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Introduction

This work explores the relationships existing between three classes of objects, coming
from different domains of mathematics, namely:

(i) Real algebraic geometry : the objects here are what we call links, that is transverse
intersections in Cn of real quadrics of the form

n∑
i=1

ai|zi|2 =0, ai ∈R,

with the unit euclidean sphere of Cn.
(ii) Convex geometry : the class of simple convex polytopes.
(iii) Complex geometry : the class of non-Kähler compact complex manifolds of [30].

They are a generalization by the second author of the manifolds introduced in [27] by
S. López de Medrano and A. Verjovsky, and will be called here LV-M manifolds.

The natural connection between these classes goes as follows. First, a link is invariant
by the standard action of the real torus (S1)n onto Cn and the quotient space is easily
seen to identify with a simple convex polytope (Lemma 0.12). Secondly, as a direct con-
sequence of the construction of [30], each link (after taking the product with a circle in
the odd-dimensional case) can be endowed with a complex structure of an LV-M manifold
(Theorem 12.2). Indeed, the links form a large subclass of the class of LV-M manifolds.

The aim of the paper is to describe the topology of the links and to apply the results
to address the following question.

Question. How complicated can the topology of the LV-M manifolds be?
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This program is achieved by making a reduction to combinatorics of simple con-
vex polytopes: a simple convex polytope encodes the topology of the associated link
completely.

As shown by the question, the main motivation comes from complex geometry. Let
us explain a little more why we find it important to know the topology of the LV-M
manifolds.

Complex geometry is concerned with the study of (compact) complex manifolds.
Nevertheless, no general theory exists and only special classes of complex manifolds such
as projective or Kähler manifolds or complex manifolds which are at least bimeromorphic
to projective or Kähler ones are well understood. Moreover, except for the case of
surfaces, there are few explicit examples having none of these properties; explicit meaning
that it is possible to work with and to compute things on it. Indeed, the two classical
families are the Hopf manifolds (diffeomorphic to S1×S2n−1; see [20]) and the Calabi–
Eckmann manifolds (diffeomorphic to S2p−1×S2q−1; see [10]).

These classical examples have been developed through a number of papers inspired
by the theory of dynamical systems, starting from the construction of deformation spaces
of foliations by Girbau–Haefliger–Sundararaman [15] and of deformation spaces of the
Hopf and Calabi–Eckmann manifolds by Borcea [5], Haefliger [18] and Loeb–Nicolau [23].
This led to the construction and study of larger and larger classes of new examples,
especially in [27], [30] and [6].

In this article, we focus on the class of LV-M manifolds of [30]. It is explicit in the
previous sense. Indeed the main complex geometrical properties (algebraic dimension,
generic holomorphic submanifolds, local deformation space, etc.) of these objects are
established in [30]. Besides, it is proved in [31] that they are small deformations of
holomorphic principal bundles over projective toric varieties with a compact complex
torus as fiber. In this sense, they constitute a natural generalization of Hopf and Calabi–
Eckmann manifolds, which can be deformed into compact complex manifolds fibering in
elliptic curves over the complex projective space Pn−1 (Hopf case) or over the product
of projective spaces Pp−1×Pq−1 (Calabi–Eckmann case). One of the main interests in
these manifolds, however, is that they have a richer topology, since it is also proved in
[30] that complex structures on certain connected sums of products of spheres can be
obtained by this process.

Nevertheless, these examples of connected sums constitute very particular cases of
the construction, and the problem of describing the topology in other cases was left wide
open in [30]. Of course, due to the lack of examples of non-Kähler and non-Möıshezon
compact complex manifolds, the more intricate this topology is, the more interesting is
the class of LV-M manifolds. This is the starting point and motivation for this work and
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leads to the question stated above.

In [30], it was conjectured that they are all diffeomorphic to products of connected
sums of sphere products and odd-dimensional spheres.

On the other hand, it follows from the construction that an LV-M manifold N

is entirely characterized by a set Λ of m vectors of Cn (with n>2m). Moreover, a
homotopy of Λ in Cn gives rise to a deformation of N as soon as an open condition is
fulfilled at each step of the homotopy. If this condition is broken during the homotopy,
the diffeomorphism type of the new complex manifold N ′ is different from that of N .
In other words, there is a natural wall-crossing problem, and this leads to the following
problem.

Problem. Describe the topological and holomorphic changes occurring after a gen-
eric wall-crossing.

This wall-crossing problem is linked with the previous question, since knowing how
the topology changes after a wall-crossing, one can expect to describe the most compli-
cated examples. But it has also a holomorphic part, since the initial and final manifolds
are complex.

In this article, we address these questions and give a description as complete as we
can of the topology of these compact complex manifolds:

� Concerning the question above, the very surprising answer is that the topology of
the LV-M manifolds is much more complicated than expected. Indeed, their homology
groups can have arbitrary amounts of torsion (Theorem 14.1). Counterexamples are given
in §11, as well as a constructive way of obtaining these arbitrary amounts of torsion.

� Concerning the wall-crossing problem, we show that crossing a wall means per-
forming a complex surgery and describe precisely these surgeries from the topological
and the holomorphic point of view (Theorems 5.4 and 13.3).

As an easy but nice consequence, we obtain that affine compact complex manifolds
(that is compact complex manifolds with an affine atlas) can have arbitrary amount of
torsion. It becomes thus quite difficult to classify, up to diffeomorphism, affine compact
complex manifolds or manifolds having a holomorphic affine connection in high dimen-
sions (>3).

It is interesting to compare this result with the Kähler case: it is known that affine
Kähler manifolds are covered by complex tori (see [22]), so the difference here is striking.
Of course, it is known for a long time that such a statement is false for non-Kähler man-
ifolds (think about the Hopf surfaces). Nevertheless, one could expect a rigidity result,
which is definitively not the case. Notice also that a statement similar to Theorem 14.1
is unknown for Kähler manifolds.
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The paper is organized as follows. In §0, we collect the basic facts about the links.
In particular, we introduce the simple convex polytope associated to a link, as well as a
subspace arrangement whose complement has the same homotopy type as the associated
link. We recall the previously known cases studied in [25] and [26]. Finally, we prove that
links are equivariantly homeomorphic to moment-angle manifolds coming from simple
polytopes introduced in [12] and intensively studied in [9].

Parts I and II deal exclusively with the properties of links as smooth manifolds,
without any reference to the LV-M manifolds. On the contrary, Part III deals with LV-
M manifolds. The connection is made at the beginning of Part III, where it is explained
that the links form a large subclass of the LV-M manifolds (but not all of them).

In Part I, we prove that the classes of links, up to equivariant diffeomorphism (equi-
variant with respect to the action of the real torus) and up to product with circles, are
in one-to-one correspondence with the combinatorial classes of simple convex polytopes
(Theorem 4.1). This is the first main result of this part. It allows us to translate problems
about the differential topology of the links entirely in the world of combinatorics of simple
convex polytopes. As a by-product of Theorem 4.1, we prove that there exists a unique
smooth structure on a moment-angle manifold compatible with its natural torus action
(Corollary 4.7). On the other hand, we recall the notion of flips of simple polytopes of
[29] and [38] in §2, and prove some auxiliary results. We define in §3 a set of equivariant
elementary surgeries on the links, and prove in §4 (Theorem 4.8) that performing a flip
on a simple convex polytope means performing an equivariant surgery on the associated
link. Finally, we introduce in §5 the notion of wall-crossing of links and prove the second
main theorem of this part, namely the wall-crossing theorem (Theorem 5.4): crossing a
wall for a link is equivalent to performing a flip for the associated simple convex polytope,
and therefore the wall-crossing can be described in terms of elementary surgeries. As a
consequence, we generalize a result of McGavran (see [28]) and describe explicitely the
diffeomorphism type of certain families of links in §6.

In Part II, we give a formula for computing the cohomology ring of a link in terms of
subsets of the associated simple convex polytope. To do this, we use results of Buchstaber
and Panov [9], and Baskakov [2] on the cohomology of moment-angle manifolds. The
formula is stated as cohomology theorem (Theorem 10.1) and is proved in §10 after some
preliminary material in §8 and §9. Notice that it is also a cohomology formula for the
coordinate subspace arrangement mentioned before. Finally, applications and examples
are given in §11, and it is proved that the homology groups of a link can have arbitrary
torsion (Theorem 11.11).

In Part III, we apply the previous results to the family of LV-M manifolds. In §12,
we recall very briefly their construction and prove that an even-dimensional link admits
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such a complex structure, as well as the product of an odd-dimensional link with a circle.
We resolve the holomorphic wall-crossing problem in §13 (Theorem 13.3). Finally, in
§14, we obtain, as an easy consequence of Theorem 11.11, that the homology groups of
an LV-M manifold can have arbitrary amount of torsion, and, as an easy consequence
of the construction, that such a statement is true for affine compact complex manifolds.
The article ends with some open questions in §15.

Although the main motivation comes from complex geometry, Part I (especially §6)
should also be of interest to readers working on smooth torus actions on manifolds. It can
be seen as a continuation of [25], [26] and [28]. On the other hand, the links form an ex-
plicit smooth realization of moment-angle manifolds and the surgery results of Part I can
be seen as a diffeomorphic version (that is up to equivariant diffeomorphism) of results of
[9, §6.4], obtained up to equivariant homeomorphism. The relationship between links and
moment-angle complexes gives interesting open questions (see §15). Finally, the cohomol-
ogy formula of Part II has its own interest as a geometric reformulation of the formula of
Baskakov and Buchstaber–Panov, and a nice simplification of the Goresky–MacPherson
[16] and De Longueville [24] formulas for a special class of subspace arrangements.

The second author would like to thank Santiago López de Medrano for many fruit-
ful discussions and Bernard Perron for explaining him some subtleties about unicity of
smooth structures on topological manifolds. Thanks also to Alberto Verjovsky for giving
the reference [1]. Finally, we would like to thank the referee, who pointed out to us that
the relationship between links and moment-angle manifolds could be used to greatly sim-
plify the proof of the cohomology formula of Part II, and that, moreover, it led to many
interesting open questions.

0. Preliminaries

In this section, we give the basic definitions, notation and lemmas. Some of the results
are stated and sometimes proved in [30] or [31], but in different versions; in this case we
give the original reference, but at the same time, we give at least some indication about
the proof to be self-contained.

In this paper, we denote by Sn−1 the unit euclidean sphere of Rn, and by Dn

(respectively, Dn) the unit euclidean open (respectively, closed) ball of Rn. We identify
Cp and R2p=(R2)p via the map sending each complex coordinate onto its real and
imaginary parts. Smooth means C∞. Polytope means convex polytope and a polyhedron
is a polytope of dimension 3. Recall that two convex polytopes are combinatorially
equivalent if there exists a bijection between their posets of faces which respects the
inclusion. Two combinatorially equivalent convex polytopes are PL-homeomorphic, and
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the classes of convex poytopes up to combinatorial equivalence coincide with the classes
of convex polytopes up to PL-homeomorphism. In the sequel, we make no distinction
between a convex polytope and its combinatorial class. No confusion should arise from
this abuse.

Definition 0.1. A special real quadric in Cn is a set of points z∈Cn satisfying
n∑
i=1

ai|zi|2 =0

for some fixed n-tuple (a1, ..., an) in Rn.

We are interested in the topology of the transverse intersection of a finite (but
arbitrary) number of special real quadrics in Cn with the euclidean unit sphere. We call
such an intersection the link of the system of special real quadrics.

Let A∈Mn,p(R), that is A is a real matrix with n columns and p rows. We write A
as (A1, ..., An). To A, we may associate p special real quadrics in Cn and a link, which
we denote by XA. The corresponding system of equations, that is{∑n

i=1Ai|zi|2 =0,∑n
i=1 |zi|2 =1,

will be denoted by (SA).
Notice that we include the special case p=0. In this situation, A=0 is a matrix of

Mn,0(R) and XA is S2n−1.

Definition 0.2. Let A∈Mn,p(R). We say that A is admissible if it gives rise to a
non-empty link XA whose system (SA) is non-degenerate at every point of XA. We
denote by A the set of admissible matrices.

In this paper, we restrict ourselves to the case where A is admissible. A link is thus
a smooth compact manifold of dimension 2n−p−1 without boundary. Moreover, it has
trivial normal bundle in Cn, so it is orientable.

We denote by H(A) the convex hull of the vectors A1, ..., An in Rp.

Lemma 0.3. (Cf. [31, Lemma 1.1]) Let A∈Mn,p(R). Then A is admissible if and
only if it satisfies the following conditions:

(i) (Siegel condition) 0∈H(A);
(ii) (weak hyperbolicity condition) 0∈H((Ai)i∈I)⇒ |I|>p.

Proof. Clearly XA is non-vacuous if and only if the Siegel condition is satisfied. Let
z∈XA and let

Iz = {i∈{1, ..., n} : zi 6=0}= {i1, ..., iq}, i1 6 ...6 iq. (1)
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The system (SA) is non-degenerate at z if and only if the matrix

Ãz =
(
Ai1 ... Aiq
1 ... 1

)
has maximal rank, i.e. rank p+1.

Assume the weak hyperbolicity condition. As z∈XA, we have 0∈H((Ai)i∈Iz ).
By Carathéodory’s theorem [17, p. 15], there exists a subset J={j1, ..., jp+1}⊂Iz such
that 0 belongs to H((Ai)i∈J). Moreover, (Aj1 , ..., Ajp+1) has rank p, otherwise, still by
Carathéodory’s theorem, 0 would be in the convex hull of p of these vectors, contradicting
the weak hyperbolicity condition.

As a consequence of these two facts, the vector space of linear relations between
(Aj1 , ..., Ajp+1) has dimension 1 and is generated by a solution with all coefficients non-
negative. Assume that Ãz has rank strictly less than p+1. Then, there is a non-trivial
linear relation between (Aj1 , ..., Ajp+1), with the additional property that the sum of the
coefficients of this relation is zero, yielding a contradiction.

Conversely, assume that the weak hyperbolicity condition is not satisfied. For ex-
ample, assume that 0 belongs to H(A1, ..., Ap) and let r∈(R+)p be such that

p∑
i=1

riAi =0 and
p∑
i=1

ri =1.

Then z=
(√
r1, ...,

√
rp, 0, ..., 0

)
belongs to XA, and rk(Ãz) is at most p, so A is not

admissible.

Note that A is open in Mn,p(R). Let us describe some examples.

Example 0.4. Let p=1. Then the Ai’s are real numbers. The weak hyperbolicity
condition implies that none of the Ai’s is zero. Let us say that a of the Ai’s are strictly
positive, whereas b=n−a of them are strictly negative. The Siegel condition implies that
a and b are strictly positive. There is just one special real quadric, which is the equation
of a cone over a product of spheres S2a−1×S2b−1. As we take the intersection of this
quadric with the unit sphere, we finally obtain that XA is diffeomorphic to S2a−1×S2b−1.

Example 0.5. Let p=2. Then the Ai’s are points in the plane containing 0 in their
convex hull (Siegel condition). The weak hyperbolicity condition implies that 0 is not
on a segment joining two of the Ai’s. Two examples of admissible configurations are
illustrated in Figure 1.

Assume that we perform a smooth homotopy (At)06t61 in R2 between A0=A
and A1, such that dAt/dt is never zero and such that At still satisfies the Siegel and
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A1

A2

A3A4

A5

0

A1

A2

A3A4

A5

0

Figure 1.

the weak hyperbolicity conditions for any t. Then the union of the XAt ’s (seen as a
smooth submanifold of Cn×R) admits a submersion onto [0, 1] with compact fibers.
Therefore, by Ehresmann’s lemma, this submersion is a locally trivial fiber bundle and
XA1 is diffeomorphic to XA0 =XA. Using this trick, it can be proven that XA is dif-
feomorphic to XA′ , where A′ is a configuration of an odd number k=2l+1 of distinct
points with weights n1, ..., nk (see [26]). The result of such a homotopy on the two con-
figurations in Figure 1 is illustrated in Figure 2. The arrows indicate the homotopy, and
the numbers appearing on the circles are the weights of the final configuration. These
weights encode the topology of the links.

Theorem 0.6. (See [26]) Let p=2 and A∈A. Assume that A is homotopic (in the
sense given just above) to a reduced configuration of k=2l+1 distinct points with weights
n1, ..., nk.

(i) If l=1, then XA is diffeomorphic to S2n1−1×S2n2−1×S2n3−1;
(ii) if l>1, then XA is diffeomorphic to

k

#
i=1

S2di−1×S2n−2di−2,

where # denotes the connected sum and where di=ni+...+ni+l−1 (the indices are taken
modulo k).

In particular, XA is diffeomorphic to S3×S3×S1 for the configuration on the right
of Figures 1 and 2, and diffeomorphic to #(5)S3×S4 (that is the connected sum of five
copies of S3×S4) for the configuration on the left.

Example 0.7. (Products) Let A and B be two admissible configurations of respective
dimensions (n, p) and (n′, p′). Set

C =

 A 0
−1 ... −1 1 ... 1

0 B

 .
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A1

A2

A3A4

A5

0

A1

A2

A3A4

A5

0

1

1

11

1

2

12

Figure 2.

Then, it is straightforward to check that C is admissible and that XC is diffeomorphic
to the product XA×XB . In other words, the class of links is stable by direct product. In
particular, the product of a link with an odd-dimensional sphere is a link. For example,
letting

C =
(

A 0
−1 ... −1 1

)
,

then XC is diffeomorphic to XA×S1.

Let LA denote the complex coordinate subspace arrangement of Cn defined by

LI = {z ∈Cn : zi =0 for i∈ I}∈LA ⇐⇒ LI∩XA = ∅, (2)

and let SA be its complement in Cn. In other words,

SA = {z ∈Cn : 0∈H((Ai)i∈Iz
)},

where Iz is defined as in (1). We have the following lemma.

Lemma 0.8. The sets XA and SA have the same homotopy type.
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Proof. This is an argument of foliations and convexity already used in [11], [27], [30]
and [31]. We sketch the proof and refer to these articles for more details.

Let F be the smooth foliation of SA given by the action

(z, T )∈SA×Rp 7−!
(
zie

〈Ai,T 〉
)
n
i=1 ∈SA.

Let z∈SA and let Fz be the leaf passing through z. Consider now the map

fz:w∈Fz 7−! ‖w‖2 =
n∑
i=1

|wi|2.

Using the strict convexity of the exponential map, it is easy to check that each critical
point of fz is indeed a local minimum, and that fz cannot have two local minima and
thus cannot have two critical points (see [11] for more details). Now as z∈SA, then, by
definition, 0 is in the convex hull of (Ai)i∈Iz . This implies that Fz is a closed leaf and does
not accumulate onto 0∈Cn (see [30] and [31, Lemma 2.12] for more details). Therefore,
the function fz has a global minimum, which is unique by the previous argument. Finally,
a straightforward computation shows that the minimum of fz is the point w of Fz such
that

n∑
i=1

Ai|wi|2 =0.

In particular w/‖w‖ belongs to XA.
As a consequence of all that, the foliation F is trivial and the space SA can be

identified with XA×R+
∗×Rp. More precisely, the map

ΦA: (z, T, r)∈XA×Rp×R+
∗ 7−! r

(
zie

〈Ai,T 〉
)
n
i=1 ∈SA

is a global diffeomorphism.

Let A∈A. The real torus (S1)n acts on Cn by

(u, z)∈ (S1)n×Cn 7−! (u1z1, ..., unzn)∈Cn. (3)

Let X be a subset of Cn, which is invariant by the action (3). We define the natural
torus action on X as the restriction of (3) to X. In particular, every link XA for A∈A
is endowed with a natural torus action, as well as S2n−1, D2n and D2n.

