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Abstract
The development of novel antiretroviral treatments has led to a significant turning point in the fight against HIV. Although
therapy leads to virologic suppression and prolonged life expectancies, HIV-associated neurocognitive disorder (HAND) remains
prevalent. While various hypotheses have been proposed to explain this phenomenon, a growing body of literature explores the
neurotoxic effects of antiretroviral therapy. Research to date brings into question the potential role of such medications in
neurocognitive and neuropsychiatric impairment seen in HIV-positive patients. This review highlights recent findings and
controversies in cellular, molecular, and clinical neurotoxicity of antiretrovirals. It explores the pathogenesis of such toxicity
and relates it to clinical manifestations in each medication class. The concept of accelerated aging in persons living with HIV
(PLWH) as well as potential treatments for HAND are also discussed. Ultimately, this article hopes to educate clinicians and basic
scientists about the neurotoxic effects of antiretrovirals and spur future scientific investigation into this important topic.
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Introduction

The HIV epidemic led to the development of a myriad of
antiretroviral therapies. First discovered was azidothymidine
(AZT), and after patterns of AZT-resistance emerged, other
nucleoside reverse transcriptase inhibitors (NRTIs) were de-
veloped. Next came non-nucleoside reverse transcriptase in-
hibitors (NNRTIs) and protease inhibitors (PIs). Later came
integrase inhibitors, fusion inhibitors, and entry inhibitors. A
pharmacokinetic enhancer class (cobicistat) was recently in-
troduced designed to improve the pharmacokinetics and in-
crease effectiveness of HIV medications. Today, a regimen
combining two NRTIs and one integrase inhibitor is typically

recommended, though a multitude of other options exist based
on individual circumstances such as genotypic resistance, pri-
or exposure and demonstrated medication intolerance (Saag
et al. 2018). With the advent of combination antiretroviral
therapy (cART; sometimes referred to as highly active antire-
troviral therapy or HAART), a once fatal disease has become
indefinitely controllable, leading to drastically increased life
expectancies in affected patients (Marcus et al. 2016). Since a
definitive cure is not yet available, patients require life-long
therapy, and with such a prolonged exposure to medications
(in addition to long-term toxicity from the first-generation
medications), a careful consideration of neurological adverse
effects is warranted.

In particular, antiretroviral use has been associated with a
range of neurological toxicity, from peripheral neuropathy to
neuropsychiatric and neurocognitive deficits in the central
nervous system (CNS) (Meeker et al. 2014). However, it is
often difficult to distinguish certain adverse effects caused by
HIV medications from direct and indirect deleterious effects
from the virus itself (Treisman and Soudry 2016). One such
instance is HIV-associated neurocognitive disorder (HAND),
a term which describes several disorders based on severity of
neurocognitive impairment. They are asymptomatic
neurocognitive impairment (ANI), mild neurocognitive disor-
der (MND), and HIV-associated dementia (HAD), a progres-
sive and life-threatening form of dementia (Antinori et al.
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2007; Letendre 2011). To date, no specific treatment exists for
HAND nor is a diagnostic biomarker available (Saylor et al.
2016). Although other non-neurological conditions have de-
clined in prevalence due to the efficacy of cART, HAND
remains common in the cART era. It is estimated that about
one third of HIV+ patients have a HAND diagnosis and over
half have neuropsychological impairment (Heaton et al. 2010;
Sacktor et al. 2016). Interestingly, the compositional preva-
lence of its subgroups has changed in the cART era. HAD
has become increasingly uncommon (2%) while rates of
ANI and MND actually increased (Heaton et al. 2011;
Singer and Nemanim 2017). This suggests that either cART
is unable to adequately suppress HIV in the nervous system or
that cART use is contributing to the development of HAND
(Etherton et al. 2015).

In this article, we evaluate each of the classes of HIV ther-
apy, reviewing the latest concepts and controversies regarding
the clinical manifestations and cellular mechanisms of ART-
induced CNS neurotoxicity. Where applicable, we include
antiretroviral routes of administration in in vivo studies (intra-
peritoneal, CSF, etc.), and mention when medications used in
studies are clinically relevant. However, note that estimating
clinically-relevant concentrations is difficult, given lack of
data on antiretroviral CSF:plasma area under the curve, pre-
dictions that parenchymal concentrations can reach greater
levels than in the CSF, and the fact that HIV disrupts the blood
brain barrier (BBB), allowing for increased antiretroviral CSF
accessibility (Decloedt et al. 2015; Jensen et al. 2015). We
discuss how CNS penetrance by ART may affect neurotoxic-
ity, explore the concept of accelerated aging in PLWH (per-
sons living with HIV), and highlight recent advancements in
the possible treatment of HAND. Peripheral nervous system
toxicity is beyond the scope of this review and only briefly
covered.

