=f on W and f̂∈C(̂W )∩O(̂W �), one proceeds as
in the end of the proof of Theorem 6.1 in [10] using (6.7)–(6.11). Consequently,
arguing as in the proof of Theorem 4.2 in [11], the desired estimate of the theorem
follows. Hence, the proof of the Main theorem is complete. �
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