Definition 0.9. Let A,B∈A. We say that XA and XB are equivariantly diffeo-
morphic, and we write XA∼eqXB , if there exists a diffeomorphism between XA and XB

respecting the natural torus actions on XA and XB .
More generally, we say that XA and XB×(S1)k are equivariantly diffeomorphic, and

write XA∼eqXB×(S1)k, if there exists a diffeomorphism between XA and XB×(S1)k re-
specting the natural torus actions onXA and onXB×(S1)k (seen as a subset of Cn×Ck).
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Lemma 0.10. There exist k∈N and B∈A such that XA is equivariantly diffeomor-
phic to XB×(S1)k and XB is 2-connected.

Proof. Assume that XA∩{z∈Cn :z1=0} is vacuous. Let

Ai =
(
ai

Ãi

)
.

As A1 is not zero by the weak hyperbolicity condition, we may assume without loss of
generality that a1 6=0. Then, there exists an equivariant diffeomorphism

z ∈XA 7−!
(
z1
|z1|

,
z2√

1−|z1|2
, ...,

zn√
1−|z1|2

)
∈S1×XB ,

where B is defined as

B=
(
Ã2−Ã1

a2

a1
, ..., Ãn−Ã1

an
a1

)
.

Now, B is admissible since, at each point, the system (SB) has rank p. We may
continue this process until we have XA∼eqXB×(S1)k, where the manifold XB⊂Cn−k

intersects each coordinate hyperplane of Cn−k (note that XB may be reduced to a point).
This means that the subspace arrangement LB has complex codimension at least 2 in Cn

and thus, by transversality, SB is 2-connected. By Lemma 0.8, this implies that XB is
2-connected.

We will denote by A0 the set of admissible matrices giving rise to a 2-connected link.
More generally, let k∈N. We will denote by Ak the set of admissible matrices giving
rise to a link with fundamental group isomorphic to Zk. Of course, by Lemma 0.10, the
set A is the disjoint union of all of the Ak’s for k∈N. Still from Lemma 0.10, observe
that k is exactly the number of coordinate hyperplanes of Cn lying in LA.

The action (3) induces the following action of S1 onto a link XA:

(u, z)∈S1×XA 7−!uz ∈XA. (4)

We call this action the diagonal action of S1 onto XA. We have the following lemma.

Lemma 0.11. Let A∈A. Then the Euler characteristic of XA is zero.

Proof. The diagonal action is the restriction to XA of a free action of S1 onto S2n−1,
so is free. Therefore, we may construct a smooth non-vanishing vector field on XA from
a constant unit vector field on S1.
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The quotient space ofXA by the natural torus action is given by the positive solutions
of the system

A·r=0,
n∑
i=1

ri =1. (5)

By the weak hyperbolicity condition, it has maximal rank. We may thus parametrize its
set of solutions by

ri = 〈vi, u〉+εi, u∈Rn−p−1,

for some vi∈Rn−p−1 and some εi∈R. Projecting onto Rn−p−1, this gives an identifica-
tion of the quotient of XA by the action (3) as

{u∈Rn−p−1 : 〈vi, u〉>−εi}. (6)

Lemma 0.12. Let A∈Ak. The identification of the quotient space of XA defined
in (6) is a realization of a (full) simple convex polytope of dimension n−p−1 with n−k
facets.

We denote by PA the convex polytope corresponding to (6). We call it the associate
polytope of XA. We denote by P ∗

A the dual of PA, which is thus a simplicial polytope.

Proof. As this set is the quotient space of the compact manifold XA by the action
of a compact torus, it is a compact subset of Rn−p−1.

Using (6), it is a bounded intersection of half-spaces, i.e. a realization of a (full)
convex polytope of dimension n−p−1.

For every subset I of {1, ..., n}, let

ZI = {z ∈Cn : zi =0 if and only if i∈ I}.

Let z∈XA and define Iz as in (1). Then, for every z′ belonging to the orbit of z, we
have Iz=Iz′ , and thus the action respects each set ZIz

. Moreover, the action induces a
trivial foliation of XA∩ZIz .

It follows from all this that each k-face of PA corresponds to a set of orbits of
points z with fixed Iz, i.e. to a set XA∩ZIz . In particular, there is a numbering of
the faces of PA such that each j-face is numbered by the (n−p−1−j)-tuple I of the
corresponding ZI . As a first consequence, the number of facets of PA is exactly equal to
the number of coordinate hyperplanes of Cn whose intersection with XA is non-vacuous,
that is, it is equal to n−k (see the remark just after the proof of Lemma 0.10). As a
second consequence of this numbering, each vertex v corresponds to an (n−p−1)-tuple I,
and each facet having v as vertex corresponds to a singleton of I: each vertex is thus
attached to exactly n−p−1 facets, i.e. the convex polytope is simple.
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Following the numbering introduced in the proof of the previous lemma, we will
see PA as a poset whose elements are subsets of {1, ..., n} satisfying

I ∈PA ⇐⇒ LI∩XA 6= ∅ ⇐⇒ ZI ⊂SA ⇐⇒ 0∈H((Ai)i∈Ic), (7)

where Ic={1, ..., n}\I. We equip PA with the order coming from the inclusion of faces.
Of course P ∗

A will be seen as the same set, but with the reversed order.
Let (v1, ..., vn) be a set of vectors of some Rq. Following [4], a Gale diagram of

(v1, ..., vn) is a set of points (w1, ..., wn) in Rn−q−1 satisfying, for all proper subsets I of
{1, ..., n},

0∈Relint(H(wi)i∈I) ⇐⇒ H(vi)i∈Ic is a proper face of H(v1, ..., vn), (8)

where Relint( ·) denotes the relative interior of a set.
Now, consider (6). Notice that we may assume that the εi’s are positive, taking as

(ε1, ..., εn) a particular solution of (5). Under this assumption, let Bi=vi/εi for i between
1 and n. The convex hull of (B1, ..., Bn) is a realization of P ∗

A. Using (8) and the weak
hyperbolicity condition, it is easy to prove the following result.

Lemma 0.13. (Cf. [30, Lemma VII.2]) The set (A1, ..., An) is a Gale diagram of
(B1, ..., Bn).

Notice that if (A1, ..., An) is a Gale diagram of two different sets (B1, ..., Bn) and
(C1, ..., Cn), and if H(B1, ..., Bn) is a simplicial polytope, then H(C1, ..., Cn) is also
simplicial and is combinatorially equivalent to H(B1, ..., Bn). We now have the following
result.

Theorem 0.14. (Realization theorem; see [30, Theorem 14]) Let P be a simple
convex polytope. Then, for every k∈N, there exists A(k)∈Ak such that PA(k)=P . In
particular, every simple convex polytope can be realized as the associate polytope of some
2-connected link.

Proof. Let P be a simple polytope and let P ∗ be its dual. Realize P ∗ in Rq (with
q=dimP ∗) as the convex hull of its vertices (v1, ..., vn).

Let us start with k=0. By Lemma 0.13, it is sufficient to find A(0)∈A0 such that
A(0) is a Gale diagram of P ∗.

This can be done by taking a Gale transform ([17, p. 84]) of (v1, ..., vn), that is by
taking the transpose of a basis of the solutions of{∑n

i=1 xivi =0,∑n
i=1 xi =0.
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We thus obtain n vectors (A1, ..., An) in Rn−q−1. Set A(0)=(A1, ..., An) and p=n−q−1.
We have now to check that A(0)∈A0. By (8), the Gale transform (A1, ..., An) satisfies
the Siegel condition. Assume that 0 belongs to the relative interior of H(Ai)i∈I for some
I={i1, ..., ir} with r6p. Then H(vi)i∈Ic is a proper face of P ∗, so it has dimension
less than q=n−p−1. But it has n−r vertices. Since n−r>n−p, this face cannot be
simplicial, yielding a contradiction. The weak hyperbolicity condition is fulfilled.

Finally, as P ∗=P ∗
A(0) has n vertices, the link XA(0) intersects each coordinate hy-

perplane of Cn, so it is 2-connected (see Lemma 0.8).
Now, using the construction detailed in Example 0.7, we can find A(k)∈Ak, for

every k, such that PA(k)=P .

Note that, when P ∗ is the n-simplex, the previous construction (for a 2-connected
link) yields p=0, and the corresponding XA is the standard sphere of Cn−1.

To finish with these preliminaries, we discuss now the relationship between links
and moment-angle complexes coming from simple polytopes. These complexes were first
introduced in [12]. We follow [9, §6].

Let P be a simple convex polytope with set of facets F={F1, ..., Fn}. For each
facet Fi, denote by TFi the 1-dimensional coordinate subgroup of the n-torus TF'(S1)n

corresponding to Fi. Then, assign to every face G the coordinate subtorus

TG =
∏
Fi⊃G

TFi ⊂TF .

For every point q∈P , denote by G(q) the unique face containing q in its relative interior.
Then, the moment-angle complex ZP is the identification space

ZP =(TF×P )/∼,

where (t1, p)∼(t2, q) if and only if p=q and t1t−1
2 ∈TG(q).

The moment-angle complex depends only on the combinatorial type of P and comes
naturally equipped with a continuous action of TF on it, with orbit space P . It is a
topological manifold ([9, Lemma 6.2]).

The next lemma follows from this definition and from the previous description of
the action of (S1)n onto a link.

Lemma 0.15. Let XA be a 2-connected link with associate polytope P . Then XA is
equivariantly homeomorphic to ZP .

Moreover, Buchstaber and Panov prove that ZP is a smooth manifold such that
the natural torus action is smooth. In fact, Buchstaber and Panov give several ways of
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endowing ZP with such a structure. Let us just describe one of them. The moment-angle
manifold ZP may be equivariantly realized in (D)2n as⋃

I

{(z1, ..., zn)∈ (D)2n : |zi|=1 for i /∈ I},

where I runs over all proper faces of P (following the numbering of the faces previously
defined). This is a sort of manifold with corners, and it is possible to equivariantly
“straighten the angles” (compare with [6, Proposition 2.3]). Notice that this smooth
structure is compatible with the torus action in the following sense.

Definition 0.16. A smooth structure on ZP is compatible with the torus action if
(i) the torus action is smooth;
(ii) for every closed face F of P , the set π−1(F ) (where π:ZP!P is the natural

projection) is a smooth invariant submanifold of ZP with trivial invariant normal bundle.

On the other hand, Lemma 0.15 gives also a smooth compatible structure on ZP :
that of a link (point (ii) of Definition 0.16 is checked in Proposition 1.1). Nevertheless,
it is not clear neither that these two smooth manifolds are equivariantly diffeomorphic,
nor that the different smooth structures on ZP described in [9] are the same. Indeed,
Buchstaber and Panov do not touch the following question.

Question 0.17. Does there exist a unique smooth structure on ZP compatible with
the torus action (up to equivariant diffeomorphism)?

We give an affirmative answer to this question in §4 (Corollary 4.7).

Part I. Elementary surgeries, flips and wall-crossing

1. Submanifolds of XA given by a face of PA

Let A∈A and F be a proper face of PA numbered by I. Then, we may associate a link
with F and A, which we will denote by XF (by a slight abuse of notation), smoothly
embedded in XA. To do this, just recall by (7) that

B=(Aj)j∈Ic

is admissible and thus gives rise to a link XB in Cn−b, where b is the cardinality of I.
Now, XB is naturally embedded into XA as XF by defining

XF =LI∩XA, (9)

where LI was defined in (2). Moreover, the natural torus action of (S1)n onto XA gives,
by restriction to LI , the natural torus action of (S1)n−b onto XF ∼eqXB .

We have the following result.
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Proposition 1.1. Let A∈A and F be a face of PA of codimension b. Then,
(i) XF is a smooth submanifold of codimension 2b of XA which is invariant under

the natural torus action;
(ii) the quotient space of XF by the natural torus action is F⊂PA;
(iii) XF has trivial invariant tubular neighborhood in XA.

Proof. The points (i) and (ii) are direct consequences of the definition (9) of XF .
Let us prove (iii). For ε>0, define

LεI = {z ∈Cn :
∑
i∈I |zi|2<ε}

and
W ε
F =XA∩LεI .

For simplicity, assume that I={1, ..., b}. Set yj=zj for 16j6b, and wj=zb+j for
16j6n−b. For ε>0 sufficiently small, the map

π: (y, w)∈W ε
F 7−!

1√
ε
y ∈D2b

is a smooth submersion. Indeed, a straightforward computation shows that the previous
map is a submersion as soon as W ε

F does not intersect any of the sets

{wj =0 : b+j ∈J},

for J satisfying F∩FJ=∅ (cf. the proof of Lemma 0.3). As this submersion has compact
fibers, it is a locally trivial fiber bundle by Ehresmann’s lemma. It is even a trivial
bundle, since D2b is contractible. Notice now that the action of (S1)n onto W ε

F can
be decomposed into an action of (S1)b leaving the y-coordinates fixed and an action
of (S1)n−b leaving the w-coordinates fixed. The fibers of the previous submersion are
invariant with respect to the action of (S1)n−b, whereas the disk D2b is invariant with
respect to the action of (S1)b. All this implies that W ε

F is equivariantly diffeomorphic to
XF×D2b endowed with its natural torus action.

In the case where F is a simplicial face, we can identify precisely XF .

Proposition 1.2. Let A∈A0. Then, the following statements are equivalent :
(i) XA is equivariantly diffeomorphic to the unit euclidean sphere S2n−1 of Cn

equipped with the action induced by the standard action of (S1)n on Cn;
(ii) XA is diffeomorphic to S2n−1;
(iii) XA has the homotopy type of S2n−1;
(iv) PA is the (n−1)-simplex.
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Proof. When p=0, the link XA is the unit euclidean sphere S2n−1 of Cn, and the
natural torus action comes from the standard action of (S1)n on Cn. On the other hand,
when PA is the (n−1)-simplex, we have p=0, since the dimension of PA is n−p−1; in
this way, we get an equivalence between (i) and (iv).

Of course, (i) implies (ii) and (ii) implies (iii). So assume now that XA is a homotopy
sphere of dimension 2n−1. Recall that a polytope with n vertices is k-neighbourly if its
k-skeleton coincides with the k-skeleton of an (n−1)-simplex (cf. [17, Chapter 7]). In
particular, an (n−1)-simplex is (n−2)-neighbourly.

Applying Lemma 1.3 below gives that P ∗
A is (n−2)-neighbourly. But, its dimension

being n−p−1, this implies that p equals 0 and that it is the (n−1)-simplex. Therefore
(iii) implies (iv).

Lemma 1.3. Let A∈A0. Then, the link XA is 2k-connected if and only if P ∗
A is a

(k−1)-neighbourly polytope.

Proof. Assume that P ∗
A is (k−1)-neighbourly. This means that every subset of

{1, ..., n} of cardinalilty less than k, numbers a face of P ∗
A. Using (2) and (7), this

means that every coordinate subspace of LA has at least complex codimension k+1. By
transversality, this implies that SA is 2k-connected and thus, by Lemma 0.8, the link XA

is 2k-connected.

Now, assume moreover that P ∗
A is not k-neighbourly. Then, there exists a coordinate

subspace LI in LA of codimension k+1. The unit sphere S2k+1 of the complementary
coordinate subspace LIc lies in SA and is not null-homotopic in SA. Therefore, SA and
thus XA are not (2k+1)-connected.

Corollary 1.4. Let A∈A. Then PA is the (n−p−1)-simplex if and only if XA

is equivariantly diffeomorphic to S2n−2p−1×(S1)p.

Proof. Assume that PA is the (n−p−1)-simplex. Since the polytope PA has n−p
facets, we know that A∈Ap. By Lemma 0.10, there exists B∈A0 such that

XA∼eqXB×(S1)p.

Now, this implies that PB=PA, so that PB is the (n−p−1)-simplex. We conclude by
Proposition 1.2.

The converse is obvious by Proposition 1.2.

Corollary 1.5. Let F be a simplicial face of PA of codimension b. Then XF is
equivariantly diffeomorphic to S2n−2p−2b−1×(S1)p.
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2. Flips of simple polytopes

We will make use of the notion of flips of simple polytopes. This section is deeply inspired
by [38, §3] (see also [29]). The main difference is that we only deal with combinatorial
types of simple polytopes.

Definition 2.1. Let P and Q be two simple polytopes of the same dimension q.
Let W be a simple polytope of dimension q+1. We say that W is a cobordism between
P and Q if P and Q are disjoint facets of W . In addition, if W \(PtQ) contains no
vertex, we say that W is a trivial cobordism; if W \(PtQ) contains a unique vertex, we
say that W is an elementary cobordism.

In the next section, we will relate this notion of cobordism of polytopes to the
classical notion of cobordism of manifolds (here of links) via Theorem 0.14. This will
justify the terminology.

Notice that the existence of a trivial cobordism between P and Q implies that P=Q;
notice also that a cobordism of simple polytopes may be decomposed into a finite number
of elementary cobordisms.

Now, let W be an elementary cobordism between P and Q, and let v denote the
unique vertex of W \(PtQ). An edge attached to v has another vertex which may belong
to P or Q. Let us say that, among the q+1 edges attached to v, a of them join P and b
of them join Q.

Definition 2.2. (Cf. [38, §3.1]) We call the index of v, or the index of the cobordism,
the couple of integers (a, b), where a (respectively, b) is the number of edges ofW attached
to v and joining P (respectively, Q).

Let P and Q be two simple polytopes of the same dimension q. Assume that there
exists an elementary cobordism W between them and let (a, b) denote its index. Then
we say that Q is obtained from P by performing a flip of type (a, b) on P , or that P
undergoes a flip of type (a, b).

An example of a flip of type (1, 2) is illustrated in Figure 3.
Notice that if Q is obtained from P by a flip of type (a, b), then obviously P is

obtained from Q by a flip of type (b, a). Note also that we have the obvious relation
a+b=q+1, with 16a6q and 16b6q.

Lemma 2.3. Every simple convex q-polytope can be obtained from the q-simplex by
a finite number of flips.

Proof. Let P be a simple convex q-polytope. Consider the product P×[0, 1] and
cut off one vertex of P×{1} by a generic hyperplane. The resulting polytope, say W , is
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P

v

Q

Figure 3.

simple and realizes a cobordism between P (seen as P×{0}) and the q-simplex (seen as
the simplicial facet created by the cut). As observed after Definition 2.1, this cobordism
may be decomposed into a finite number of elementary cobordisms, that is of flips.

Following [38, §3.2], it is possible to give a more precise description of a flip of type
(a, b). We use the same notation as before. Let F1, ..., Fq+1 be the facets of W attached
to the vertex v. As W is simple, a sufficiently small neighborhood of v in W is PL-
isomorphic to the neighborhood of a point in a (q+1)-simplex. As a consequence, each
facet Fi contains all the edges attached to v but one. Assume that (F1, ..., Fb) contain
all the edges joining P , whereas (Fb+1, ..., Fq+1) contain all the edges joining Q. Let

FP =P∩F1∩...∩Fb and FQ =Q∩Fb+1∩...∩Fq+1.

The face F1∩...∩Fb (respectively, Fb+1∩...∩Fq+1) is a pyramid with base FP (respec-
tively, FQ) and apex v. As these faces are simple as convex polytopes, this implies that FP
and FQ are simplicial. More precisely, if a=1 (respectively, b=1), then FP (respectively,
FQ) is a point, and FP ∩Fq+1=∅ (respectively, FQ∩F1=∅). Otherwise, FP is a sim-
plicial face of strictly positive dimension q−b=a−1 with facets FP ∩Fb+1, ..., FP ∩Fq+1

(respectively, FQ is a simplicial face of strictly positive dimension b−1 with facets
FQ∩F1, ..., FQ∩Fb).