Nucleoside Reverse Transcriptase Inhibitors
(NRTIs)

NRTIs, the first class of HIVmedications discovered, work by
blocking reverse transcriptase, thereby preventing the virus
from generating functional cDNA via premature DNA strand
termination (Shah et al. 2016). In ascending order of approval
date, the NRTIs are azidothymidine/zidovudine (AZT), didan-
osine (ddI), stavudine (d4T), lamivudine (3TC), abacavir
(ABC), tenofovir disoproxil fumarate (TDF), emtricitabine
(FTC), and tenofovir alafenamide fumarate (TAF). Older
NRTIs such as AZT were found to have more off-target ef-
fects, limiting their clinical use relative to newer agents
(Schweinsburg et al. 2005).

Although potent inhibitors of reverse transcriptase, NRTIs
also cause off-target inhibition of mitochondrial polymerase
γ, the enzyme responsible for normal mitochondrial DNA

replication (Kakuda 2000). Through this inhibition, the prima-
ry mechanism of NRTI toxicity appears to be mitochondrial
toxicity, energy depletion, and oxidative stress, which have
been demonstrated both in vitro and in vivo (Lewis et al.
2003; Kohler and Lewis 2007; Nooka and Ghorpade 2018).
The extent of mitochondrial polymerase γ inhibition among
NRTIs is ddI > d4T > > 3TC > TDF ≥ FTC ≥ AZT ≥ ABC
(Bienstock and Copeland 2004). This type of mitochondrial
toxicity is considerably cell/tissue-dependent. Stavudine im-
pairs mitochondria in axons and Schwann cells causing pe-
ripheral neuropathy, AZT impairs mitochondria in skeletal
muscles and causes myopathy, and others can cause
lipoatrophy and lactic acidosis (White 2001; Abers et al.
2014; Margolis et al. 2014). Mitochondrial DNA (mtDNA)
depletion fromNRTI exposure is also persistent, dependent on
cumulative exposure, and can cause long-term effects even
after discontinuation (Poirier et al. 2003; Underwood et al.
2015). TAF, a prodrug of tenofovir and a component of the
vast majority of modern regimens, produces greater intracel-
lular concentrations than TDF, which might lead to worse
neurotoxicity.

It was previously thought that NRTI neurotoxicity was
limited to the periphery, but emerging evidence has called
this into question. From a clinical standpoint, AZT is
known to cause insomnia, nausea, and severe headaches,
and in high doses can cause seizures (Richman et al.
1987; Saracchini et al. 1989). Other NRTIs have been
linked to retinal atrophy, and dose-dependent psychiatric
disturbances (Turjanski and Lloyd 2005; Gabrielian et al.
2013). One study used magnetic resonance spectroscopy
in patients as a proxy for brain mitochondrial integrity
and their results suggested that didanosine and/or stavu-
d i n e may cau s e dep l e t ed b r a i n m i t o chond r i a
(Schweinsburg et al. 2005). On a cellular level too,
NRTIs have been implicated in CNS toxicity. Abacavir
induced endoplasmic reticulum (ER) stress in human as-
trocytes at therapeutic doses, activating all three unfolded
protein response (UPR) pathways in vitro (Nooka and
Ghorpade 2017 ; Nooka and Ghorpade 2018 ) .
Oligodendrocyte dysfunction (both in vitro and in vivo
with intravenous administration) seen with other ART
drugs (such as ritonavir and lopinavir) was not observed
in NRTIs (Jensen et al. 2015). In mice, long-term intra-
peritoneal NRTI administration at clinically relevant con-
centrations led to mtDNA deletion and mitochondrial tox-
icity in cortical neurons (Zhang et al. 2014; Hung et al.
2017). Additionally, TDF has been associated with in-
creased risk of developing chronic kidney disease
(Scherzer and Shlipak 2015) (presumably through mito-
chondrial nephrotoxicity (Rodriguez-Nóvoa et al. 2010))
which, in itself, is known to cause cognitive decline
(Etgen et al. 2012). Overall, given the link between mito-
chondrial dysfunction and cognitive impairment (Finsterer
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2012), researchers have suggested that although no direct
clinical association has been found, NRTI-related mito-
chondrial toxicity may directly or indirectly contribute to
the development of HAND (Hung et al. 2017).