In Figure 4, FP is a point and FQ is a segment. There are three facets, namely F1,
F2 and F3, containing v.

The flip destroys the face FP and creates the face FQ in its place. Continuously,
the face FP is homothetically reduced to a point and then this point is inflated to the
face FQ. In a more static way of thinking, a trivial neighborhood of FP in P is cut off,
and a closed trivial neighborhood of FQ in Q is glued. In particular, the simple polytope
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Figure 4.

P
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B

Q

A
B′

Figure 5.

obtained from P by cutting off a neighborhood of FP by a hyperplane and the polytope
obtained from Q by cutting off a neighborhood of FQ by a hyperplane are the same. Let
us denote this polytope by T .

Definition 2.4. The simple convex polytope T will be called the transition polytope
of the flip between P and Q.

Remark 2.5. This definition is not the same as that of transition polytope in [38].

Notice that T has just one extra facet (with respect to P and Q), except for the
special case of index (1, 1). Let us call this extra facet F .

Figure 5 describes a flip of type (2, 2). We simply drew the initial state P and the
final state Q, and indicated the two edges FP of vertices A and B, and FQ of vertices A
and B′.

To visualize the 4-dimensional cobordism between P and Q, just perform the fol-
lowing homotopy: move the hyperplane supporting the upper facet of the cube to the
bottom, in order to contract the edge AB to its lower vertex A; then, move the hyper-
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F

Figure 6.

plane supporting the right facet of the cube to the right, in order to inflate the transverse
edge AB′, keeping A fixed. The transition polytope T is depicted in Figure 6.

Proposition 2.6. (i) The extra facet F of T is FP×FQ, that is a product of an
(a−1)-simplex by a (b−1)-simplex.

(ii) A neighborhood of FP in P (respectively, FQ in Q) is FP×C(FQ) (respectively,
C(FP )×FQ), where C(FQ) (respectively, C(FP )) denotes the pyramid with base FQ (re-
spectively, FP ).

Proof. Assume that P is a simplex. Cut off a neighborhood of FP by a hyperplane.
The created facet is a product of the simplex FP by a simplex S of complementary dimen-
sion, whereas the cut part is FP×C(S), with the notation introduced in the statement
of the proposition. Then both statements follow, since the neighborhood of a simplicial
face in a simple convex polytope is PL-homeomorphic to the neighborhood of a face of
the same dimension in a simplex.

In particular, P and Q can be recovered from T (up to exchange of P and Q): the
face poset of P is obtained from that of T by identifying two faces A×B and A×B′ of
FP×FQ, and the face poset of Q is obtained from that of T by identifying two faces
A×B and A′×B of FP×FQ.

Combining this observation with Proposition 2.6 yields the following result.

Corollary 2.7. Let Q and Q′ be obtained from P by a flip of type (a, b) along the
same simplicial face FP . Then Q=Q′.

Given a simple convex polytope T with a facet F which is a product of simplices
Sa−1×Sb−1, we may define two posets from the poset of the faces of T making the
identifications explained just before Corollary 2.7. These two posets may or may not be
the face posets of some simple convex polytopes P and Q (see the examples below). In
the case they are, we write P=T/Sa−1 and Q=T/Sb−1. Of course, in the case of a flip,
with the same notation as before, we have P=T/FP and Q=T/FQ. The next result is a
reformulation of Corollary 2.7 which will be useful in the sequel.
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Corollary 2.8. Let Q be obtained from P by a flip along FP and let T be the
transition polytope. Let P ′ and Q′ be two simple convex polytopes satisfying P ′=T/FP
and Q′=T/FQ. Then P=P ′ and Q=Q′.

Let us describe another way of visualizing a flip. Let P be a simple polytope and
FP a simplicial face of P of dimension a−1. Let Q be a simple polytope and assume
that Q is obtained from P by performing a flip on FP . Cutting off FP by a hyperplane,
one obtains the transition polytope T . Consider now a simplex ∆ of the same dimension
as P and an (a−1)-face F ′ of ∆. Cutting off F ′ by a hyperplane, one obtains, with the
notation of Proposition 2.6, the polytope F ′×S, where S is the maximal simplicial face
of ∆ without intersection with F ′. It follows from Proposition 2.6 and Corollary 2.8 that
the polytope Q is the gluing of T=P \(FP×C(S)) and ∆\(FP×C(S))=F ′×S.

Finally, from all that precedes, a complete combinatorial characterization of a flip
may easily be derived. In the following statement, we consider also flips of type (q+1, 0),
that is destructions of a q-simplex.

Proposition 2.9. ([38, Theorem 3.4.1]) Let Q be a simple polytope obtained from P

by a flip of type (a, b). Using the same notation as before, the following properties hold :
(i) if a 6=1, then the facets P∩Fb+1, ..., P∩Fq+1 undergo flips of index (a−1, b);
(ii) the facets P∩F1, ..., P∩Fb undergo flips of index (a, b−1);
(iii) the other facets keep the same combinatorial type.

It is however important to remark that the notion of “combinatorial flip” is not well
defined in the class of simple polytopes: the result of cutting off a neighborhood of a
simplicial face of a simple polytope and gluing the neighborhood of another simplex in
its place may not be a convex polytope. Let us give three examples of this crucial fact.

Example 2.10. Let P be the 3-simplex (see Figure 7). Then, the result of cutting off
an edge AB and gluing a transverse edge in its place (that is the result of a “combinatorial
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2-flip”) is not the combinatorial type of a 3-polytope.

Example 2.11. More generally, let P be a simple convex polytope and FP a simplicial
face of dimension q, with q>2. Then, we cannot perform a flip along a strict face of FP .

Example 2.12. Consider the polytope illustrated in Figure 8 (the “hexagonal book”).
Then, the 2-flip along the edge AB does not exist.

We finish this section with the following result.

Proposition 2.13. Let P be a simple convex polytope and Q be obtained from P

by a flip of type (a, b). Let W be the elementary cobordism between P and Q. Assume
that P has d facets. Then W has d+2 facets if a 6=1, and d+3 facets if a=1.

Proof. In the special case where a=b=1, we have that P=Q is the segment and W
is the pentagon (see Figure 9). Thus, d=2 and W has d+3 facets.

Assume that a and b are both different from 1. Then P and Q have the same
number d of facets and there is a one-to-one correspondence between the facets of P and
the facets of Q: according to Proposition 2.9, each facet of P is transformed through a
flip (case (i) or (ii)) or just shifted (case (iii)) to a facet of Q. There are d facets of W
which realize the previous trivial and elementary cobordisms. Adding 2 to this number,
taking P and Q into account, gives that W has d+2 facets.
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Now assume that a=1 and b 6=1. Then, as before, the d facets of P correspond to
d facets of W realizing cobordisms with d facets of Q. But this time Q has d+1 facets,
and this extra facet belongs to an extra facet of W which does not intersect P . Adding
the two facets P and Q gives thus d+3 facets for W .

Finally, when b=1 and a 6=1, the polytope Q has d−1 facets; switching the roles
of P and Q in the previous case yields that W has (d−1)+3=d+2 facets.

3. Elementary surgeries

In this section, we translate the notions of cobordism and flip of simple polytopes at
the level of the links, by introducing elementary surgeries on links. Notice that “equi-
variant surgeries” of moment-angle complexes (up to equivariant homeomorphism) were
considered in [9, §§6.23–6.25] in connection with the so-called bistellar moves of simplicial
complexes. Bistellar moves are dual operations to flips of simple polytopes.

We will make use several times of the following result.

Theorem 3.1. (Extension of equivariant isotopies) Let M and V be smooth compact
manifolds endowed with a smooth torus action. Let f :V ×[0, 1]!M be an equivariant
isotopy. Then f can be extended to an equivariant diffeotopy F :M×[0, 1]!M such that
Ft|V ≡ft for 06t61.

A proof of this fact in the non-equivariant case can be found in [19, Chapter 8]. Now,
we may assume that the diffeotopy extending an equivariant isotopy is also equivariant
(see [7, §VI.3]), so that this theorem holds in the equivariant setting.

Let A∈A and F be a simplicial face of PA of codimension b. As explained in §1, it
gives rise to an invariant submanifold XF of XA (see definition (9)) with trivial invariant
tubular neighborhood.

By Corollary 1.5, as F is simplicial of codimension b, we have thatXF is equivariantly
diffeomorphic to S2a−1×(S1)p (where a=n−p−b).

But now, we can perform an equivariant surgery on XA as follows: choose a closed
invariant tubular neighborhood

ν:XF×D2b−!WF ,

where WF⊂XA is an open (invariant) neighborhood of XF . Then fix an equivariant
identification

ξ:S2a−1×(S1)p−!XF .

Finally, set
φ≡ ν �(ξ, id):S2a−1×(S1)p×D2b−!WF .
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We call φ a standard product neighborhood of XF .
Then, remove WF and glue D2a×(S1)p×S2b−1 by φ along the boundary. We thus

obtain a topological manifold Y . Since the natural torus actions on D2a×(S1)p×S2b−1

and on S2a−1×(S1)p×D2b coincide on their common boundary, this topological manifold
supports a continuous action of (S1)n which extends the natural torus action on XA\WF .
Using invariant collars for the boundary ofXA\WF and for the boundary of D2a×(S1)p×
S2b−1, we may smooth Y as well as the action in such a way that the natural inclusions
of XA\WF and D2a×(S1)p×S2b−1 in it are equivariant embeddings. As a consequence
of Theorem 3.1, it can be proven that, up to equivariant diffeomorphism, there are
no other differentiable structure and smooth action on Y satisfying this property (see
[19, Chapter 8] for the non-equivariant case). The manifold Y endowed with such a
differentiable structure and such a smooth torus action, is the result of our surgery.

Here is a combinatorial description of this surgery. Recall that PA identifies with the
quotient of XA by the natural torus action. The neighborhood WF then corresponds to
a neighborhood of F in PA. Consider now a simplex ∆ of the same dimension as PA and
a face F ′ of ∆ of the same dimension as F . By Corollary 1.4, the link X∆ corresponding
to ∆ is equivariantly diffeomorphic to S2n−2p−1×(S1)p, and a neighborhood WF ′ of XF ′

(coming from a neighborhood of F ′ in ∆) is equivariantly diffeomorphic to WF . The
complement X∆\WF ′ is equivariantly diffeomorphic to

(S2n−2p−1\(S2a−1×D2b))×(S1)p =D2a×S2b−1×(S1)p.

The surgery consists of removing WF from XA and WF ′ ∼
eq
WF from X∆, and of gluing

the resulting manifolds along their boundary:

(XA\WF )∪ψ (X∆\WF ′). (10)

The map ψ may be written as φ�(φ′)−1, where φ (respectively, φ′) is a standard product
neighborhood of XF in XA (respectively, of XF ′ in X∆).

We conclude from this description and from Corollary 2.8 that, at the level of the
associate polytope, this surgery coincides exactly with a flip.

Definition 3.2. Let A∈A. Let (a, b) be a couple of positive integers with a+b=n−p.
Let F be a simplicial face of PA of codimension b. The equivariant transformation

(XA\(S2a−1×(S1)p×D2b))∪φ(D2a×(S1)p×S2b−1)

of XA is called elementary surgery of type (a, b) along XF . Here, S2a−1×(S1)p×D2b

is embedded in XA by means of a standard product neighborhood φ, and the gluing is
made along the common boundary by the restriction of φ to this boundary.
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In the particular case where a=1, we restrict the definition of elementary surgery
to the case where XA is equivariantly diffeomorphic to XB×S1 and where the surgery is
made as follows:

((XB\((S1)p×D2b))×S1)∪φ((S1)p×S2b−1×D2).

These surgeries depend a priori on the choice of φ. But, in fact, we have the following
lemma.

Lemma 3.3. The result of an elementary surgery is independent of the choice of φ.
In other words, given two standard product neighborhoods φ and φ′, the manifolds

Xφ =(XA\(S2a−1×(S1)p×D2b))∪φ(D2a×(S1)p×S2b−1)

and
Xφ′ =(XA\(S2a−1×(S1)p×D2b))∪φ′ (D2a×(S1)p×S2b−1)

are equivariantly diffeomorphic.

Proof. It is enough to prove that φ and φ′ are equivariantly isotopic. As in the
non-equivariant case, the uniqueness of gluing for isotopic diffeomorphisms is a direct
consequence of Theorem 3.1.

Now, any two invariant tubular neighborhoods of XF are equivariantly isotopic by
[7, §VI.2]. Thus, we may assume that

φ(S2a−1×(S1)p×D2b) =φ′(S2a−1×(S1)p×D2b)

and that the map f=φ′�φ−1 is of the form

(z, eit, w)∈S2a−1×(S1)p×D2b 7−! (f1(z, eit), f2(z, eit), A(z, eit)·w),

where A is a smooth invariant map from S2a−1×(S1)p to the group of matrices SO(2b),
and i, in this proof, stands for the imaginary unit. Moreover, the equivariance of f
implies that each matrix A(z, eit) is of the form

eiθ1 0
...

0 eiθb

 .

We may thus easily equivariantly isotope f to

(z, eit, w)∈S2a−1×(S1)p×D2b 7−! (f1(z, eit), f2(z, eit), w),



real quadrics, complex manifolds and convex polytopes 79

and it is enough to prove that the equivariant diffeomorphism f̃=(f1, f2) of S2a−1×(S1)p

is equivariantly isotopic to the identity.
Still by equivariance, we have

f̃(z, eit) = eitf̃(z, 1),

so we may equivariantly isotope f̃ to a map of the form

(z, eit)∈S2a−1×(S1)p 7−! (h(z), eit)∈S2a−1×(S1)p,

where h is an equivariant diffeomorphism of S2a−1. Finally, using Lemma 3.4 (stated and
proved below), h and thus f are equivariantly isotopic to the identity. This is enough to
show the result.

Lemma 3.4. Let h be an equivariant diffeomorphism of the sphere S2a−1. Then f

is equivariantly isotopic to the identity.

Proof. We proceed by induction on a. For a=1, the map h is a translation so
the result is clear. Assume the result true for some a>1, and let h be an equivariant
diffeomorphism of S2a+1. By equivariance, the submanifold

X = {z ∈S2a+1 : za+1 =0}∼
eq

S2a−1

is invariant by h. We shall construct two invariant tubular neighborhoods of X. First,
consider, for 0<ε<1,

Xε = {z ∈S2a+1 : |za+1|2 6 ε}∼
eq

S2a−1×D2,

and the equivariant bundle map

z ∈Xε
ξ7−! 1√

1−|za+1|2
(z1, ..., za, 0)∈X.

Secondly, let f be the restriction of h−1 to X. Set X̃ε=f∗Xε (pull-back bundle by f),
and let f̃ denote the natural map between X̃ε and Xε. The map h�f̃ defines the second
tubular neighborhood of X in S2a+1.

By [7, §VI.3], there exists an equivariant isotopy of tubular neighborhoods

H:Xε×[0, 1]−!S2a+1,

with H0≡ id and H1(Xε)≡h�f̃(X̃ε)≡h(Xε). In particular, H1 differs from h by an
equivalence of equivariant bundles:

Xε

ξ

��

h−1
�H1 // Xε

ξ

��

X
f

// X.
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Since X∼
eq

S2a−1, by induction, the map f is equivariantly isotopic to the identity
and it is easy to lift this isotopy to an isotopy G between H1 and h.

Combining H and G, we obtain an equivariant isotopy

F : [0, 1]×Xε−!S2a+1

such that F0 is the natural inclusion map and F1≡h|Xε .
By Theorem 3.1, F extends to an equivariant diffeotopy between some map g, with

g|Xε≡h, and the identity. As this construction can be achieved for any choice of 0<ε<1,
we may assume that g≡h on the whole sphere.

We note that the result of such a surgery may or may not be a link. Indeed, in
Examples 2.10, 2.11 and 2.12, we may perform elementary surgeries, but the quotient
space of the new manifold by the action of the real torus cannot be identified with a
simple polytope, therefore the new manifold is not a link.

Consider now the following more subtle case. Let XA be a link and let Q be the
simple convex polytope obtained from PA by performing a flip of type (a, b) along some
simplicial face F . Then, call Y the manifold obtained from XA by performing an ele-
mentary surgery of type (a, b) along XF . As the surgery is equivariant, the manifold Y

is endowed with a smooth action of the real torus on it. It follows from Corollary 2.8
that the quotient space of Y by this action can be identified with Q. This means that
this quotient space is in bijection with Q, that the orbit over a point in the interior
of Q is (S1)n, whereas the orbit over a point in the interior of a facet of Q is (S1)n−1,
and so on. The resulting polytope is still called associate polytope. Finally, each closed
face of Q corresponds to an invariant submanifold of Y with trivial invariant tubular
neighborhood. In fact, every such face S is obtained from a face R of PA by a certain
flip, as precised in Proposition 2.9. The corresponding invariant submanifold YS is thus
obtained from XR by performing the corresponding elementary surgery. More precisely,
if we write

Y =(XA\WF )∪ψ (X∆\WF ′)

as in (10), then we have

YS =(XR\(WF ∩XR))∪ψ (XR′ \(WF ′∩XR′))

for some well-chosen face R′ of ∆. Let

ν:XR×D2b′ −!WR⊂XA

be a trivial invariant tubular neighborhood of XR (we denote the codimension of XR

in XA by b′). We assume that WR is small enough to have

ν−1(WR∩WF ) = (XR∩WF )×D2b′ .
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Then the composition

(XR′∩WF ′)×D2b′ (ψ,id)7−−−−! (XR∩WF )×D2b′ ψ−1

7−−−!WF ′

can be extended to a (trivial) invariant tubular neighborhood

ν′:XR′×D2b′ −!WR′ ⊂X∆,

since ψ−1
�ν maps XR∩WF onto XR′∩WF ′ . Finally, set νS≡ν∪ψν′. Then νS maps

((XR\WF )×D2b′)∪(ψ,id)((XR′ \WF ′)×D2b′) =YS×D2b′

to (WR\WF )∪ψ (WR′ \WF ′), that is νS is a trivial invariant tubular neighborhood of YS .
Assume that YS is equivariantly diffeomorphic to some S2a′−1×(S1)p

′
. Then we

may perform an elementary surgery corresponding to this choice of YS . In particular,
we may perform an elementary surgery corresponding to any choice of a flip of Q, as
soon as the corresponding invariant submanifold of Y is equivariantly diffeomorphic to
some S2a′−1×(S1)p

′
. In this case, we say that the flip is good.

We may then repeat this process and construct manifolds obtained from a link
by a finite number of elementary surgeries corresponding to good flips of the associate
polytope.

Nevertheless, it is not clear a priori that Y, as well as the manifolds obtained from Y,
are equivariantly diffeomorphic to a link, that is to a transverse intersection of special
real quadrics.

Definition 3.5. A pseudolink is a manifold obtained from a link by a finite number
of elementary surgeries corresponding to good flips of the associate polytopes.

We will now see that every flip is good.

Proposition 3.6. Let X be a pseudolink such that its associate polytope P is a
d-simplex. Then X is, up to product with circles, equivariantly diffeomorphic to the unit
euclidean sphere S2d+1 of Cd+1 endowed with the natural action of (S1)d+1 on it.

Proof. The proof is by induction on d. If d=0, then X is obviously a product of
circles, and the proposition is satisfied.

Assume now that the proposition is true for simplices of dimension at most d and
consider a pseudolink X whose associate polytope P is a (d+1)-simplex. Then P can
be seen as a pyramid with a d-simplex P ′ as base, and can be decomposed into a closed
neighborhood of P ′ glued along the common boundary with a closed neighborhood of
a 0-simplex v (a point). This means that X is equivariantly diffeomorphic to the glu-
ing of an invariant closed neighborhood of X ′

P with an invariant closed neighborhood
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of Xv by the identity along the common boundary. We may assume that these neighbor-
hoods are tubular and thus trivial. Using the induction hypothesis and standard product
neighborhoods, we may write

X∼
eq

(S2d+1×(S1)p×D2)∪φ(D2b×(S1)p×S1)

for some p>0 and some equivariant diffeomorphism φ of S2d+1×(S1)p+1. By Lemma 3.4,
we may assume that φ is the identity. Therefore X is, up to product with circles,
equivariantly diffeomorphic to the unit euclidean sphere S2d+3 of Cd+2 endowed with
the natural action of (S1)d+2 on it.

Corollary 3.7. Every flip of the associate polytope of a pseudolink is good.

We finish this section with a proposition which will be useful in the sequel.

Proposition 3.8. Let A∈Ak and B∈Al. Assume that XB is obtained from XA

by performing an elementary surgery of type (a, b) corresponding to a flip.
(i) If 1<a<n or a=b=1, then k=l;
(ii) if a=1 6=b, then k=l+1;
(iii) if a=n 6=1, then k=l−1.

Proof. As the links XA and XB have the same dimensions, as well as PA and PB ,
the numbers n and p are the same for both links. This implies that k (respectively, l) is
equal to n minus the number of facets of PA (respectively, PB) (see Lemma 0.12). Now,
the result easily follows from the fact that a flip of type (a, b) does not create nor destroy
any facet if 1<a<n or a=b=1 (see Figure 9 on page 75), creates a facet if a=1 6=b and
destroys a facet if a=n 6=1 (see Proposition 2.9).

4. The rigidity theorem

We are now in position to prove the following result.

Theorem 4.1. (Rigidity theorem) (i) Every pseudolink is a link.
(ii) Let A,B∈Ak for some k. Then XA∼eqXB if and only if PA=PB.

Remark 4.2. Statement (ii) is easily deduced from Lemma 0.15 if we replace equi-
variant diffeomorphism by equivariant homeomorphism. The difficulty is related to the
possibility that there exist several smooth structures on ZP compatible with the torus
action (cf. Lemma 0.15 and the subsequent discussion). We will prove that this is not
the case, but as a consequence of Theorem 4.1.
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Remark 4.3. Let p=0 and n>2. Then XA is the unit euclidean sphere S2n−1 of Cn.
We may perform an equivariant surgery as follows:

(XA\(S1×D2n−2))∪(D2×S2n−3) = (D2×S2n−3)∪(D2×S2n−3) =S2×S2n−3.

This surgery looks like an elementary surgery of type (1, n−1). In particular, it is
easy to check that the quotient space of S2×S2n−1 by the induced torus action can be
identified with the prism with an (n−2)-simplex as base, i.e. the simple convex polytope
obtained from the (n−1)-simplex PA by a flip of type (1, n−1). Nevertheless, this is
not an elementary surgery by Definition 3.2 (XA is simply-connected) and the resulting
manifold is not a link by Theorem 4.1, but a quotient of a link by an action of S1. The
simply-connected link corresponding to the prism with an (n−2)-simplex as base is

((S2n−1\(S1×D2n−2))×S1)∪(S1×S2n−3×D2)

= (D2×S1×S2n−3)∪(S1×D2×S2n−3) =S3×S2n−3.

Proof of Theorem 4.1. Let P be a convex simple polytope. Call the length of P the
minimal number of flips necessary to pass from the simplex (of the same dimension as P )
to P . This number exists by Lemma 2.3.

The proof is by induction on the length of the associate polytope. More precisely,
the induction hypothesis (at order l) is that statements (i) and (ii) are true for links and
pseudolinks with associate polytopes of length less than or equal to l. This hypothesis is
satisfied at order 0 by Propositions 1.2 and 3.6.

Assume the hypothesis at order l, and consider a pseudolink X with associate poly-
tope P of length l+1. Then, if P undergoes some well-chosen flip, we obtain a simple
convex polytope Q with length l. As usual, let (a, b) denote the type of flip and F the
simplicial face along which the flip is made. Remark that this implies that P is obtained
from Q by performing a flip of type (b, a) along some simplicial face F ′. Perform an
elementary surgery of type (a, b) along the submanifold of X corresponding to F . We
recover a pseudolink Y whose associate polytope is Q. By induction, Y is a link XA for
A belonging to some Ak. Define

k′ =


k, if 1<a<n or a= b=1,
k+1, if a=1 6= b,
k−1, otherwise.

In the last case, notice that k−1 is positive: X is obtained from XA by an elementary
surgery of type (1, n), so, by Definition 3.2, the link XA is not simply-connected. By
Theorem 0.14, there exists B∈Ak′ such that PB is equal to P . Perform an elementary
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surgery of type (a, b) along the submanifold of XB corresponding to F . By induction,
the result of this surgery is a link XA′ . Due to the choice of k′, we have A′∈Ak by
Proposition 3.8. Therefore, the second statement of the induction hypothesis implies
that XA′ ∼

eq
XA.

The conclusion is that both XB and X are obtained from the same link XA′ ∼
eq
XA

by performing an elementary surgery of type (b, a) along the same invariant submanifold
(the submanifold corresponding to F ′ in Q). Therefore, XB and X are equivariantly
diffeomorphic and X is a link. This proves the first statement for associate polytopes
of length l+1. Moreover, if one now considers any link XC with PC=P and C∈Ak′ ,
then the same proof implies that XB ∼eqXC . As these considerations do not depend on
the value of k′, this proves one implication of statement (ii). But the converse is easy:
two equivariantly diffeomorphic links have the same combinatorics of orbits, that is they
have the same associate polytope. The statements are thus valid for length l+1.

Corollary 4.4. Let A∈Ak and B∈A0. Then XA∼eqXB×(S1)k if and only if
PA=PB.

Proof. By Lemma 0.10, there exists A′∈A0 such that the link XA is equivariantly
diffeomorphic to XA′×(S1)k. In particular, this implies that PA′=PA. The statement
then follows by applying Theorem 4.1.

Corollary 4.5. Let Φ: [0, 1]!A∩Mn,p(R) be a continuous path of admissible ma-
trices of the same dimensions. Set At=Φ(t) for all t∈[0, 1]. Then XA0 is equivariantly
diffeomorphic to XA1 .

Proof. Let I⊂{1, ..., n} be such that 0 belongs to the convex hull of (((A0)i)i∈I).
Then 0 belongs to the convex hull of (((At)i)i∈I) for all t∈[0, 1], otherwise there would
be a time t0 at which the weak hyperbolicity condition would be broken, and the path Φ
would not be a path of admissible matrices. As a consequence of Lemma 0.13 and
condition (8), the associate polytopes PAt are all equal. Moreover this implies that all
the XAt’s belong to the same Ak. We may thus conclude, by Theorem 4.1, that XA0

and XA1 are equivariantly diffeomorphic.

Corollary 4.6. Let A,B,C∈A. Then XC ∼eqXA×XB (up to product with circles)
if and only if PC=PA×PB.

Proof. It is an immediate consequence of Example 0.7 and Theorem 4.1, noting that,
in Example 0.7, we have PC=PA×PB .

Finally, we give a positive answer to Question 0.17.

Corollary 4.7. There exists a unique smooth compatible structure on the moment-
angle manifold ZP (in the sense of Definition 0.16): that of the corresponding link.



real quadrics, complex manifolds and convex polytopes 85

Proof. First, notice that the structure of link is compatible with the torus action by
Proposition 1.1.

Now, put a compatible smooth structure on ZP . By performing a finite number
of equivariant surgeries corresponding to well-chosen flips of P on this smooth manifold
(this is possible by Definition 0.16 (ii)), we obtain a smooth compatible structure on
Z∆, where ∆ is the simplex of the same dimension as P . Remark that the proof of
Proposition 3.5 works in this case, so that Z∆, endowed with this smooth structure, is
equivariantly diffeomorphic to a sphere. This implies that ZP is a pseudo-link. So it is
a link by Theorem 4.1.

The second statement of Theorem 4.1 is definitely false if we replace equivariant
diffeomorphism by diffeomorphism. A counterexample is given in [26, p. 242]. We will
see other interesting counterexamples in §6 (see Example 6.2).

We may now merge the two previous sections in the following theorem, which is a
direct consequence of the description of flips given in §2, of the description of elementary
surgeries given in §3 and of Theorem 4.1.

Theorem 4.8. Let A,B∈A have the same dimensions n and p. Assume that PB
is obtained from PA by performing a flip of type (a, b) along some simplicial face F .
Then XB is obtained (up to equivariant diffeomorphism) from XA by performing an
elementary surgery of type (a, b) along some XF .

As noted above, the converse of Theorem 4.8 is false. Indeed, in Examples 2.10,
2.11 and 2.12, we may perform elementary surgeries which will not correspond to flips.
In other words, the class of links (up to equivariant diffeomorphism) is not stable under
elementary surgeries.

Corollary 4.9. Let A∈A. Then XA is obtained (up to equivariant diffeomor-
phism) from S2n−2p−1×(S1)p by performing a finite number of elementary surgeries.

Proof. LetW be the simple polytope obtained from the product PA×[0, 1] by cutting
off a neighborhood of a vertex of PA×{1} by a hyperplane (cf. Lemma 2.3). Then W is a
cobordism between PA and the simplex of dimension n−p−1. If it is trivial, then PA is
the (n−p−1)-simplex, otherwise it can be decomposed into a finite number of elementary
cobordisms. Now apply Theorem 4.8 for each elementary cobordism, and conclude in
both cases by Corollary 1.4.

Corollary 4.10. Let A,B∈A have the same dimensions n and p. Assume that XB

is obtained from XA by an elementary surgery. Then there exists an equivariant cobor-
dism between XA×(S1)2 and XB×(S1)2.
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Figure 10.

Proof. Let k∈N be such that A∈Ak. Let (a, b) be the type of the elementary surgery
transforming XA into XB . Let W be the corresponding elementary cobordism between
PA and PB . We define

l=
{
k−1, if a=1,
k, otherwise

(note that if a=1, then k>0 by Definition 3.2). By use of Theorem 0.14, there exists a
link XC such that PC=W and C∈Al. By Lemma 0.12 and Proposition 2.13, we know
that PC has n−l+2 facets. As it has dimension n−p, C is a configuration of n+2
points in Rp+1, so XC has dimension 2n−p+2. Using the fact that PA and PB are
disjoint facets of PC , and that XA and XB have dimension 2n−p−1, we may embed,
by Proposition 1.1, the link XA×S1 (respectively, XB×S1) as a smooth submanifold
of XC of codimension 2 with trivial normal bundle. The manifold obtained from XC

by removing an open trivial tubular neighborhood of each of these submanifolds is an
equivariant cobordism between XA×(S1)2 and XB×(S1)2.

5. Wall-crossing

We will now use the previous results to resolve the wall-crossing problem (compare with
[6, §4]). Let us start with an example to make the next explanations clearer.

Example 5.1. Consider the links related to the three admissible configurations illus-
trated in Figure 10 (the vertices of each configuration are numbered clockwise).

Here n=5 and p=2. Note that B and C are translations of A in R2.

Nevertheless, the corresponding links are very different. From [25] (see Example 0.5)
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or [28], we can conclude that

XA∼eq S5×S1×S1,

XB ∼eq S3×S3×S1,

XC ∼eq #(5)S3×S4,

where #(5)S3×S4 denotes the connected sum of five copies of S3×S4. By Corollary 4.5,
as long as we move the configuration A smoothly without breaking the weak hyperbolic
condition, i.e. without crossing a wall, the link XA remains unchanged. But to go from
A to B we have to cross the wall A2A5, and to go from B to C we have to cross the wall
B1B3; finally notice that we cannot pass directly from A to C with a single wall-crossing.
The best we can do is to perform two wall-crossings.

Definition 5.2. Let A∈A. A wall of A is a hyperplane of Rp passing through p

vectors of A and no more than p (the data of the hyperplane is thus equivalent to the
data of the p vectors) and which does not support a facet of H(A).

From the definition, the intersection of the set {A1, ..., An} with each open half-space
defined by the wall is not vacuous.

Definition 5.3. Let A,B∈A have the same dimensions n and p. Let W be a wall
of A. We say that B is obtained from A by crossing the wall W if

(i) the configuration B is a translate of A by some vector v of Rp;
(ii) the configuration A+tv is admissible for every t∈[0, 1], except for one value

t0∈]0, 1[ ;
(iii) at t0, the point 0∈Rp belongs to the translate of W by t0v and does not belong

to any other wall.

In other words, the point 0 “moves” continuously in the direction −v and crosses
the wall W , hence the terminology.

Let A∈A and W be a wall of A. Then W splits Rp into two open half-spaces
containing the n−p vectors of A not belonging to W . More precisely, one of the two
open half-spaces, let us denote it by W+, contains 0 and a vectors of A, whereas the
other, that we call W−, contains b vectors of A. We say that the wall W is of type (a, b).
We have a+b=n−p with 16a6n−p−1 and 16b6n−p−1.

Now, let B be obtained from A by crossing W . If, by abuse of notation, we still
call W+ and W− the open half-spaces of Rp separated by the translate of W , then W+

still contains a vectors of B (which are exactly the translates of the a vectors of A lying
in W+) and W− contains b vectors of B, but now 0 lies in W−. In particular, before the
wall-crossing, 0 belongs to the convex hull of the set consisting of the p vectors of the
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wall W and any vector of W+; after crossing the wall, 0 belongs to the convex hull of
the set consisting of the p vectors of the wall W and any vector of W−.

Theorem 5.4. (Wall-crossing theorem) Let A,B∈A with the same dimensions n

and p. Assume that p>0. Then, the following conditions are equivalent :
(i) the convex polytope PB is obtained from PA by a flip of type (a, b) along the

simplicial face FJ ;
(ii) there exists XB′ ∼

eq
XB and XA′ ∼

eq
XA such that XB′ is obtained from XA′ by a

single wall-crossing of A′, which is of type (a, b).

In the particular case where p=0, the notion of wall is meaningless. This explains
the restriction p>0 in the statement of Theorem 5.4.

Combining this result with Theorem 4.8 yields the following corollary.

Corollary 5.5. Under the same hypotheses, XB is obtained from XA by an ele-
mentary surgery of type (a, b) along XFJ

.

In other words, the class of links (up to equivariant diffeomorphism) is not stable
under elementary surgeries but is stable under elementary surgeries coming from wall-
crossings.

Proof of Theorem 5.4. The argument is purely combinatorial. Assume (i). Then we
can form the simple convex polytope PC having PA and PB as separated facets and one
single extra vertex of index (a, b). Let k∈N be such that A∈Ak. We define an integer l
as in the proof of Corollary 4.10:

l=
{
k−1, if a=1,
k, otherwise

(the assumption p>0 excludes the case a=b=1). Note that PC has dimension n−p and
it has n+2−l facets by Proposition 2.13. By Theorem 0.14, there exists a link XC corre-
sponding to PC with C∈Al. We know that C is a configuration of n+2 vectors of Rp+1,
say C=(C0, ..., Cn+1). We may assume that C+=C\{C0} satisfies XC+ ∼eqXA×S1 and
that C−=C\{Cn+1} satisfies XC− ∼eqXB×S1 (see Corollary 4.10). Moreover, as PA∩PB
is vacuous (as a face of PC), we have that C\{C0, Cn+1} is not admissible. We say that
{C0, Cn+1} is indispensable. In particular, this means that there exists a hyperplane
of Rp+1 passing through 0 which strictly separates {C0, Cn+1} from 
C=C\{C0, Cn+1}.
Scaling each vector of 
C by a strictly positive real number if necessary, we may as-
sume that 
C lies in an affine hyperplane H of Rp+1 without changing the equivariant
diffeomorphism type of XC (see Corollary 4.5).

Under this assumption, the convex hull of C+ is a pyramid with base 
C, apex
Cn+1 and containing 0. In particular, Cn+1 is indispensable. This implies that, if we
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project 0 onto the hyperplane H by letting 0̄=H∩(0Cn+1) (where (0Cn+1) denotes the
line passing through the origin and the point Cn+1), then identifying H with Rp and 0̄
with the zero of Rp yields an admissible configuration A′ of n vectors in Rp satisfying
XA′ ∼

eq
XA (cf. Lemma 0.10).

Performing the same transformation on the convex hull of C−, viewed as a cone
over 
C with apex C0, we obtain an admissible configuration B′ of n vectors in Rp

satisfying XB′ ∼
eq
XB and such that B′ is obtained from A′ by a translation.

Figure 11 should illustrate this construction. Taking 0̄ as O1 (respectively, O2) gives
the configuration A′ (respectively, B′).

From the construction, there is a translation sending the configuration A′ to B′. Let
us now prove that this translation induces exactly one wall-crossing and characterizes it.

Lemma 5.6. Let I⊂{1, ..., n} be of cardinality p. Assume that {A′i :i∈I} defines a
wall W of A′. Then W is crossed when changing from A′ to B′ if and only if 0 is in
the convex hull of {C0, Cn+1}∪{Ci :i∈I}.

Proof. The proof is direct. Let W be a wall of A′ defined by I. The hyperplane
passing through W and 0, let us call it H1, separates Rp+1 into two open half-spaces.
Clearly, W is crossed when changing from A′ to B′ if and only if C0 and Cn+1 do not be-
long to the same open half-space. If this is the case, then H1 cuts the segment [C0, Cn+1]
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in one point Ct0 , and 0 belongs to the convex hull of {Ct0}∪{Ci :i∈I}. Therefore, 0 is
in ∆, the convex hull of {C0, Cn+1}∪{Ci :i∈I}.

Conversely, assume that C0 and Cn+1 belong to the same open half-space defined
by H1. Then, the intersection of ∆ and H1 is included in W , and thus it does not
contain 0.

Now, by Lemma 0.13 and condition (8), a set of p+2 vertices of C including C0 and
Cn+1 and containing 0 in its convex hull, corresponds to a vertex of PC which neither
belongs to PA nor to PB . As the flip transforming PA into PB is elementary, there exists
only one such simplex, and thus B′ is obtained from A′ by a single wall-crossing along
the wall WJ corresponding to the extra vertex of PC . Let us determine the type of the
wall.

Let I be the set of indices defining W . As before, let W+ (respectively, W−) be
the open half-space containing 0̄ (respectively, not containing 0̄) before performing the
wall-crossing. A point A′i belongs to W+ if and only if the convex hull of {A′i}∪{A′j :j∈I}
in Rp contains 0̄. Since 0 belongs to the segment [0̄, Cn+1], this is the case if and only if
the convex hull of {Cn+1}∪{Ci}∪{Cj :j∈I} contains 0 in Rp+1. Through condition (8),
this determines a vertex v of PA⊂PC . Moreover, since 0 belongs to the convex hull
of {C0, Cn+1}∪{Cj :j∈I}, by Lemma 5.6, and to the convex hull of {C0, Cn+1}∪{Ci}
∪{Cj :j∈I}, we know, still by (8), that there is an edge from v to the extra vertex of PC
(that is the vertex of PC \(PAtPB)). As this vertex has index (a, b), the wall W separates
A′ into a vectors belonging to W+ and b vectors belonging to W−.

Conversely, assume (ii). Let us define a new admissible configuration as follows. Let

Ci =
(
A′i
−1

)
∈Rp+1, 1 6 i6n,

and let 0̄=(0,−1)∈Rp×R. Consider the hyperplane H=Rp×{1}⊂Rp+1. Let C0 be
the intersection of H with the line (00̄). We may now move 0̄ inside Rp×{−1} without
moving the points Ci to realize the wall-crossing from A′ to B′. Define Cn+1 as the
intersection of H with 00̄ after the translation of 0̄. Then C is obviously an admissible
configuration. We obtain exactly the same picture as before.