Non-nucleoside Reverse Transcriptase
Inhibitors (NNRTI)

NNRTIs include, in order of approval, nevirapine, delavirdine,
efavirenz, etravirine, rilpivirine and doravirine. Unlike NRTIs,
these drugs do not resemble nucleotides/nucleosides and act
on reverse transcriptase noncompetitively to impair cDNA
synthesis. Although this class is generally better tolerated than
NRTIs, resistant HIV strains became problematic, necessitat-
ing that NNRTIs be used in combination with other
antiretrovirals (hence cART) (Margolis et al. 2014). As a class,
the most common adverse event is rash, though individual
drugs in this class have their own specific side effect profiles
(Drake 2000).

Of the NNRTIs, the most infamous for CNS toxicity is
efavirenz, which in the past was also one of the most com-
monly prescribed cART components due to its efficacy and
favorable pharmacokinetics (Shah et al. 2016). Efavirenz has
been associated with both neurological (dizziness, insomnia,
vivid dreams, headache, and impaired concentration) and psy-
chiatric (paranoia, hallucinations, anxiety, mania, and depres-
sion) adverse effects (Apostolova et al. 2015). These adverse
effects occur in upwards of half of patients taking efavirenz
and although they typically resolve after several weeks, some
can be more persistent (Arendt et al. 2007). The adverse effect
most classically associated with efavirenz is vivid dreams. An
ambulatory electroencephalogram (EEG) study found that pa-
tients taking efavirenz (in a dose-dependent manner) had lon-
ger sleep latencies and shorter duration of rapid eye movement
(REM) sleep, which was theorized to result in more intense
REM periods (i.e. vivid dreams) (Gallego et al. 2004). This
lack of sleep efficacy (which typically persists for over
3 months of therapy) also would explain the daytime fatigue
and somnolence experienced by patients on the medication
(Moyle et al. 2006). Psychiatric symptoms caused by
efavirenz exposure can be even more disabling for certain
patients. The population of PLWH already have higher rates
of psychiatric disorders than the general population (with
nearly half of PLWH screening positive) (Bing et al. 2001).
Clinicians therefore need to carefully screen and monitor their
patients when prescribing efavirenz, especially since it may
cause increased rates of suicidality (Mollan et al. 2014), al-
though this remains controversial (Kenedi and Goforth 2011).
However, when mental illness contraindicates this drug, using
alternative regimens which have less convenient dosing
schedules could lead to decreased ART adherence (Kenedi
and Goforth 2011).

The mechanisms responsible for efavirenz neurotoxicity
(or more relevantly, its main metabolite, 8-hydroxy-efavirenz,
a more potent neurotoxin than the parent drug) are currently
not well elucidated (Apostolova et al. 2015; Grilo et al. 2017).
Recently, there has been considerable scientific interest in un-
derstanding how pharmacogenetics impacts its CNS side ef-
fects. Research suggests that, similar to NRTIs, the toxicity of
efavirenz is mediated by oxidative stress and consequent mi-
tochondrial dysfunction (in addition to elevating intracellular
pro-inflammatory factors) (Shah et al. 2016; Ciavatta et al.
2017). Furthermore, efavirenz is consistently found to bemore
neurotoxic than other ART drugs tested, consistent with its
clinical side effect profile. In one experiment of four
antiretrovirals in primary rat neurons, efavirenz was the only
one to cause ER stress and mitochondrial toxicity at clinically-
relevant concentrations (Blas-García et al. 2014). In an in vitro
study, efavirenz elicited a dose-dependent (encompassing the
range of clinical concentrations) impairment in striatal nerve
terminal mitochondrial respiration, leading to depleted ATP
levels at the synapse (Stauch et al. 2017). In a recent in vitro
and ex vivo study, efavirenz was the only NNRTI (and more
potently than ART drugs in other classes) that demonstrated
detrimental effects on neuronal viability, morphology, respira-
tion, and excitability when exposed to rat cortical neurons at
target plasma concentrations (Ciavatta et al. 2017).