Moreover, C\{Cn+1} is an admissible configuration which is a pyramid with base

C=(C1, ..., Cn) and apex C0, thus

XC\{Cn+1} =XC∩{z : zn+1 =0}∼
eq
XA′×S1.

In the same way,
XC\{C0} =XC∩{z : z0 =0}∼

eq
XB′×S1.
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Figure 12.

From the construction, we obviously have X	C=∅. Therefore PC is a cobordism
between PA′ and PB′ . But, as above, using Lemmas 0.13, 5.6 and condition (8), it is
straightforward to check that PC has a single extra vertex which is of index (a, b), and that
PC is an elementary cobordism between PA and PB along some simplicial face FJ .

Corollary 5.7. Let A∈A. Then there exists A′∈A such that
(i) the link XA is equivariantly diffeomorphic to XA′ ;
(ii) the configuration A′ is obtained by wall-crossings from a configuration A′′ sat-

isfying XA′′ ∼
eq

S2n−2p−1×(S1)p.

Proof. Let A′ be a generic perturbation of A, that is a small perturbation of A
whose convex hull is simplicial. In this situation, a hyperplane of Rp contains at most p
vertices of A′. By Corollary 4.5, we may assume that XA′ ∼

eq
XA. For simplicity, assume

that the convex hull of (A′1, ..., A
′
p) is a facet of H(A′1, ..., A

′
n). Consider the region R

of Rp defined as follows: R is the union of the simplices whose vertices are constituted
by p−1 points among (A′1, ..., A

′
p) and two points among (A′p+1, ..., A

′
n).

The shaded region in Figure 12 is an example of such an R.

Notice that a point of H(A′1, ..., A
′
n) which is sufficiently close to the center of

H(A′1, ..., A
′
p) does not belong to R. Define A′′ as an admissible configuration obtained

as a translate of A′ such that 0 does not belong to the corresponding translate of R. In
particular, A′′ is obtained from A′ by wall-crossings. Then A′′1 , ..., A′′p are indispensable
points of A′′, so, by Lemma 0.10, we have that A′′∈Ak for k>p. This implies that
PA′′ has dimension n−p−1 and has at most n−p facets. Therefore, k=p and PA is the
(n−p−1)-simplex. Thus, by Corollary 1.4, we have XA′′ ∼

eq
S2n−2p−1×(S1)p.

Remark 5.8. Generically, we may take A′=A.
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6. Elementary surgery of type (1, n)

Let XA be a link. Assume that PA is obtained from the simplex (of the same dimension)
by uniquely performing flips of type (1, n). Then, in this case, we may explicitely describe
the diffeomorphism type of the link. First, we have the following lemma.

Lemma 6.1. Let A∈Ak with k>1. Let XB be obtained from XA by performing an
elementary surgery of type (1, n) along some invariant submanifold corresponding to a
vertex. Then the diffeomorphism type of XB is independent of the choice of the vertex
on which the flip occurs.

Proof. Let v and v′ be two vertices of PA. We want to prove that, if XB and XB′

denote the links obtained from XA by performing an elementary surgery of type (1, n)
along Xv (respectively, Xv′), then these two links are diffeomorphic. It is enough to
show this in the case where v and v′ belong to the same edge E. Let us describe XE .
By Corollary 1.5, the link XE is diffeomorphic to S3×(S1)p. The real torus (S1)p+2=
S1×S1×T acts on XE in the following manner: decompose S3 as the union of two
solid tori (S1×D2)∪(D2×S1). Then S1×S1 acts on each solid torus in the natural
way (that is the first factor by translations on S1 and the second factor tangentially
to each circle on D2) and this describes the induced action on S3; finally, T acts by
translations on (S1)p. Therefore, Xv is exactly given as (S1×{0})×(S1)p, that is as the
core circle of the first solid torus product with (S1)p; similarly, Xv′ is exactly given as
({0}×S1)×(S1)p, that is as the core circle of the second solid torus product with (S1)p.
There exists an isotopy in S3 which sends S1×{0} to {0}×S1, and this isotopy can
be extended by the identity on (S1)p to obtain an isotopy in XE sending Xv to Xv′ .
Moreover, as it is the identity on (S1)p, it maps the circle which will be filled by a 2-disk
in the surgery giving XB , to the circle which will be filled by a 2-disk in the surgery
giving XB′ . Therefore, the two elementary surgeries give the same result, that is XB is
diffeomorphic to XB′ .

Of course, in the previous lemma, the class of XB modulo equivariant diffeomor-
phisms depends on the vertex on which the surgery occurs: generally, the corresponding
flips give different polytopes so, by Theorem 4.1, different equivariant smooth classes of
links. Here is such an example.

Example 6.2. Consider the polyhedron shown in Figure 13 (the “hexagonal book”).
Let XA be the corresponding link, with A∈A1. Then, we may perform an elementary
surgery of type (1, 3) on XA in three ways, corresponding to the three vertices A, B and
C indicated in the picture. By Lemma 6.1, the resulting manifolds are all diffeomorphic;
however, by Theorem 4.1, no two of them are equivariantly diffeomorphic. In particular,
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A

B

C

Figure 13.

this gives an example of a manifold which admits three different “structures of link”.

We may now describe explicitely the links corresponding to polytopes obtained from
the simplex (of the same dimension) by cutting off vertices.

Theorem 6.3. (See [28]) Let XA be a simply-connected link such that PA is obtained
from the q-simplex (of the same dimension) by l flips of type (1, n) (we assume that l>0).
Then XA is diffeomorphic to the following connected sum of products of spheres:

XA'
l

#
j=1

j

(
l+1
j+1

)
S2+j×S2q+l−j−1.

The proof of Theorem 6.3 is done for polygons in [28, Theorem 3.4], but the proof of
this generalization is the same. Notice that Theorem 6.3 shows that, for any dimension
of the associate polytope and for any value of p, there exist infinite families which are
connected sums of products of spheres, as in Example 0.5.

Going back to Example 6.2, we see that the manifold

#(10)S3×S8 #(20)S4×S7 #(19)S5×S6

admits three different actions of (S1)8 with a convex polyhedron as quotient.
This example can be easily generalized as follows.

Example 6.4. Consider the l-gonal book Pl for l>3. It is obtained from the tetra-
hedron by l−3 flips of type (1, 3). By Theorem 6.3, it thus gives rise to a 2-connected
link diffeomorphic to

Xl =
l−3

#
j=1

j

(
l−2
j+1

)
S2+j×S2+l−j

Consider an l-gonal facet of Pl. Number its vertices as indicated in Figure 14.
The simple convex polyhedra obtained from Xl−1 by cutting off a vertex vi are all

different when i ranges from 1 to bl/2c (where b · c denotes the integer part). One of
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v1

v2

v3

Figure 14.

these polyhedra being the l-gonal book, we have, by Lemma 6.1, that the corresponding
links are all diffeomorphic to Xl.

In other words, the manifold Xl admits at least bl/2c link structures. Therefore, the
number of link structures that Xl has, tends to infinity when l tends to infinity. Notice
that the dimension of Xl is l+4.

Part II. The cohomology ring of a link

Thanks to Theorems 0.14 and 4.1, there is exactly one 2-connected link (up to equivari-
ant diffeomorphism) associated with any simple convex polytope (recall that we always
consider a convex polytope only up to combinatorial equivalence). In this part, we give
an explicit formula for the cohomology ring of a 2-connected link in terms of its associate
polytope. We use this formula to show that the cohomology of a link can have arbitrary
amount of torsion.

7. Notation and auxiliary results

We denote by P a simple convex polytope and by X the associated 2-connected link,
that is we drop the subscript A referring to the choice of a matrix.

Furthermore, we denote by
� d the dimension of P ;
� n the number of facets of P ;
� ∂P the boundary of P (we consider it as a cell complex);
� Pb the barycentric subdivision of ∂P (in the same way, the barycentric subdivision

of a simplicial complex Γ will be denoted by Γb; if a set I numbers a simplex σ of Γ, then
we number the center of σ in Γb by the same set I, that is we identify a simplex of Γ and
its center in Γb);
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� F the set of the facets of P (we identify it with the set {1, ..., n}, i.e. we see it as
an ordered set);

� I a subset of F (we also see it as an ordered set);
� |I| the cardinality of I;
�
�I the complement of I in F ;

� FI the intersection of the facets of P that are in I (it is either empty or a face
of P );

� PI the union of the facets of P that are in I;
� IJ the set I∪J (with I and J two disjoint subsets of F) endowed with the following

order: every element of I is less than every element of J ;
� εIJ the sign of the permutation sending IJ onto I∪J ;
� P ∗ the dual polytope of P (we then consider F as its vertex set);
� P ∗

I the maximal simplicial subcomplex of P ∗ with vertex set I;
� ∆I either the simplicial face of P ∗ with vertex set I⊂F or the empty set, that is

∆I =
{
P ∗
I , if P ∗

I is a simplex,
∅, otherwise;

� δji the Kronecker symbol;
� Hi(A,Z) (respectively, H̃i(A,Z)) the ith homology group (respectively, reduced

homology group) of a manifold or a simplicial complex A with coefficients in Z (by
convention, we set H̃−1(∅,Z)=Z);

� Hi(A,Z) (respectively, H̃i(A,Z)) the ith cohomology group (respectively, reduced
cohomology group) of a manifold or a simplicial complex A with coefficients in Z.

Definition 7.1. For a non-empty face F of P , the vector space underlying the affine
space in which F has non-empty interior will be called the (vector) space of F . By abuse
of notation, we will still denote the space of F by F . No confusion should arise from this.

Definition 7.2. A proper face of P will be called an I-face (respectively, an �I-face)
if every facet of P containing it is in I (respectively, in �I).

We now prove some preliminary results on simple polytopes.

Lemma 7.3. Let P be a simple polytope and let I⊂F . Then, a non-empty intersec-
tion of elements of I is an I-face.

Proof. This comes directly from the fact that the neighborhood of a face in a simple
polytope is the product of this face by a simplex. Hence, for every face F of P , there is
a unique subset I such that FI=F and F is an I-face.
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v

v

Figure 15.

Lemma 7.3 is false for non-simple polytopes. In Figure 15, the polytope is a pyra-
mid with rectangular base and apex v, whereas the set I consists of two faces whose
intersection is v. Nevertheless, v is not an I-face.

Lemma 7.4. Let P be a simple polytope. Consider a subset I of F . Then,
(i) the complex (P ∗

I )b is a deformation retract of PI ;
(ii) the set PI has the same homotopy type as its interior in ∂P .

Proof. The barycentric subdivision of ∂P is a simplicial complex whose vertices are
all the (non-empty) faces of P . By Lemma 7.3, the complex (P ∗

I )b is isomorphic to the
subcomplex of this subdivision associated to I-faces. Each point M of PI belongs to a
unique minimal simplex of Pb, and this simplex has at least one vertex belonging to (P ∗

I )b
(the center of the minimal face which contains it). Take the barycentric coordinates
of M in this simplex. We may then construct a retraction of PI on (P ∗

I )b by cancelling
the bad barycentric coordinates (i.e. coordinates associated with vertices which do not
belong to (P ∗

I )b).

To prove (ii), just remark that the previous construction also yields a retraction of
the interior of PI onto (P ∗

I )b.

Corollary 7.5. The set P ∗
�I is a deformation retract of ∂P ∗\P ∗

I .

Proof. Following the proof of Lemma 7.4, there exists a retraction of PI=(PI)b onto
(P ∗

I )b, hence of P ∗
b \(P ∗

I )b onto Pb\(PI)b. But this last set is exactly the interior of P�I .
The conclusion follows then by Lemma 7.4.
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8. Orientation

In this section, we fix some conventions of orientation. They are necessary to obtain a
cohomology formula with sign. Let us start with the orientation of ∂P . We consider P
as being realized in Rd. We orient Rd and thus obtain an orientation of P .

8.1. Orientation of a facet and of a boundary

Recall that if we consider an oriented polytope, there is a canonical orientation of its
boundary by stating that for any facet F of this polytope, a basis consisting of the
normal outward pointing vector followed by a positively oriented basis of the space of
the facet is a positively oriented basis of the space of the polytope.

8.2. Orientation of a face of P

Consider an ordered set (H1, ...,Hk) of facets of P with non-empty intersection. Then
F(H1,...,Hk) denotes the intersection of these facets endowed with the following orientation:
taking a basis (v1, ..., vk,B) of the space of P , where vj denotes the normal outward
pointing vector of Hj and B is a basis of the space of our face, we state that both bases
have the same orientation. Remark that even a 0-dimensional face has two “orientations”.

Remark 8.1. To orient a face of P is equivalent to order the set of facets containing it.
In particular, given an orientation of a convex polytope, there is no canonical orientation
of the faces which are not facets.

Definition 8.2. A d-tuple (H1, ...,Hd) of facets of P with non-empty intersection
will be called direct if (v1, ..., vd) is a positively oriented basis. It will be called undirect
otherwise.

8.3. Orientation of an intersection

Consider an n-dimensional oriented vector space E and two oriented subspaces F and F ′,
of strictly positive dimensions d and d′, respectively, and whose sum is E. Then the vector
space F∩F ′ is oriented with the convention that if B=(v1, ..., vd+d′−n) is a basis of F∩F ′,
(w1, ..., wn−d′ , v1, ..., vd+d′−n) is a positive basis of F and (v1, ..., vd+d′−n, w′1, ..., w

′
n−d) a

positive basis of F ′, then the basis B of F∩F ′ and the basis

(w1, ..., wn−d′ , v1, ..., vd+d′−n, w
′
1, ..., w

′
n−d)
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have the same sign. In the special case where F∩F ′ is reduced to {0}, we state that
F∩F ′ is positively oriented if (w′1, ..., w

′
n−d, w1, ..., wn−d′) is a positive basis of Rd. This

convention is taken to guarantee the statement of Lemma 8.4 (below) in this special case.

Remark 8.3. With this definition, the orientations of F∩F ′ and F ′∩F may differ.

The previous convention is a generalization of the convention of orientation of a face,
since we have the following result.

Lemma 8.4. With the orientation conventions above, FIJ is equal to FI∩FJ as an
oriented face.

Proof. Let vi (respectively, v′i) denote the normal outward pointing vector of the
ith facet of I (respectively, J). We may assume that FI and FJ are orthogonal. Let B
be a basis of FI∩FJ . Then (v1, ..., vk, v′1, ..., v

′
k′ ,B) is a positive basis of Rd if and only

if (v′1, ..., v
′
k′ ,B) is a positive basis of FI , whereas (v′1, ..., v

′
k′ ,B, v1, ..., vk) is a positive

basis of Rd if and only if (B, v1, ..., vk) is a positive basis of FJ . The claim follows then
easily.

Lemma 8.5. Let P be an oriented polytope. Let F be a face of P . Fix an orientation
of F . With the orientation conventions above, the oriented boundary of F is given by

∂F =
∑
H∈F

F∩H 6=F,∅

F∩H,

where F is considered as an oriented polytope and H is endowed with the canonical
orientation of ∂P .

Proof. We may find 〈I〉=(i1, ..., ik) such that F〈I〉=F as oriented faces (the angles
mean that the order on I may be different from its natural order). Now, set F=(i1, ..., in)
(as ordered sets) up to an even permutation. For k<j6n, the oriented face F〈I〉{ij} is a
facet of F〈I〉 (if non-empty) which is easily seen to be positively oriented with respect to
the convention about the orientation of a facet. Therefore,

∂F =
∑

k<j6n

F〈I〉{ij}.

The result follows now by Lemma 8.4.

8.4. Orientation of a simplicial face of P ∗

We orient ∆I for I⊂F by stating that if i0<...<ik are the ordered elements of I, then
the basis −−→e0e1, ...,−−→e0ek is a positively oriented basis of the space of ∆E (where the ei’s
are the vertices of ∆I⊂P ∗

I ⊂Rd).
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Remark 8.6. We recall that, in the sequel, a subset I of F will always be considered
as an ordered set, with the order induced from the order of F . In particular, the simplex
∆I is thus an oriented simplex (if non-empty), as well as the face FI (if non-empty).

9. Alexander duals

To prove the cohomology theorem (Theorem 10.1), we need to compute explicit Alexander
duals of simplicial cycles. We make use of [1, vol. 3, Chapter XIII]. We first recall this
construction in our context.

Let I={i0, ..., ik}⊂F . The star dual F ∗
I of FI is defined as the maximal subcom-

plex of the barycentric subdivision Pb=P ∗
b of ∂P whose vertices are the centers of the

faces of P containing FI (see [1, vol. 1, pp. 143–144]). An orientation is fixed on F ∗
I by

demanding that the intersection number of FI with F ∗
I is +1 ([1, vol. 3, pp. 11–17]).

Lemma 9.1. The star dual of FI is the barycentric subdivision of the oriented
simplex (−1)kd∆I .

Proof. The set of proper faces of P containing FI is the set {FJ :J⊂I}, so, using
the duality between P and P ∗, the star dual of FI is, up to sign, the maximal complex
of P ∗

b with vertex set {J :J⊂I}, that is the barycentric subdivision of ∆I .
To compute the sign, let B be a positive basis of FI . By §8, this means that the

set B0=(vi0 , ..., vik ,B) is a positive basis of Rd. On the other hand, assuming that 0
belongs to P and multiplying each normal vector vi by a positive scalar if necessary,
we may realize P ∗ as the convex hull of the points (v1, ..., vn). We see, following
the conventions of §8, that a positive basis of ∆I is given by B′=(−−−→vi0vi1 , ...,

−−−→vi0vik).
By [1, vol. 1, pp. 143–144], the barycentric subdivision of ∆I is the star dual of FI if
and only if the set (vi0 ,B,B′) is a positive basis of Rd, which is equivalent to asking for
(vi0 ,B, vi1 , ..., vik) to be a positive basis. Comparing it to B0, we have that its sign is
(−1)k(d−k−1). Hence the statement holds.

Let c be a (cellular) k-cycle of PI . Assume that k<d−1. In ∂P , the cycle c is thus
a boundary. Indeed, it can be written

c=
∑

|I|=d−k−1

aI∂FI = ∂

( ∑
|I|=d−k−1

aIFI

)
= ∂C, aI ∈Z.

Since we are interested in the homology class [c]∈H̃k(PI ,Z), we may assume that aI is
zero if FI is in PI , that is if I∩I is non-empty. This means that we may assume that aI
is non-zero only if I⊂�I.
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Consider the star dual of C, that is the (d−k−2)-cochain

C∗ =
∑

|I|=d−k−1

I⊂�I

aIF
∗
I .

From now on, we see C∗ as a cochain, that is we identify each simplex ∆I with the
cochain taking value 1 on ∆I . Then C∗ is a cocycle in ∂P ∗\P ∗

I . The cohomology class
of C∗ in H̃d−k−2(∂P ∗\P ∗

I ,Z) is the Alexander dual of [c].
Using Lemma 9.1, Corollary 7.5 and the fact that C∗ is geometrically realized in P ∗

�I ,
we conclude the following result.

Lemma 9.2. The Alexander dual of the class
[∑

aI∂FI
]
∈H̃k(PI ,Z) is the class

(−1)d(k+1)
[∑

aI∆I

]
∈H̃d−k−2(P ∗

�I ,Z).

10. The cohomology theorem

We may now state the cohomology theorem.

Theorem 10.1. (Cohomology theorem) For any i, we have an isomorphism

Hi(X,Z)'
⊕
I⊂F

H̃d+|�I|−i−1(PI ,Z).

We denote by ψ([c]) the preimage by this isomorphism of a class [c] in any factor of
the right-hand side. Moreover, consider two classes [c]∈H̃k(PI ,Z) and [c′]∈H̃k′(PJ ,Z),
and denote by [c]∩[c′] their intersection class in H̃k+k′−d+1(PI∩J ,Z). Then, the cup
product of their images by ψ is given by

ψ([c])^ψ([c′])=
{
εψ([c]∩[c′]), if I∪J =F ,
0, otherwise,

where

ε=
{

1, if I =F or J =F ,
εIJε�I\I,
J\J , otherwise.

Remark 10.2. The following formula for the homology groups of X in terms of P ∗

also holds:
Hi(X,Z)'

⊕
I⊂F

H̃i−|I|−1(P ∗
I ,Z).

In some cases, this formula is easier to use to compute the homology groups. We will
prove this formula at the same time as the formula of Theorem 10.1.
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v

1
2

3

Figure 16.

Remark 10.3. If I and J are complementary in F and we take classes [c]∈H̃k(PI ,Z)
and [c′]∈H̃k′(PJ ,Z) with k+k′=d−2, then their intersection class in H̃−1(∅,Z)'Z is
their linking number. In particular, Poincaré duality on X is given by Alexander duality
on ∂P .

Example 10.4. Let P be the cube. Number its facets in the following way: 1, 2 and 3
denote three faces adjacent to a vertex v (as in Figure 16), whereas 1′ (respectively, 2′

and 3′) is the opposite face to 1 (respectively, 2 and 3). The order on F is given by

1< 2< 3< 1′< 2′< 3′.

The sets P{1,2,1′,2′}, P{1,3,1′,3′} and P{2,3,2′,3′} have the homotopy type of a circle. Set
c12=∂F3, c13=∂F2 and c23=∂F1. Then [c12] (respectively, [c13] and [c23]) is a generator
of H̃1(P{1,2,1′,2′},Z) (respectively, H̃1(P{1,3,1′,3′},Z) and H̃1(P{2,3,2′,3′},Z)).

The sets P{1,1′}, P{2,2′} and P{3,3′} have the homotopy type of a pair of points. Set
c1=∂F32, c2=∂F31 and c3=∂F21. Then [c1] (respectively, [c2] and [c3]) is a generator of
H̃0(P{1,1′},Z) (respectively, H̃0(P{2,2′},Z) and H̃0(P{3,3′},Z)).

Finally, set c=∂F132 and consider the generator [c] of H̃−1(∅,Z).

Theorem 10.1 gives the cohomology groups of X, which are as follows:

i H̃i(X,Z)

1, 2, 4, 5, 7, 8 {0}
3 Z·ψ([c12])⊕Z·ψ([c13])⊕Z·ψ([c23])

6 Z·ψ([c1])⊕Z·ψ([c2])⊕Z·ψ([c3])

9 Z·[c]

and the only non-zero cup products are
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ψ([c12])^ψ([c3])=−ψ([c13])^ψ([c2])=ψ([c23])^ψ([c1])= [c],

ψ([c12])^ψ([c13])=ψ([c1]),

ψ([c12])^ψ([c23])=ψ([c2]),

ψ([c13])^ψ([c23])=ψ([c3]).

By Corollary 4.6 and Example 0.7, we know that X is the product of spheres S3×S3×S3.
We here recover its cohomology ring.

Proof of Theorem 10.1 and Remark 10.2. We use the fact that X has the same ho-
motopy type as the moment-angle complex ZP (Lemma 0.15). Buchstaber and Panov
proved ([9, Theorems 7.6 and 7.7] for the case over a field, [3] for the general case; see
also [35, Theorem 4.7]) that there exists an isomorphism of bigraded algebras

H∗(X,Z)'H
[∧

[u1, ..., un]⊗Z[P ∗], d
]
,

where Z[P ∗] is the Stanley–Reisner ring of P ∗ [36, Chapter II], that is the polynomial ring
Z[v1, ..., vn] modulo the ideal generated by vi1 ... vik /∈P ∗ (where the vi’s are considered
as abstract variables in the polynomial ring and as vertices of P ∗). The bigrading on the
left-hand side is explained in [9, §7]. On the right-hand side, we have

bideg ui =(−1, 2), bideg vi =(0, 2), dui = vi and dvi =0.

From this isomorphism, Buchstaber and Panov proved ([9, Proposition 8.18]) that

Hi(X,Z)'
⊕
I⊂F

H̃i−|I|−1(P ∗
I ,Z),

which is exactly the formula of Remark 10.2.(1)
By Poincaré duality, we have

Hi(X,Z)'Hn+d−i(X,Z)'
⊕
I⊂F

H̃d+|�I|−i−1(P
∗
I ,Z)'

⊕
I⊂F

H̃d+|�I|−i−1(PI ,Z),

since PI and P ∗
I are homotopically equivalent, by Lemma 7.4.

To obtain a more geometric formulation of Theorem 10.1, define isomorphisms

[∂FI ]∈ H̃k(PI ,Z) 7−! (−1)d(k+1)[∆I ]∈ H̃d−k−2(P ∗
�I ,Z)

7−!u�I\IvI ∈H |�I|+d−k−1
[∧

[u1, ..., un]⊗Z[P ∗], d
]

(1) To be more precise, this formula is proved over a field in [9, Proposition 8.18], since at that
time the previous isomorphism of bigraded algebras was known only over a field. The same proof works
over the integers, once one has the isomorphism over the integers.
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and
[∂P ]∈ H̃d−1(P,Z) 7−! 1∈H0

[∧
[u1, ..., un]⊗Z[P ∗], d

]
,

where vI stands for vi1 ... vid−k−1 and the same convention is used on u. The first arrow
is the Alexander duality described in Lemma 9.2 and the second arrow is a well-defined
isomorphism by [2, Theorem 1] (see also [35, Lemma 4.5 and Theorem 5.1]).

Set R=
∧

[u1, ..., un]⊗Z[P ∗]. From these isomorphisms we may transfer the wedge
product on R to a product on the homology classes of the PI ’s. We just handle the
non-trivial cases. Let I and J be two proper subsets of F whose union is F . Let k and
k′ be less than d−1. Let I⊂�I with |I|=d−k−1 and J⊂ 
J with |J |=d−k′−1. Note that

ε·εIJ ·u(�I∪
J )\(I∪J)vIJ =u�I\I,
J\JvIJ ,

where ε is defined in the statement of Theorem 10.1. We then obtain the following
commutative diagram:

[∂FI ]⊗[∂FJ ]∈ H̃k(PI)⊗H̃k′(PJ )

��

// ε[∂FIJ ]∈ H̃k+k′−d+1(PI∩J )

��

[u�I\IvI ]⊗[u
J\JvJ ]∈Hp(R)⊗Hq(R) // [u�I\I,
J\JvIJ ]∈Hp+q(R),

where p=|�I|+d−k−1 and q=|
J |+d−k′−1. Now, let

c=
∑

|I|=d−k−1

I⊂�I

aI∂FI , aI ∈Z,

represent a class of H̃k(PI ,Z) and

c′ =
∑

|J|=d−k′−1

J⊂
J

bJ∂FJ , bJ ∈Z,

represent a class of H̃k′(PJ ,Z).
We want to compute the intersection class of [c] and [c′]. These two classes are

naturally realized in the boundaries of PI and PJ , but do not meet transversely. We can
nevertheless “push” them in the interior of these sets so that they do.

Definition 10.5. For each facet H, consider an affine function lH on the space of P
which is zero on H and positive on P \H. For ε>0, set Hε=l−1

H (ε)∩P , and for a face F
of P , set Fε=

⋂
H⊃F Hε.
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The following lemma is clear.

Lemma 10.6. Let F and F ′ be two faces of P that are not contained in a common
facet and have non-empty intersection. Then, if ε is small enough, ∂Fε and ∂F ′

ε meet
transversely and their intersection is ∂(F∩F ′)ε. Moreover, this works for oriented faces.

We now can compute the homology class of the intersection of our two cycles. For
this, consider for every facet H of P an affine function on the space of P which is zero
on H and positive on P \H.

Take ε>0 small enough. Define [cε] as follows: for an element I of �I and a facet H
of I meeting FI , call (FI∩H)H,ε the set (FI∩H)ε when we consider H as a simple
polytope and restrict the affine functions of the facets meeting H to the facets of H.
Just remark now that

[c] =
[∑

aI(FI∩H)H,ε
]
,

where the sum runs over H∈I and I∈�I such that FI∩H 6=∅, since the cycle in the
brackets above is homotopic to

∑
aIFI∩H.

Of course, the same is true for [c′]. But these cycles meet transversely and, thanks
to Lemma 10.6, their intersection can be written as

[c]∩[c′] =
[∑

aIbJ(FI∩FJ∩H)H,ε
]
,

where the sum runs over every H∈I, I∈�I and J∈ 
J such that FI∩FJ∩H 6=∅; thus, by
Lemmas 8.4 and 8.5, we get

[c]∩[c′] =
∑

aIbJ [∂FIJ ],

and this completes the proof.

Remark 10.7. Theorem 10.1 can also be obtained, by use of Alexander duality, di-
rectly from Baskakov’s formula [2, Theorem 1]. However, it is not possible to obtain a
formula with sign using only Baskakov’s result as stated in [2]. On the other hand, in a
previous version of this paper, Theorem 10.1 was obtained from Goresky–MacPherson’s
[16] and de Longueville’s [24] formulas about the cohomology ring of the subspace ar-
rangement S defined in §0 (see also [9, §8.2]). The proof was based on Alexander duality
too, but was much more involved.

11. Applications to the topology of the links

In this section we make use of the previous results on the cohomology ring of a 2-connected
link X to investigate how complicated the topology of a link can be. We will see that the
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complexity increases when the dimension d of the associate polytope P increases, and
that the topology of a link may finally be “arbitrarily complicated”.

For d=0 the unique 2-connected link is a point, for d=1 it is S3 (this is the case
p=0 and n=2). For the polygons, the situation is not so easy, and the links are products
of odd-dimensional spheres or connected sums of products of spheres: this case was
completely described in [28] (cf. Theorem 6.3). In higher dimensions, the only known
case is the special case where p=2 ([25], [26]), where the same type of manifolds is
obtained (cf. Example 0.5). On the other hand, the generalization of McGavran’s results
stated as Theorem 6.3 shows that, for any value of d, there is an infinite number of
examples where the link is a connected sum of products of spheres. This leads naturally
to the following question, whose positive answer was stated as a conjecture in [30].

Question A. Is it true that any 2-connected link may be decomposed into a product
of odd-dimensional spheres and connected sums of products of spheres?

A weaker version of this question is the following.

Question A′. At least, is it true that the cohomology ring of a 2-connected link is
isomorphic to the cohomology ring of a product of odd-dimensional spheres and connected
sums of products of spheres?

This supposes to resolve first the following (easier?) question.

Question A′′. Is it true that the homology of a 2-connected link is always without
any torsion?

An immediate application of Theorem 10.1 is that the answer is positive if d64.

Corollary 11.1. If the polytope P has dimension at most 4, then the homology of
the associated manifold is torsion-free.

Proof. In this case, every homology group of the form H̃k(PI ,Z) is torsion-free, as
PI lies in ∂P , which is a sphere of dimension 63 (see [1, vol. 3, Chapter XIII, §4.12]). So
is a direct sum of such groups as are the cohomology groups of X by Theorem 10.1.

We emphasize that this result, obtained as an easy consequence of Theorem 10.1,
cannot be easily deduced from the classical form of the Goresky–MacPherson formula (for
example in the version of [24]) applied to the complement of the subspace arrangement S,
since the dimension of the complex ∆, on which the homology computations have to be
done, can be much greater than 3. Therefore, this corollary illustrates all the interest in
having a formula in terms of subsets of the associate polytope.

We will now prove that, even in dimension 3, the answer to Questions A and A′

is negative. To see this, we will first compute how the cohomology of a link X changes
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when performing an elementary surgery of type (1, n) on X×S1, that is when performing
a vertex cutting on P . Recall that, by Lemma 6.1, the diffeomorphism type of the new
link X ′ is independent of the choice of the vertex to be cut off.

Proposition 11.2. Let X and X ′ be as above. Assume that d>2. Then

H0(X ′,Z)'Hn+d+1(X ′,Z)'Z,

H1(X ′,Z)'H2(X ′,Z)'Hn+d−1(X ′,Z)'Hn+d(X ′,Z)' 0,

Hi(X ′,Z)'Hi(X,Z)⊕Hi−1(X,Z)⊕Z( n−d
i−2d+1)⊕Z(n−d

i−2), for 3 6 i6n+d−4,

where
(
l
k

)
=0 if k<0 or k>l. Moreover, the product is given by the following rules

considering two cohomology classes [c] and [c′] of X ′.
Rule 1: If one of [c] and [c′] is in H0(X ′,Z) or Hn+d+1(X ′,Z), then the product is

the obvious one. Assume that this is not the case. Then denote by Si,j, for 36i6n+d−2
and 16j64, the terms of the sum above, when they exist, that is

Hi(X ′,Z) =Si,1⊕Si,2⊕Si,3⊕Si,4.

For j=1, 2, decompose Si,j as
⊕

I⊂F SI,j, as in Theorem 10.1. Finally, denote by Sj,
for 16j64, the sum of the Si,j’s when i varies. We assume that [c] is in SI,j and [c′]
in SJ ,j′ .

Rule 2: If {j, j′}6={1}, {1, 2}, {3, 4} then [c]^[c′]=0. Call ϕ1 and ϕ2 the applica-
tions of Hi(X,Z) in Si,1 and Si+1,2.

Rule 3: If j=j′=1, then we may assume that [c]=ϕ1([c1]) and [c′]=ϕ1([c′1]). Then
[c]^[c′]=ϕ1([c1]^[c′1]).

Rule 4: If j=1 and j′=2, then we may assume that [c]=ϕ1([c1]) and [c′]=ϕ2([c′2]).
Then [c]^[c′]=ϕ2([c1]^[c′2]).

Rule 5: The cup product from S3×S4 to Hn+d+1(X,Z)'Z is a unimodular bilinear
form, which is diagonal in the canonical bases (when these bases are suitably ordered).
Note that the product vanishes when the dimensions do not correspond.

In particular, if the cohomology ofX has no torsion, then neither has the cohomology
of X ′.

Remark 11.3. The isomorphisms are not completely canonical. Some judicious
choices have to be made to obtain the desired rules about the cup product.

Proof of Proposition 11.2. Let v be the cut vertex, Fv be the set of the facets of
P that contain v, and F be the “new” facet (we will not distinguish a facet of P , even
in Fv, from the “same” facet of P ′).
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Notation 11.4. For a subset I of F , we will denote by I2 the subset of the facets
of P ′ having the same elements as I. Then, set I1=I2∪{F}.

Let I⊂F be such that the intersection of I with Fv is proper and non-empty;
then v belongs to the topological boundary of PI , and both P ′

I1
and P ′

I2
are homotopy

equivalent to PI . Therefore, the three sets have the same reduced homology groups.
Consider now a subset I of F that contains Fv. Then P ′

I1
is homotopy equivalent to

PI , hence has the same reduced homology groups, and P ′
I2

is homotopy equivalent to PI
minus a point. Therefore, if I 6=F , then the reduced homology groups of P ′

I2
are isomor-

phic to the ones of PI , except for H̃d−2(P ′
I2
,Z) which is isomorphic to H̃d−2(PI ,Z)⊕Z.

If I=F , then P ′
I2

is contractible, hence has no reduced homology.
Consider now a subset I of F that is disjoint from Fv. Then P ′

I2
is homotopy

equivalent to PI , hence has the same reduced homology groups, and P ′
I1

is homotopy
equivalent to the disjoint union of PI with a point. Therefore, if I 6=∅, then the reduced
homology groups of P ′

I1
are isomorphic to the ones of PI , except for H̃0(P ′

I2
,Z) which is

isomorphic to H̃0(PI ,Z)⊕Z. If I=∅, then P ′
{F}=F is contractible and has no reduced

homology.
Let i be an integer. Then, the above results allow us to compute Hi(X ′,Z):

Hi(X ′,Z)'
⊕
I⊂F

H̃d+|�I1|−i−1(P
′
I1
,Z)⊕

⊕
I⊂F

H̃d+|�I2|−i−1(P
′
I2
,Z)

'
⊕
I⊂F

H̃d+|�I|−i−1(P
′
I1
,Z)⊕

⊕
I⊂F

H̃d+|�I|−i(P
′
I2
,Z),

which is isomorphic to⊕
I⊂F

I∩Fv 6=∅

H̃d+|�I|−i−1(PI ,Z)⊕
⊕
I⊂F

I∩Fv=∅
I6=∅

(
H̃d+|�I|−i−1(PI ,Z)⊕Zδ

d+|�I|
i+1

)

⊕
⊕
I⊂F
I6⊃Fv

H̃d+|�I|−i(PI ,Z)⊕
⊕
I⊂F
I⊃Fv

I6=F

(
H̃d+|�I|−i(PI ,Z)⊕Zδ

d+|�I|−i
d−2

)

and finally to⊕
I⊂F
I6=∅

H̃d+|�I|−i−1(PI ,Z)⊕
⊕
I⊂F
I6=F

H̃d+|�I|−i(PI ,Z)⊕
⊕
I⊂F

I∩Fv=∅
I6=∅

Zδ
|�I|
i−d+1⊕

⊕
I⊂F
I⊃Fv

I6=F

Zδ
|�I|
i−2 .

The first sum ⊕
I⊂F
I6=∅

H̃d+|�I|−i−1(PI ,Z)
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is isomorphic to Hi(X,Z), except when d+n−i−1=−1, that is i=d+n.
Also, the second sum ⊕

I⊂F
I6=F

H̃d+|�I|−i(PI ,Z)

is isomorphic to Hi−1(X,Z), except when d−i=d−1, that is i=1.
On the other hand, ∑

I⊂F
I∩Fv=∅
I6=∅

δ
|�I|
i−d+1

is the number of non-empty subsets of F\Fv having n−i+d−1 elements. It is
(

n−d
n−i+d−1

)
,

except when n−i+d−1=0, that is i=n+d−1, in which case this sum is zero.
We also have that ∑

Fv⊂I⊂F
I6=F

δ
|�I|
i−2 =

∑
�I⊂F

�I∩Fv=∅
�I6=∅

δ
|�I|
i−2

is the number of non-empty subsets of F\Fv having i−2 elements. It is
(
n−d
i−2

)
, except

when i−2=0, that is i=2, in which case this sum is zero.
Putting all these results together, being (n−d)−(n−i+d−1)=i−2d+1, we get the

isomorphisms of the proposition.
Let us now describe the cup product. Rule 1 is obvious.
To continue, we have to clearly define the sums Sj , because they derive from iso-

morphims which are not, as we shall see right now, canonical.
Look first at the isomorphism H̃0(P ′

I1
,Z)'H̃0(PI ,Z)⊕Z, where I is non-empty

and does not meet Fv. This isomorphism is canonical when (non-reduced) homology is
concerned, but the cycles that are added (multiples of the singleton 〈v〉) are not cycles
in reduced homology. Look now at the isomorphism H̃d−2(P ′

I2
,Z)'H̃d−2(PI ,Z)⊕Z,

where I 6=F and I contains Fv. The projection of H̃d−2(P ′
I2
,Z) over H̃d−2(PI ,Z) is

canonical (hence so is its kernel, which is the factor Z), but the inclusion of H̃d−2(PI ,Z)
in H̃d−2(P ′

I2
,Z) is not.