Given the well-characterized CNS side effect profile of
efavirenz and the persistence of HAND in the cART era, re-
searchers were interested in its effect on cognitive function. As
expected, efavirenz is associated with long-term cognitive im-
pairment. In a recent large cohort study, patients taking long-
term efavirenz had significant neurocognitive impairment in
many domains compared to those taking lopinavir-ritonavir.
This effect was less among HCV seropositive individuals (Ma
et al. 2016). Another large study observed efavirenz use was
associated with HAND, with higher education acting as a
protective factor (Ciccarelli et al. 2011). Switching patients
from efavirenz to an alternative regimen did not lead to im-
provement in neurocognitive measures after 10 weeks, sug-
gesting that efavirenz likely leads to persistent neurocognitive
dysfunction (Payne, Chadwick et al. 2017).

Other drugs in the NNRTI class in addition to efavirenz are
known to have CNS toxicity, with nevirapine being more tox-
ic than the remaining NNRTIs (Shah et al. 2016). However,
compared to efavirenz, these drugs’ CNS side effects are less
studied, less frequent, and less significant in clinical practice
(Abers et al. 2014).

Protease Inhibitors (PI)

In the HIV life cycle, once mRNA is translated into protein
precursors, a virally-encoded protease is required to cleave
these into mature proteins (Flexner 1998; Brik and Wong
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2003). The protease enzyme as a therapeutic target led to the
development of protease inhibitors, including saquinavir mes-
ylate, ritonavir, indinavir, nelfinavir mesylate, lopinavir,
atazanavir sulfate, fosamprenavir calcium, tipranavir, and
darunavir. Of note, after discovering the cytochrome P450-
inhibiting effects of ritonavir, it is now used mostly as a phar-
macokinetic booster, allowing for less-frequent dosing of PI-
containing regimens (Lv et al. 2015). In comparison to
NNRTI-containing regimens, PI-based regimens were found
to have lower rates of resistance (Riddler et al. 2008), though
the use of PIs has been limited by their drug-drug interactions
and off-target toxicities. In particular, they can cause
lipodystrophy syndrome (due to homology between protease
enzyme and two lipid metabolism enzymes) and insulin resis-
tance (which in some cases, can lead to the development of
diabetes), in addition to cardiovascular disease (Carr 2000;
Brown et al. 2005; Lv et al. 2015). Newer PIs, such as
darunavir, have been designed specifically to minimize these
off-target effects (Pokorná et al. 2009).

Results from cell and animal studies of PI neurotoxicity have
been mixed. In one in vitro study, darunavir did not cause mito-
chondrial toxicity in rat neurons at clinically relevant concentra-
tions, unlike efavirenz (Blas-García et al. 2014). Lopinavir and to
a lesser extent, amprenavir, caused disruption of astrocytic glu-
tamate homeostasis in vitro and were associated with gliosis and
neurobehavioral deficits in mice exposed to oral doses
(Vivithanaporn et al. 2016). Lopinavir, but not darunavir, was
neurotoxic to primary rat neuroglial cultures. This was thought
to be mediated by oxidative stress (Stern et al. 2018). In another
in vitro study, darunavir caused reactive oxygen species (ROS)
production in astrocytes although not at clinically relevant con-
centrations (Latronico et al. 2018). Intravenous ritonavir and
lopinavir (at doses based on human plasma and CSF levels)
had detrimental effects on mice oligodendrocyte maturation
in vivo which was reversed with drug cessation (Jensen et al.
2015). Investigators studying the effects of ART on neurotrans-
mitter release found that indinavir reduced in vitro synaptic ace-
tylcholine transmission at plasmalevel concentrations, although
at supraphysiological concentrations.

PIs also appear to cause certain CNS effects on a clinical
level. Ritonavir was shown to be more neurotoxic than other
PIs and can cause nausea, dizziness, and circumoral paresthe-
sia (Markowitz et al. 1995). However, using ritonavir as an
pharmacokinetic enhancer allows for lower doses, which re-
duces the frequency of adverse events (Hill et al. 2009).
Several studies (Bacellar et al. 1994; Pettersen et al. 2006)
have found increased risk of peripheral neuropathy with PI
use (although a recent analysis found the independent risk
from PIs is small (Ellis et al. 2008)). Based on results from
aforementioned cell and animal studies, it is feasible that PI
use could contribute to neurocognitive dysfunction. HAND
has been associated with myelin disruption (with reduced
levels of myelin basic protein) and structural white matter

deterioration on imaging (ritonavir and lopinavir have oligo-
dendrocyte toxicity (Jensen et al. 2015)). Furthermore, since
neurotransmitter system dysfunction could help explain ART
CNS toxicity, the authors who found impaired synaptic ace-
tylcholine transmission with indinavir suggested that this may
contribute to cognitive dysfunction (Ekins et al. 2017). An
autopsy study found that PI exposure increased the risk of
cerebral small vessel disease, which was, in turn, associated
with neurocognitive impairment (Soontornniyomkij et al.
2014). A large study did not find differences in neurocognitive
performance with PI use, in comparison to triple therapy, after
several years (Arenas-Pinto et al. 2016). Another study found
that CSF viral escape (when HIV is detectable in CSF but not
in the serum) is associated with PI use, but did not lead to
worse neurocognitive performance (Pérez-Valero et al.
2019). PI use is associated with hyperbilirubinemia, but this
was not shown to affect neurocognitive function (Barber et al.
2016). Despite the link between PIs and certain neurologic
adverse effects, there is little, if any, clinical or preclinical
evidence of a link between their use and HAND.

Integrase Inhibitors

Integrase is an HIV-encoded protein necessary for integra-
tion of viral cDNA into host DNA and after 12 years of
development, the first agent in the integrase inhibitor
class, raltegravir, was introduced in 2007 (Pommier
et al. 2005), followed by dolutegravir, elvitegravir, and
most recently approved, bictegravir in 2018. In general,
these drugs are some of the most efficacious among
antiretrovirals, have low rates of resistance, and are rela-
tively tolerable in the clinical setting (Patel 2018). The
most common side effects of this class include diarrhea,
nausea, and headache (del Mar Gutierrez et al. 2014). In
clinical trials, raltegravir had lower rates of CNS adverse
events than efavirenz and similar rates of severe adverse
effects relative to placebo (Lennox et al. 2010; Steigbigel
et al. 2010; Nguyen et al. 2011). Subsequent studies
found higher rates of myalgia in patients taking raltegravir
although this was rarely a cause for discontinuation (Lee
et al. 2013). A large study in Botswana found evidence
for neural tube defects associated with dolutegravir use
during pregnancy (Zash et al. 2017; Zash et al. 2018).
The most common neuropsychiatric effect reported with
raltegravir and dolutegravir is insomnia which was revers-
ible after drug cessation and can be improved by
switching to morning dosing schedules (Gray and Young
2009; Capetti et al. 2017). Other neuropsychiatric effects
linked to integrase inhibitors include depression and anx-
iety and have been found to have higher rates than initial-
ly suggested by clinical trials (Harris et al. 2008; Curtis
et al. 2014; Fettiplace et al. 2017; Harris 2018). A large
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clinical study found that the discontinuation rates due to
adverse events for raltegravir, dolutegravir, and
elvitegravir were 3.6, 3.8, and 5.0% (Penafiel et al.
2017). Dolutegravir had higher rates of discontinuation
due to neuropsychiatric effects compared to raltegravir
and elvitegravir. These results were consistent with find-
ings from a previous cohort study which additionally
showed an almost three-fold increase in discontinuation
rate in female patients and older patients (Hoffmann
et al. 2017). When bictegravir was introduced, trials
found rates of neuropsychiatric effects comparable to
dolutegravir, suggesting a class effect of integrase inhibi-
tors (Gallant et al. 2017; Sax et al. 2017).

Although reports of neuropsychiatric effects from integrase
inhibitors suggest neurotoxicity, underlying mechanisms for
such toxicity are not fully understood. In one in vitro study,
raltegravir did not cause mitochondrial toxicity in rat neurons
at clinically-relevant concentrations, unlike efavirenz (Blas-
García et al. 2014). In another, raltegravir caused ROS pro-
duction in astrocytes, although not at clinically relevant con-
centrations (Latronico et al. 2018). However, an in vitro study
found that elvitegravir but not raltegravir nor dolutegravir was
neurotoxic to primary rat neuroglial cultures at clinically rel-
evant plasma level concentrations. This effect was thought to
be mediated by the integrated stress response (ISR) rather than
strictly oxidative stress (Stern et al. 2018). The ISR is normal-
ly an adaptive response to cellular stressors which restores
homeostasis but with prolonged exposure to certain insults,
this response activates pathways that lead to cell death
(Pakos-Zebrucka et al. 2016).

A clinical study of dolutegravir-containing ART found
high dolutegravir concentrations in the CSF, suggesting a pos-
sible mechanism by which concentration-dependent neuro-
toxicity causes CNS adverse effects (Letendre et al. 2014).
Other than neuropsychiatric effects, integrase inhibitors do
not appear to cause significant neurocognitive impairment.
On the contrary, dolutegravir is being studied as a possible
treatment for HAND, as discussed later.