Consider a non-empty subset I of F disjoint from Fv. Choose any reduced homology
class in H̃0(P ′

I1
,Z), whose value on the connected component F of P ′

I1
is equal to 1, and

call [cI ] this class. It is clear that the groups Z·[cI ] and H̃0(PI ,Z), whose inclusion in
H̃0(P ′

I1
,Z) follows from the inclusion PI⊂P ′

I1
, give the desired isomorphism. Doing this

for every I, we thus have
S3 =

⊕
I⊂F

I∩Fv=∅
I6=∅

Z·[cI ].
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Consider now �I. It is a proper subset of F which contains Fv. The linking operation on
H̃0(P ′

I1
,Z)×H̃d−2(P ′

�I1
,Z) is well defined, and the subgroup of the homology classes that

are not linked with [cI ] is isomorphic to H̃d−2(P�I ,Z). As a consequence, H̃d−2(P ′
�I1
,Z) is

the direct sum of this subgroup with the group generated by the class [c′
�I ] of a sphere that

surrounds F (this group is also the kernel of the projection coming from the inclusion
P ′
�I1
⊂P�I). We thus obtain

S4 =
⊕
I⊂F

I∩Fv=∅
I6=∅

Z·[c′�I ].

Rule 5 is now clear. More precisely, if we take [cI ] and [c′

J ] as explained above, the cup

product of the corresponding cohomology classes is zero if I 6=J . Indeed, if I 6=J , then
I∪ 
J 6=F or I∩ 
J 6=∅. By Theorem 10.1, the cup product is automatically zero in the
first case; in the second case, it lies in H̃−1(I∩ 
J ,Z). As this group is reduced to zero,
the cup product is zero too. On the other hand, the cup product of the classes associated
to [cI ] and [c′

�I ] is, up to sign, the top class of X ′ (more precise choices allow to exactly
obtain the top class). This gives Rule 5.

For Rule 2, remark first that if both [c] and [c′] are in Sj , with j 6=1, then the union
of the corresponding subsets of F∪{F} is not all of F∪{F} (indeed, F is not in this
union if j=2 or j=4, and Fv does not intersect the union if j=3). We then just have to
see that [c]^[c′] vanishes if j62 and j′>3.

Consider first a class [c′
�I ] in S4. It is realized by a (d−2)-sphere which surrounds F .

Remark that every (reduced) homology class in a PI can be realized by a cycle which is
far away from v (except if I=F , but then the corresponding class is in H0(X ′,Z) and
Rule 1 applies). As F (and thus the sphere realizing [c′

�I ]) can be thought of very close
to v, they do not intersect (neither are they linked). Hence, if [c′] is in S4 and [c] is in
Sj′ , with j′62, then [c]^[c′]=0.

Consider now a class [cI ] in S3. Let J 6=F and let [aJ ] be a class of H̃k(P ′
J2
,Z).

By arguments similar to those used in the proof of Rule 5, we have that the intersection
class [cI ]∩[aJ ] corresponds to a non-trivial cohomology class of X ′ if and only if [aJ ]
is a multiple of [c′


J ]. But such a class is not in S2, and thus the cup product of a class
of S2 with a class of S3 is always zero.

Rules 3 and 4 derive from our Theorem 10.1. Assume that F is the greatest element
for the order that we consider on F∪{F}.

Given a proper non-empty subset I of F , and [a]∈H̃k(PI ,Z), recall that ψ([a]) is its
image in H |�I|+d−k−1(X,Z). Let ψi([a])=ϕi(ψ([a])) for i=1, 2. Via our isomorphisms, [a]
is identified with some classes [aj ]∈H̃k(P ′

Ij
,Z) for j=1, 2. Denoting by ψ′ the application

on X ′ which is equivalent to ψ on X, we have ψj([a])=ψ′([aj ]) for j=1, 2.
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Figure 17.

Consider now [a]∈H̃k(PI ,Z) and [b]∈H̃k′(PJ ,Z) (I and J proper and non-empty)
with a=∂FI and b=∂FJ . Assume moreover that I∪J =F (otherwise, cup products are
zero). Remark that [a1]∩[bj ]=([a]∩[b])j for j=1, 2. We then compute

ψ1([a])^ψ1([b])=ψ′([a1])^ψ′([b1])= εIJε�I1\I,
J1\Jψ
′([a1]∩[b1]),

that is, using the definitions I1=I∪{F} and J1=J ∪{F},

ψ1([a])^ψ1([b])= εIJε�I\I,
J\Jψ
′(([a]∩[b])1)

=ϕ1(εIJε�I\I,
J\Jψ([a]∩[b]))

=ϕ1(ψ([a])^ψ([b])).

Rule 3 follows from this and Rule 4 by similar computations.

Example 11.5. Consider the cube as a simple polytope. By Corollary 4.6, the asso-
ciated manifold is the product of three 3-spheres (cf. Example 10.4). Cut now a vertex.
The resulting simple polytope has dimension 3 and seven facets, hence the associated
manifold X has dimension 10. Note also a S3-symmetry. Let us compute its cohomology
ring as an application of Proposition 11.2.

Number the “cut face” by 0, the faces adjacent to 0 by 1, 2 and 3 (see Figure 17),
and the faces “opposite” to 1, 2, and 3 by 1′, 2′ and 3′, respectively.

The cohomology groups of X are free, and the corresponding Betti numbers are
given in the following table:

i 0 1 2 3 4 5 6 7 8 9 10
bi(X) 1 0 0 6 6 2 6 6 0 0 1

Denote by λi, for 16i63, the cohomology classes which generateH3(S3×S3×S3,Z),
and by λij the cup product λi^λj . For l=1, 2 let λi,l (respectively, λij,l) be ϕl(λi)
(respectively, ϕl(λij)). The expression eI , for some I⊂{0, 1, 2, 3, 1′, 2′, 3′}, denotes the
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generator of a cohomology class of PI , and will only be used when PI has only one
non-zero reduced homology group and when this group is isomorphic to Z (e.g. PI has
the homotopy type of a circle). Finally, by σ we denote a permutation of the set {1, 2, 3}.
Letting σ vary among the permutations of {1, 2, 3}, we have

� H3(X,Z) is generated by λσ(1),1 and e123σ(1)′σ(2)′ ;
� H4(X,Z) is generated by λσ(1),2 and e123σ(1)′ ;
� H5(X,Z) is generated by e123 and e01′2′3′ ;
� H6(X,Z) is generated by λσ(1)σ(2),1 and e0σ(1)′σ(2)′ ;
� H7(X,Z) is generated by λσ(1)σ(2),2 and e0σ(1)′ .
The products of these generators are zero except for the following products:
(i) λσ(1),1^λσ(2),1=λσ(1)σ(2),1;
(ii) λσ(1),1^λσ(2),2=λσ(1)σ(2),2 and λσ(2),1^λσ(1),2=λσ(1)σ(2),2;
(iii) the products which give the top class, i.e. λσ(1),1^λσ(2)σ(3),2 , eI^e�I and

λσ(1)σ(2),1^λσ(3),2.

It is easy to check that, in the previous example, the cohomology ring of the asso-
ciated link is isomorphic neither to that of a sphere, nor to that of a connected sum of
sphere products, nor to that of the product of such manifolds. The answer to Questions A
and A′ is thus negative even in dimension 3. Notice that the exact diffeomorphism type
of the link of the previous example is not clear. We may ask the following question.

Question. Describe this manifold more precisely: for instance, can it be decomposed
into a connected sum of manifolds?

In dimension 3, we may in fact characterize precisely which simple polytopes give
rise to connected sums of sphere products as links, and which manifolds appear in this
way. We have the following result.

Proposition 11.6. Let P be a simple polyhedron. Then, the following statements
are equivalent :

(i) the cohomology ring of the associated link X is isomorphic to that of a connected
sum of sphere products;

(ii) the link X is diffeomorphic to a connected sum of sphere products;
(iii) there exists l>0 such that X is diffeomorphic to

l

#
j=1

j

(
l+1
j+1

)
S2+j×S6+l−j−1;

(iv) there exists l>0 such that P is obtained from the 3-simplex by cutting off l

well-chosen vertices.
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Proof. By application of Theorem 6.3, we know that (iv) implies (iii), and of course
(iii) implies (ii), and (ii) implies (i), so it is sufficient to prove that (i) implies (iv). We
assume thus that the cohomology ring of the associated link X is isomorphic to that of
a connected sum of sphere products.

Definition 11.7. Let I be a subset of F . We say that I is a 1-cycle of facets of P if
KI is a cycle (i.e. a connected graph all of whose vertices are bivalent).

A 1-cycle of facets can also be viewed as the data of an integer k>3 and an injective
map from Zk into I, such that the images of two elements meet if and only if the two
elements are equal or consecutive in Zk, and if moreover any triple of facets do not have
any common vertex. The integer k is then called the length of the 1-cycle of facets.

Claim. Let F and F ′ be any two disjoint facets of P . Then F\{F, F ′} contains a
1-cycle of facets.

To see this, consider the set IF of facets that meet F (except for F itself). Consider
the maps φ from Zk into IF having the following properties:

(i) for all i∈Zk, φ(i) meets φ(i+1);
(ii) for all i∈Zk, consider the segment on φ(i) joining the centers of the edges

φ(i)∩φ(i−1) and φ(i)∩φ(i+1). We require the polygon obtained by concatenation of all
these segments to be non-trivial in the homology of P∂\(F∪F ′).

There exist such maps: order IF such that the bijective order-preserving map from
Z|IF | to IF satisfies (i). Then this map also satisfies (ii), since the polygon obtained
from it is homotopic to the boundary of F . Moreover, let us prove that a minimal subset
of IF fulfilling these conditions is a 1-cycle of facets.

First, such a minimal subset cannot contain exactly three globally meeting facets, as
in this case the polygon considered in the point (ii) would be contained in a contractible
subset (the union of the three facets) of P∂\(F∪F ′), which is not allowed.

Assume now that in this minimal subset {C1, ..., Ck}, the facet C1 meets Cj , for
some 2<j<k. Then {C1, ..., Cj} and {C1, Cj , Cj+1, ..., Ck} satisfy (i), and one of them
satisfies (ii), as the polygon of C1, ..., Ck is homologically the sum of the polygons of
these two subsets. This gives a contradiction, and the proof of the claim is completed.

We denote by (∗) the property, for a simple 3-dimensional polytope, that all its
1-cycles of facets have length 3.

Assume that P does not satisfy (∗). Then we can take a 1-cycle of facets I of P of
length k>4. In particular, I1 and I3 are disjoint. The complement of PI in P has two
connected components X and Y.

The group H1(PI ,Z) is isomorphic to Z, generated by the class of the “polygon” T
whose vertices are the centers of the intersections of facets of I.
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T

T ′

Figure 18.

Consider now J ={I1, I3}∪(F\I). The group H1(PJ ,Z) is isomorphic to Z too,
generated by the class of a cycle T ′ which is decomposed as follows: for i=1 or i=3,
let xi (respectively, yi) be in the intersection of Ii with X (respectively, Y). Consider a
segment in Ii joining xi to yi, and a path in the interior of X (respectively, Y) joining
x1 to x3 (respectively, y1 to y3). The cycle T ′ is obtained by the concatenation of these
four paths.

Figure 18 illustrates such a situation. Here, P is the cube with the same numbering
of facets as in Example 10.4. The 1-cycle of facets is I={1, 2, 1′, 2′}, so J ={1, 3, 1′, 3′},
whereas X=3 and Y=3′.

Now I∪J =F and I∩J ={I1, I3}. On I3 and I1, the intersection of T and T ′ is
exactly one point. In particular, the intersection class of these two cycles in H0(I1∪I3,Z)
cannot be zero. By Theorem 10.1, the class ψ([T ]) (respectively, ψ([T ′])) is non-trivial
of dimension |�I|+1 (respectively, |
J |+1). Still by Theorem 10.1, the cup product
ψ([T ])^ψ([T ′]) is a non-trivial cohomology class.

This class does not belong to the top-dimensional cohomology group of X, since the
top class corresponds to the generator of H̃−1(∅,Z). This means that the cohomology
ring of X is not isomorphic to that of a connected sum of sphere products, yielding a
contradiction. The polytope P has only 1-cycles of facets of length 3.

We now have to show the converse, i.e. if P satisfies (∗), then P is obtained from
the tetrahedron by vertex cutting. Remark that a polyhedron which is obtained from
the tetrahedron by vertex cutting has (at least) two disjoint triangular facets (except if
it is the tetrahedron itself).

Assume that P has a triangular face. Then, if P is not itself the tetrahedron, we can
perform a flip of type (3, 1) along this face so that it disappears. The resulting polytope
Q satisfies (∗) too, as we cannot have created new 1-cycles of facets. It has one face less
than P , and P is obtained from Q by vertex cutting.

Hence, by induction on the number of facets, we just have to show that a polytope
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having the property (∗) has necessarily a triangular face. Consider a polytope P fulfill-
ing (∗). If P is not a tetrahedron, it has two disjoint facets and, according to the claim,
a 1-cycle of facets (F1, F2, F3) of length 3. Now, the plane H passing through the centers
of the intersections Fi∩Fj intersects no other facet. The intersections P+ and P− of P
with the two half-spaces delimited by H are simple convex polytopes satisfying (∗) and
with a triangular face H∩P . If P+ is P itself, then P has a triangular face. Otherwise,
P+ has strictly less faces than P and, by induction, is obtained from the tetrahedron by
vertex cutting. As it cannot be the tetrahedron (because F1∩F2∩F3 is empty), it has
two disjoint triangular facets, and in particular one which is disjoint from H∩P . This
facet is also a triangular facet of P , which completes the proof.

In higher dimension, the simple polytopes obtained from the simplex (of the same
dimension) by cutting off vertices, still give rise to links whose cohomology ring is isomor-
phic to that of a connected sum of products of spheres, by Theorem 6.3. Nevertheless,
they are not the only ones, and a nice characterization of all the polytopes having this
property does not seem to exist. In particular, the results of [26] recalled in Exam-
ple 0.5 give examples of connected sums of products of spheres which cannot be obtained
by Theorem 6.3. We use the notation of Example 0.5. Let n=10 and n1=...=n5=2.
Then, the associated link X is diffeomorphic to #(5)S7×S10. Since X is 6-connected,
it is not diffeomorphic to one of the links obtained by Theorem 6.3: none of them is
3-connected. Moreover, we may construct other examples. To do that, recall that an
(even-dimensional) polytope is called neighbourly if every subset of cardinality d/2 deter-
mines a face, and that such a polytope is simplicial (see §2 and [17]). A polytope whose
dual is neighbourly is therefore simple and is called a dual neighbourly polytope. Here,
we will only consider the even-dimensional case.

Proposition 11.8. Assume that P is dual neighbourly and of even dimension. Then
the cohomology ring of X is isomorphic to the one of a connected sum of sphere products.

Proof. We try to compute the reduced homology groups of PI , for I proper and non-
empty. Recall that this set is homotopy equivalent to the subcomplex of P ∗ corresponding
to the maximal subcomplex whose vertices are those related to the facets of I. For
k<d/2−1, the (k+1)-skeleton of P ∗

I is complete, by definition of neighbourlyness, hence
PI has trivial reduced k-(co)homology.

The torsion part of H̃d/2−1(PI ,Z) is isomorphic to the torsion part of the group
H̃d/2(P�I ,Z). By Lemma 7.4 and the Alexander–Pontryagin duality (see [1, vol. 3, p. 53]),
it is also isomorphic to the torsion part of the group H̃d/2−2(P�I ,Z), and hence is trivial.
In the same way, for k>d/2, the group H̃k(PI ,Z) is isomorphic to the direct sum of the
free part of H̃d−k−2(P�I ,Z) and of the torsion part of H̃d−k−3(P�I ,Z), both being trivial.
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To sum up, the reduced homology groups of PI vanish except in dimension d/2−1,
in which case it is free.

Furthermore, if the homology intersection of two such classes is non-zero, then it
must lie in the reduced homology group of dimension −1 of some subset of F , which
must be the empty set. Finally, to conclude, we just have to see that the linking number
is a unimodular bilinear form on H̃d/2−1(PI ,Z)×H̃d/2−1(P�I ,Z), which follows from the
“little Pontryagin duality” (see [1, vol. 3, p. 91]). This proves the proposition.

Example 11.9. The (even-dimensional) cyclic polytopes ([17, §4.7]) are examples of
neighbourly polytopes. For any d and any v>d+1, there exists a unique cyclic polytope
C(d, v) of dimension d with v vertices. Let us take d=4. Then C(4, 5) is the 4-simplex,
while C(4, 6) is dual to the product of two triangles. Using the Dehn–Sommerville
equations ([17, Chapter 9]), it is easy to check that C(4, 7) has 28 faces of dimension 2,
and that C(4, 8) has 40 such faces. Comparing these numbers with the number of 2-faces
of the 6-simplex and of the 7-simplex, this means that in C(4, 7) there exist 7 subsets I
such that P ∗

I is not contractible but homotopic to a circle, and in C(4, 8) there exist
16 such subsets. Using the homology formula of Remark 10.2, Proposition 11.8 and
Lemma 0.11, we easily get the following table:

v 5 6 7 8

X S9 S5×S5 #(7)S5×S6 #(16)S5×S7 #(15)S6×S6

In the first three cases, the table gives the diffeomorphism type of X; in the third
case, this follows from the fact that the same example can be obtained from Example 0.5
(take n=k=7 and use Lemma 1.3). On the contrary, it guarantees only the cohomology
ring of X in the last case. Notice that this last case can be obtained neither from
Theorem 6.3, nor from Example 0.5.

This leads to the following conjecture.

Conjecture. If P is dual neighbourly, then X is actually the connected sum of sphere
products (if not a sphere).

Remark 11.10. One difficult step in proving the conjecture is to prove that if P is
dual neighbourly, then X has the homotopy type of a connected sum of sphere products.
Related to this is the following more general question.

Question. Let X and X ′ be two links. Assume that they have isomorphic cohomol-
ogy rings. Are they homotopy equivalent?

We will go back to this question in Part III.
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To finish with this part, we have to answer Question A′′. Indeed, a link may not
only have torsion in (co)homology, but arbitrary torsion.

Theorem 11.11. (Torsion theorem) The (co)homology groups of a 2-connected link
may have arbitrary amount of torsion. More precisely, let K be any finite simplicial com-
plex. Let N be the number of vertices of K. Then, there exists a 2-connected link X such
that Hi+N+1(X,Z) contains H̃i(K,Z) as a direct summand (that is Hi+N+1(X,Z)=
H̃i(K,Z)⊕... ) for all 06i6dimK.

This is a very surprising result (at least for the authors), since the links are transverse
intersections of quadrics with very special properties.(2)

Proof. Let K be a finite simplicial complex. Let {1, ..., l} be the vertex set of K.
Consider the (l−1)-simplex and let its set of facets be {1, ..., l}. For every simplex
I=(i1, ..., ip) of maximal dimension of K, cut off the face of the (l−1)-simplex numbered
{1, ..., l}\I by a generic hyperplane. We thus obtain a simple convex polytope P . Notice
that its number of facets n is the sum of l plus the number f of facets of K. Set
F={1, ..., l, l+1, ..., l+f}. Finally, consider the associated link X.

The crucial remark is stated in Theorem 11.12 below. It describes an explicit real-
ization of an arbitrary finite simplicial complex as a maximal subcomplex of a simplicial
convex polytope. Since it has its own interest, we state it separately.

Theorem 11.11 then follows from Theorem 11.12 by application of Remark 10.2.

Theorem 11.12. Let K be an arbitrary finite simplicial complex with vertex set
{1, ..., l}. Let P be the simple polytope with facet set {1, ..., l+f} defined as above. Then,
K embeds in P ∗ as the maximal subcomplex P ∗

{1,...,l}.