Entry Inhibitors

To infect a host cell, the HIV envelope proteins gp41 and
gp120 bind to host CD4 and then to a co-receptor, typically
CCR5 or CXCR4. In 2003, enfuvirtide, a gp41 inhibitor was
approved and later maraviroc, a CCR5 antagonist, gained
FDA approval. Very recently, ibalizumab, a monoclonal anti-
body against CD4, gained approval in 2018. These drugs pre-
vent viral entry into host cells. Of note, HIV-2 uses different
chemokine receptors and therefore this class is only effective
with HIV-1 (Saraiya et al. 2018).

Enfuvirtide use in ART is limited by its requirement of
twice-daily parenteral administration due to poor solubility

and rapid removal from circulation (although research shows
that conjugating it with polyethylene glycol may help with
this problem) (Cheng et al. 2016). However, it remains an
effective therapy for drug-resistant HIV when other regimens
have been exhausted (Lalezari et al. 2003). Enfuvirtide was
initially thought to have increased rates of peripheral neurop-
athy (Fung and Guo 2004), yet subsequent studies found no
clear evidence of this link (Cherry et al. 2008). To date, there
have been no significant reports of CNS toxicity in
enfuvirtide, and in general, it has a favorable safety profile
with adverse events mostly limited to injection-site reactions
(LaBonte et al. 2003; Oldfield et al. 2005; Manfredi and
Sabbatani 2006; Treisman and Soudry 2016).

Maraviroc is a slowly reversible, noncompetitive CCR5 an-
tagonist. Similar to enfuvirtide, maraviroc has favorable tolera-
bility, a limited resistance pattern, and is a potent agent in viro-
logic failure cases (Emmelkamp and Rockstroh 2007;
Emmelkamp and Rockstroh 2008). In clinical trials, maraviroc
monotherapy achieved rapid viral load reduction in a matter of
days (Fatkenheuer et al. 2005), and themost common side effects
were similar between maraviroc and placebo (Yost et al. 2009).
However, maraviroc is only effective in patients with CCR5-
tropic HIV-1, a feature that limits its use and requires tropism
testing prior to use (Emmelkamp and Rockstroh 2008).
Unfortunately, all trials on CXCR4 inhibitors have failed due to
peripheral toxicity (Shah et al. 2016). In in vitro toxicology stud-
ies, maraviroc was the least toxic to astrocytes compared to a
number of ART drugs from other classes, with a TC50 10,000-
fold higher than CSF concentrations (Latronico et al. 2018). One
in vitro study showed that it may cause pro-inflammatory acti-
vation of microglia cells in rats (Lisi et al. 2012). However, a
subsequent study provided evidence against this claim, showing
that by blocking CCR5 in the CNS, maraviroc could ameliorate
neuropathic pain (when administered intrathecally in rats) by
restoring the balance of pro- and antinociceptive factors in astro-
cytes andmicroglia (Piotrowska et al. 2016). There have been no
substantial clinical reports of neurocognitive impairment with
maraviroc. Rather, maraviroc and a similar investigational drug,
cenicriviroc, are being studied as potential treatment options for
HAND, as discussed below.

Ibalizumab, the most recent entry inhibitor, has advantages
over others in the class. Its weekly dosing could improve adher-
ence and its unique mechanism of action could prevent cross-
resistance of HIV. Although data on neurotoxicity screening in
this medication is sparse, it has also been fairly well-tolerated
with no significant neurological effects reported (Jacobson
et al. 2009; Bruno and Jacobson 2010).

Pharmacokinetic Enhancers

When ritonavir was initially approved at a 600 mg twice daily
dose, toxicity (nausea, vomiting, diarrhea, etc.) led to
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discontinuation in up to a third of patients (Rublein et al. 1999;
d'Arminio et al. 2000). Additionally, it led to many drug-drug
interactions due to its cytochrome P450 inhibiting effects (pre-
dominantly CYP3A4 but also CYP2D6) (Kumar et al. 1996;
Rathbun and Rossi 2002). In humans, ritonavir increased the
area under the curve (AUC) of CYP3A-metabolized drugs by
up to 20-fold in humans and increased AUC of CYP2D6-
metabolized drugs by 145% (Hsu et al. 1998). Given that most
PIs undergo metabolism through the CYP3A pathway, re-
searchers quickly realized the potential of using ritonavir to
“boost” levels of these drugs. Trials comparing ritonavir to
dual protease inhibition with ritonavir and another drug led
to substantial improvements in viral suppression and allowed
ritonavir to be used at less toxic doses (Yu and Daar 2000;
Michelet et al. 2001). With this discovery, the pharmacokinet-
ic enhancer class was incidentally created. Adding an enhanc-
er to an ART regimen allows for reduced pill burden, simpler
regimens, and improved adherence, which all lead to in-
creased antiviral efficacy (Xu and Desai 2009). Ritonavir it-
self does not appear to have serious CNS effects although by
boosting levels of other drugs, it theoretically has the potential
to indirectly propagate such neurotoxic effects of
antiretrovirals (Danner et al. 1995; Carr and Cooper 2000).

Cobicistat is a CYP3A inhibitor designed to enhance the
activity of antiretrovirals similar to ritonavir, but holds several
unique advantages such as an easier dosing schedule and a
more favorable side effect profile (Xu et al. 2010; Larson
et al. 2014; Marzolini et al. 2016; Tseng et al. 2017). Similar
to ritonavir, it is possible that it could promote potential neu-
rotoxic effects of the medications it enhances. Although no
evidence of neurotoxicity has been reported, it has not been
extensively tested relative to other HIV medications.

Blood Brain Barrier (BBB)

HIV invasion of the CNS occurs early in disease progres-
sion, with the virus being detected in CSF as early as
8 days after initial exposure, leading to activation of
pro-inflammatory responses in the CSF and brain paren-
chyma (Valcour et al. 2012). In around 5–20% of HIV+
patients on ART, HIV is detected in the CSF despite elim-
ination in the plasma below detectable limits, a term
called CSF viral escape (Canestri et al. 2010; Joseph
et al. 2016). This entity can be divided into three
categories- asymptomatic, neuro-symptomatic (clinical
and progressive CNS disease), and secondary (increased
CSF virus resulting from a secondary infection) (Ferretti
et al. 2015). The CSF reservoir created by this escape is
associated with elevated CSF levels of neopterin (a mark-
er of macrophage activation), and is thought to increase
the risk of HAND (Chen et al. 2014; Gisslén and Hunt
2019). It was theorized that if antiretroviral drugs could

penetrate the BBB, this HIV reservoir could be effectively
reduced, leading to improvement in CNS insult. To esti-
mate exposure to the CNS by antiretrovirals, researchers
developed the CNS penetration effectiveness (CPE) scale.
Each drug is ranked from one (lowest penetrance) to four
(highest penetrance) based on factors such as CSF con-
centration and drug pharmacology (Letendre et al. 2010).
The CPE scale’s negative correlation with viral RNA in
the CNS (the higher the score, the lower the viral load)
was validated in several studies (Letendre et al. 2008;
Marra et al. 2009). CPE correlation with neurocognitive
performance is less clear (Table 1).

Several studies found that regimens with higher CPE
were associated with better neurocognitive function in ad-
dition to lower CNS levels of TNF-α, a prominent inflam-
matory marker (Cysique et al. 2011; Smurzynski et al.
2011; Tiraboschi et al. 2015; Carvalhal et al. 2016). In
contrast, other studies found either no effect or the oppo-
site effect with higher CPE scores correlating with lower
neurocognitive performance or higher risk of dementia
(Marra et al. 2009; Cross et al. 2013; Caniglia et al.
2014). Some found that ART intensification with high-
CPE medications did not a translate to reduced intrathecal
immunoactivation (Yilmaz et al. 2010; Dahl et al. 2011).
Furthermore, one study found that interrupting ART is
associated with improved neurocognitive performance
(Robertson et al. 2010). Participants in this study took
older, more toxic regimens, so the relevance of this find-
ing for newer ART is unclear. Another study found that
placing patients on higher CPE regimens only improved
neurocognition in patients who were impaired at baseline
(Tozzi et al. 2009). Authors of these studies suggest that
although highly-penetrating regimens are effective at re-
ducing the CNS viral reservoir, they also have higher
potential to exert neurotoxicity. Future investigation is
required to determine which regimens can optimally sup-
press HIV in the CNS while simultaneously minimizing
neurotoxicity, in the hopes of stabilizing or improving
neurocognition.