Proof. The complex K embeds naturally in the (l−1)-simplex, but not as the maxi-
mal subcomplex with vertex set {1, ..., l}. Now, cutting off the face of the (l−1)-simplex
numbered {1, ..., l}\I by a generic hyperplane is equivalent, through the duality of poly-
topes, to perform a barycentric subdivision on the face I of its dual. Hence P ∗ is the
simplicial polytope obtained from the (l−1)-simplex ∆ by performing a barycentric sub-
division of all the faces of ∆\K. We thus obtain a simplicial polytope P ∗ such that K
is the maximal simplicial subcomplex of P ∗ with vertex set {1, ..., l}.

The proof of Theorem 11.11 is constructive. Here is an example.

Example 11.13. (Compare with [21]) Consider the minimal triangulation of the pro-
jective plane P2(R) illustrated in Figure 19.

(2) On the other hand, this should not be a surprise to readers working on moment-angle complexes.
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Figure 19.

The simplices of maximal dimensions are

{(356), (456), (246), (235), (145), (125), (134), (234), (126), (136)}.

Consider the 5-simplex and number its facets {1, ..., 6}. Cut off the faces of this
simplex numbered

{(123), (124), (135), (146), (156), (236), (245), (256), (345), (346)}

by generic hyperplanes. We thus obtain a simple 5-polytope with 16 facets giving rise
to a 2-connected link X of dimension 21. Set F={1, ..., 16}. The complex P ∗

{1,...,6} is
homotopic to the projective plane by Theorem 11.12. Then, Remark 10.2 implies that

H8(X,Z)'
⊕

I⊂{1,...,16}

H̃7−|�I|(P
∗
I ,Z)' H̃1(P ∗

{1,...,6},Z)⊕...' H̃1(P2(R),Z)⊕...'Z2⊕... .

Therefore, not all the homology groups of X are free.

Notice that, due to Corollary 11.1, the dimension of this counterexample is sharp.
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Part III. Applications to compact complex manifolds

12. LV-M manifolds and links

We recall very briefly the construction of the LV-M manifolds (see [30] and [31] for more
details; this is a generalization of the construction presented in [27]). Let m>0 and
n>2m be two integers. We identify Cm and R2m via the map

i: (x1+iy1, ..., xm+iym)∈Cm 7−! (x1, ..., xm, y1, ..., ym)∈R2m,

where the i’s inside the parentheses stand for the imaginary unit. Let Λ=(Λ1, ...,Λn) be
a set of n vectors of Cm such that

A=(A1, ..., An) = (i(Λ1), ..., i(Λn))

satisfies the Siegel condition and the weak hyperbolicity condition, that is such that A
is admissible (see Definition 0.2 and Lemma 0.3). Consider the holomorphic foliation F
of the projective space Pn−1 given by the following action

(T, [z])∈Cm×Pn−1 7−!
[
z1e

〈Λ1,T 〉, ..., zne
〈Λn,T 〉

]
∈Pn−1, (11)

where the brackets denote the homogeneous coordinates in Pn−1 and where 〈 · , · 〉 is the
inner product of Cn. Define

V = {[z]∈Pn−1 : 0∈H((Ai)i∈Iz )}, (12)

where Iz was defined in (1). We notice that the set Iz is independent of the choice of the
representant z of the class [z]. Finally, define

X̃A = {[z]∈Pn−1 :
∑n
i=1Ai|zi|2 =0}, (13)

which is a smooth manifold, due to the weak hyperbolicity condition (see Lemma 0.3).
Then, the following facts are proven in [30] (see also [31]):
(i) the restriction of F to V is a regular foliation of dimension m;
(ii) the compact smooth submanifold X̃A is a global transversal to F restricted to V ,

that is, it cuts every leaf transversally in a unique point.
Therefore, X̃A can be identified with the quotient space of F restricted to V , and

thus inherits a complex structure. We will denote by NΛ the compact complex manifold
obtained in this way. A complex manifoldNΛ for some Λ will be called an LV-M manifold.
Notice that it has (complex) dimension n−m−1.

The main complex properties of these manifolds are investigated in [30], whereas
a particularly nice connection with projective toric varieties is explained in [31]. We
will not need these results, but we will use the following lemma. Recall that Λi (or
equivalently Ai) is an indispensable point if 0 is not in the convex hull of (Aj)j 6=i.
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Lemma 12.1. Let NΛ be an LV-M manifold. Assume that Λ has at least m+1
indispensable points. Then the complex structure of NΛ is affine (and even linear), that
is, it may be defined by a holomorphic atlas such that the changes of charts are affine
(and even linear) automorphisms of Cn−m−1.

Proof. Assume that Λ1, ...,Λm+1 are indispensable. By (12), this implies that

[z]∈V =⇒ z1 ... zm+1 6=0.

By construction of NΛ, we just need to construct a foliated atlas of (V,F) with linear
transverse changes of charts. Look at the map Φz:Cm×Cn−m−1!V defined by

(T,w) Φz7−−!
[
z1e

〈Λ1,T 〉, ..., zm+1e
〈Λm+1,T 〉, w1e

〈Λm+2,T 〉, ..., wn−m−1e
〈Λn,T 〉

]
,

for a fixed z=(z1, ..., zm+1)∈(C∗)m+1. Using the weak hyperbolicity condition, it can be
shown that the set (Λ2−Λ1, ...,Λm+1−Λ1) has rank m. As a consequence,

Φz(T,w) =Φz′(T ′, w′) ⇐⇒ w′i =wie
〈Λm+1+i,T−T ′〉 for all 1 6 i6n−m−1,

and T−T ′ belongs to a fixed lattice in Cm. Therefore, Φz is a local homeomorphism
and can be used as a local foliated chart for every point (z1, ..., zm+1, w). Since the
first m+1 homogeneous coordinates of every point in V are non-zero, V can be covered
by such charts. Moreover, the previous computation proves that the changes of charts
are uniquely determined by translations along a lattice T 7!T+a, so that the transverse
changes of charts have the form

w∈Cn−m−1 7−!
(
w1e

〈Λm+2,a〉, ..., wn−m−1e
〈Λn,a〉

)
,

that is, they are linear.

To avoid particular cases in the sequel, we add the special case m=0: then, there is
no action at all, and N is by definition the projective space Pn−1.

Let A∈A. The quotient space of XA by the diagonal action (4) can be identified
with X̃A. In particular, if XA is not simply-connected, then, by Lemma 0.10, it is
equivariantly diffeomorphic to XB×S1 for some B∈A. It is then easy to check that XB

and X̃A are equivariantly diffeomorphic. On the contrary, when A∈A0, the manifold X̃A

is not a link: for example, think about the case where XA is diffeomorphic to S3×S3

(Example 0.4). Notice that, by (13), every LV-M manifold is diffeomorphic to some X̃A,
that is to the quotient of an odd-dimensional link by the diagonal action (4); and every
LV-M manifold with at least one indispensable point is diffeomorphic to a link.

The following theorem is the motivation for the previous study of the links.
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Theorem 12.2. Let A∈A with dimensions p and n.
(i) If p is odd, that is if XA is even-dimensional, then XA admits a complex struc-

ture as an LV-M manifold.
(ii) If p is even, that is if XA is odd-dimensional, then X̃A and XA×S1 admit a

complex structure as LV-M manifolds.

Proof. Assume that XA is odd-dimensional, i.e. that p is even, say p=2m. Let Λ
denote the preimage i−1(A). Then, by construction, X̃A and NΛ are diffeomorphic.
Therefore, X̃A inherits a complex structure.

If p is odd, define the following matrix with n+1 columns and p+1 rows:

B=
(

A 0
1 ... 1 −1

)
.

This is obviously an admissible configuration and, by Lemma 0.10, the links XB and
XA×S1 are equivariantly diffeomorphic. As noticed before, this means that X̃B is dif-
feomorphic to XA and we are in the previous case.

Finally, if p is even, consider the following matrix with dimensions n+2 and p+2:

C =

 A 0 0
1 ... 1 −1 0
1 ... 1 0 −1

 .

ThenXC is equivariantly diffeomorphic toXA×S1×S1, and X̃C ∼eqXA×S1 has a complex
structure as an LV-M manifold by what precedes.

Corollary 12.3. The product of two links admits a complex structure as an LV-M
manifold as soon as it has even dimension.

Proof. Use Example 0.7 and Theorem 12.2 (i).

Remark 12.4. Let A∈A and let A′∈A be obtained from A by a homotopy which
does not break the weak hyperbolicity condition. Then, by Corollary 4.5, the links XA

and XA′ are equivariantly diffeomorphic. Nevertheless, the complex structures of XA

and XA′ (if p is odd), or of X̃A and X̃A′ (if p is even), given by Theorem 12.2, are in
general not the same; in this way a link XA, or its diagonal quotient X̃A, comes equipped
not only with a complex structure, but with a deformation space of complex structures
(see [30], where this space is studied).
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13. Holomorphic wall-crossing

Let NΛ be an LV-M manifold. Identifying Cm with R2m and Λ with an element of A via
the map i, we may talk of a wall W of Λ (see Definition 5.2) and of a configuration Λ′

obtained from Λ by crossing the wall W (Definition 5.3). Up to equivariant diffeomor-
phism, NΛ′ is obtained from NΛ by performing an equivariant smooth surgery described
in Theorem 5.4. Indeed, to be more precise, XA′ is obtained from XA by an elementary
surgery along some submanifold XF , and, since everything is equivariant, it is straight-
forward to check that X̃A′ is obtained from X̃A by an equivariant surgery of the same
type along X̃F . Nevertheless, NΛ and NΛ′ being complex manifolds, it is natural to
ask which holomorphic transformation occurs when performing the wall-crossing. This
is what we call the holomorphic wall-crossing problem.

Remark 13.1. Let B∈Cm be such that Λ′=Λ+B, that is Λ′=(Λ1+B, ...,Λn+B).
By Definition 5.3, the configuration Λ+tB is admissible for every t∈[0, 1], except for one
special value t0. It follows from (11) that NΛ and NΛ+tB are biholomorphic for every
06t<t0, and that NΛ′ and NΛ+tB are biholomorphic for every t0<t61 (compare with
the general case of Remark 12.4). Therefore, the complex structures of the induced links
are fixed before and after crossing the wall.

In this section, we will give a complete solution to the holomorphic wall-crossing
problem by showing that, in this case, the smooth equivariant surgeries occuring dur-
ing the wall-crossing are in fact holomorphic surgeries. Let us first recall the following
definition.

Definition 13.2. (See [34, p. 15]) Let M be a complex manifold and let S be a
holomorphic submanifold of M . Let W be a neighborhood of S. Finally, let S∗⊂W ∗

be a pair (holomorphic submanifold, complex manifold) such that W ∗ is a neighborhood
of S∗. Given a biholomorphism f :W \S!W ∗\S∗, we may construct the well-defined
complex manifold M∗ by cutting S and pasting S∗ by use of f . We say that M∗ is
obtained from M by a holomorphic surgery along (S,W, S∗,W ∗, f).

Notice that if f ′ is smoothly isotopic to f , the result of performing a holomorphic
surgery along (S, f ′) is diffeomorphic but in general not biholomorphic to M∗.

Theorem 13.3. (Holomorphic wall-crossing theorem) Let NΛ be an LV-M manifold.
Let NΛ′ be an LV-M manifold obtained from NΛ by crossing a wall. Then NΛ′ is obtained
from NΛ by a holomorphic surgery.

Proof. Let X̃F be the smooth submanifold of NΛ along which the elementary surgery
occurs. Using §1 and the standard identification of R2m and Cm, we have that X̃F is
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the quotient space of the foliation F restricted to

V ∩{z : zi =0 for i∈ I},

for the subset I⊂{1, ..., n} numbering F (see (7)). Therefore, it is a holomorphic subman-
ifold of NΛ corresponding to the admissible subconfiguration (Λi)i∈Ic . By abuse of nota-
tion, we still call this complex manifold X̃F . On the other hand, we have V ′=V and the
submanifold X̃ ′

F ′ is the quotient space of F ′ restricted to the same V ∩{z :zi=0 for i∈I}.
Define W=V \{z :zi=0 for i∈I}. As Λ and Λ′ differ only by a translation factor, the
open complex manifolds W/F=NΛ\X̃F and W/F ′=NΛ′ \X̃ ′

F ′ are biholomorphic. More
precisely, the identity map of W descends to a biholomorphism f between these two com-
plex manifolds. As a consequence, NΛ′ is obtained from NΛ by a holomorphic surgery
along (X̃F , NΛ, X̃

′
F ′ , NΛ′ , f).

Remark 13.4. The holomorphic surgery described in the proof of Theorem 13.3 is
a very particular case of Definition 13.2, since the neighborhood W of the submanifold
X̃F is in fact the whole manifold NΛ. It is thus a global holomorphic transformation,
whereas Definition 13.2 has a local flavour. It is perhaps better to say thatNΛ andNΛ′ are
holomorphic compactifications of the same open complex manifold NΛ\X̃F=NΛ′ \X̃ ′

F ′ .

14. Topology of LV-M manifolds

As an application of Theorem 11.11, we have the following result.

Theorem 14.1. The (co)homology groups of a 2-connected LV-M manifold may
have arbitrary amount of torsion. More precisely, let K be any finite simplicial complex.
Let q be its number of vertices. Then, there exists a 2-connected LV-M manifold NΛ such
that Hi+q+1(NΛ,Z) contains H̃i(K,Z) as a direct summand (that is, Hi+q+1(NΛ,Z)=
H̃i(K,Z)⊕... ) for all 06i6dimK.

Proof. Apply Theorem 11.11 to obtain a 2-connected link X with this property. If X
is even-dimensional, then we may conclude by Theorem 12.2. Otherwise, we perform a
surgery of type (1, n) on X×S1. By Proposition 11.2, the resulting 2-connected link X ′

still has the property. But now X ′ is even-dimensional and we may conclude again by
Theorem 12.2.

Remark 14.2. As a consequence of a result of [37], every finitely presented group
may appear as the fundamental group of a compact complex non-Kählerian 3-fold. The
previous theorem is a sort of (much) weaker version of this result for higher dimensional
homology groups. Notice that it is not known if a similar statement is true for Kähler
manifolds.
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Before drawing an interesting consequence of this theorem, we want to go back to
the question asked in Remark 11.10. The “holomorphic” version of this question is the
following.

Question. Let N and N ′ be two LV-M manifolds. Assume that they have isomorphic
cohomology rings. Are they homotopically equivalent?

In the case of two simply-connected Kähler manifolds, there is a partial positive
answer to this question: two simply-connected Kähler manifolds with isomorphic coho-
mology rings have indeed the same rational homotopy type (see [13]). Nevertheless, the
answer is negative in general. Counterexamples exist even in dimension 2. Consider the
open manifold

W = {(w1, w2, w3)∈C3\{(0, 0, 0)} :w2
1+w3

2+w5
3 =0}.

The quotient space of W by the group generated by a well-chosen weighted homothety
is a compact complex surface which is diffeomorphic to Σ×S1, where Σ is the Poincaré
sphere (see [8] and [32]). Thinking about the Hopf surfaces, this means that both S3×S1

and Σ×S1 admit complex structures. Now, they have isomorphic cohomology rings but
different homotopy type (since the Poincaré sphere is not simply-connected).

It seems plausible that the techniques of [13] can be applied to the non-Kähler class
of LV-M manifolds and would bring a partial positive answer to the question.(3)

Going back to Theorem 14.1, we easily obtain the following surprising corollary.

Corollary 14.3. The (co)homology groups of a 2-connected compact complex affine
manifold may have arbitrary amount of torsion (in the sense of Theorem 14.1).

Proof. By use of Theorem 14.1 and Lemma 12.1, it is enough to prove that, given
an LV-M manifold NΛ of dimensions (m,n), there exists an LV-M manifold NΛ′ of di-
mensions (m′, n′) such that

(i) the manifold NΛ′ is diffeomorphic to a product of NΛ with circles;
(ii) the number of indispensable points of NΛ′ is m′+1.
Let Ll be the matrix with n+2l columns

Λ1 ... Λn 0 0 0 0 ... 0 0
−1−i ... −1−i 1 i 0 0 ... 0 0
−1−i ... −1−i 0 0 1 i ... 0 0

... ... ... ... ... ... ... ... ...

−1−i ... −1−i 0 0 0 0 ... 1 i


,

(3) In [14], a preprint which appeared on the arXiv after this work was submitted, it is proven
that the LV-M manifolds are not formal (see also [35]), so that in fact the techniques of [13] cannot be
applied. However, this does not allow one to answer the previous question.
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where i stands for the imaginary unit. It is straightforward to check that Ll is admissible,
i.e. it has 2l indispensable points, and that NLl

is diffeomorphic to NΛ×(S1)2l (see
Example 0.7). The equality m′+1=2l is achieved for l=m+1.

This means that it could be quite complicated to classify affine complex manifolds or
complex manifolds having a holomorphic affine connection up to diffeomorphism. Notice
that an affine compact Kähler manifold is covered by a compact complex torus (see [22]).

15. Concluding remarks

We finish this article with some open problems which we find of some interest.
First, the relationship between links and moment-angle complexes coming from sim-

ple polytopes leads naturally to the problem of knowing to what extent the results of
this paper can be generalized to other classes of moment-angle complexes. The general
construction in [9] starts with any finite simplicial complex K. If K is dual to a simple
convex polytope P , then the corresponding moment-angle complex ZK is exactly ZP . If
the complex is a triangulation of a sphere, it is proven that ZK still admits a structure of
a smooth manifold. Now, this class is much larger than that of the links, since there exist
a lot of sphere triangulations which are not polytopal. Is there a nice realization of these
manifolds as intersection of real quadrics? Does Corollary 4.7 remain valid? Is there a
generalization of Theorem 4.8? (Recall that Buchstaber and Panov defined a homeo-
morphic version of equivariant surgeries in the general case.) Finally, do these manifolds
admit a complex structure? It should be noted that the class of LV-M manifolds was
generalized in [6], using a more combinatorial construction. Does this generalization
provide complex structures on non-polytopal moment-angle manifolds?

Secondly, the proof of Corollary 14.3 suggests one to ask the following question.

Question. Let M be a compact complex manifold. Under which assumptions on M
does the smooth manifold M×(S1)2N admit a complex affine structure for N sufficiently
large? Is it enough to assume that the total real Pontryagin class of M is equal to 1?

We emphasize that the searched complex affine structure on M×(S1)2N does not
need to respect M , that is we do not require that M may be embedded as a holomorphic
submanifold of M×(S1)2N endowed with its affine complex structure.

Every compact Riemann surface satisfies the conditions of the second part of the
question. Since only the elliptic curves admit affine complex structures, the question is
interesting and non-trivial even in dimension 1. Every compact complex surface which
is spin and has signature zero satisfies the conditions of the second part of the question.
Other examples are given by complex manifolds with stably trivial smooth tangent bundle
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(i.e. such that the Whitney sum of the smooth tangent bundle with a trivial bundle of
sufficiently large rank is trivial). Indeed, this is exactly the case for a link XA endowed
with a structure of an LV-M manifold, since it is smoothly embedded in Cn with trivial
normal bundle, so that

TXA⊕Ep+1 =TR2n,

where TM denotes the tangent bundle of a smooth manifold M , and where Ek denotes
the trivial bundle over XA with fibre Rk.

Notice that the condition on the characteristic classes is necessary. For, ifM×(S1)2N

admits a complex affine structure, then the total real Chern class of this structure
is 1 (see [22]), which implies the same property for the total real Pontryagin class of
M×(S1)2N . But this class coincide with the total real Pontryagin class of M . In par-
ticular, for any n>1 and N>0, the smooth manifold Pn×(S1)2N does not admit any
complex affine structure by computation of its Pontryagin classes (see [33, Example 15.6]).
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