Aging and Antiretrovirals

With the advent of ART, HIV+ patients have been living
longer, and while this is a step in the right direction, the
graying of this population brings with it certain clinical
ramifications (Kirk and Goetz 2009). For instance, age-
related multimorbidity in PLWH (including metabolic
syndrome and vascular disease) may also contribute to
neurotoxicity, with the resulting polypharmacy increasing
the risk of drug-drug interactions that could cause CNS
injury (Alonso-Villaverde et al. 2010; Tarr and Telenti
2010). Although the underlying mechanisms remain
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largely unclear, HIV and aging appear to independently
contribute to neurocognitive decline and HAND develop-
ment (Cañizares et al. 2014; Seider et al. 2014; Coban
et al. 2017). This suggests that HIV patients experience
premature and accelerated aging, although some

researchers question whether the root cause is HIV itself
or rather the deleterious effects from therapy (Smith et al.
2012).

Aworking hypothesis to explain the accelerated aging phe-
nomenon is that age-related CNS injury resulting from

Table 1 Antiretroviral medications by class, including year of approval and CNS penetration effectiveness (CPE) score, a measurement of how well
medications penetrate the CNS

Abbreviation Approval year CPE score

NRTI

azidothymidine/zidovudine AZT/ZDV 1987 4

didanosine ddI 1991 2

stavudine d4T 1994 2

lamivudine 3TC 1995 2

abacavir ABC 1998 3

tenofovir disoproxil fumarate TDF 2001 1

emtricitabine FTC 2003 3

tenofovir alafenamide TAF 2015 1

NNRTI

nevirapine NVP 1996 4

delavirdine DLV 1997 3

efavirenz EFV 1998 3

etravirine ETR 2008 2

rilpivirine RPV 2011 –

doravirine DOR 2018 –

Protease inhibitors

saquinavir mesylate SQV 1995 1

ritonavir* RTV 1996 1

indinavir IDV 1996 3

nelfinavir mesylate NFV 1997 1

lopinavir LPV 2000 3

atazanavir sulfate ATV 2003 2

fosamprenavir calcium FOS 2003 2

tipranavir TPV 2005 1

darunavir DRV 2006 3

Fusion inhibitors

enfuvirtide T-20 2003 1

CCR5 co-receptor antagonists

maraviroc MVC 2007 3

Integrase inhibitors

raltegravir RAL 2007 3

dolutegravir DTG 2013 –

elvitegravir EVG 2014 –

bictegravir BIC 2018 –

Post-attachment inhibitors

ibalizumab IBA 2018 –

Pharmacokinetic enhancers

ritonavir* RTV 1996 1

cobicistat COBI 2014 –

*Ritonavir is used clinically as a PK enhancer rather than an antiretroviral
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toxicity of ART and concomitant drugs enhance vulnerability
to CNS complications, even in those with virologic control.
Aging-related changes in drug distribution, binding proteins,
metabolism and elimination can lead to greater ART drug
exposure in the elderly (Mangoni and Jackson 2004; Klotz
2009; Winston et al. 2013). Aging causes structural and func-
tional changes in the BBB, such as decreased endothelial cell
counts, choroid plexus epithelium flattening and calcification,
as well as thickening of basement and arachnoid membranes.
These changes result in increased BBB permeability which
may likely affect ART CNS pharmacokinetics (Erdő et al.
2017). PI distribution in the CNS seems to be particularly
affected by age, with studies showing that elderly HIV+ pa-
tients have decreased clearance of lopinavir and darunavir,
longer half-life of indinavir, and higher total exposure of
atazanavir (Zhou, Havlir et al. 2000; Crawford et al. 2010;
Avihingsanon et al. 2013; Winston et al. 2013; Calza et al.
2017).

Current research is investigating ways to mitigate acceler-
ated cognitive aging in PLWH. One trial (NCT02936401) is
currently assessing the use of Mindfulness Based Stress
Reduction as a method to improve function in patients older
than 60 with HAND. Another (NCT03483740) is testing cog-
nitive remediation group therapy in a similar cohort of older
individuals with HAND. A comprehensive review of potential
HAND treatment is discussed below.

Experimental HAND Treatment

Given the persistence of HAND in the cART era and the
possible contribution from antiretroviral neurotoxicity, a
number of previous and current trials have investigated
possible therapeutic options to combat HAND (Cross
and Kolson 2017). These include drugs already approved
for treating other neurodegenerative diseases (selegiline
and memantine) (Schifitto et al. 2007a, 2007b), drugs
predominantly used for nonneurologic conditions
(m inocyc l i ne , f l u conazo l e , i n t r ana s a l i n su l i n
[NCT03277222], and statins [NCT01600170]) (Rezaie-
Majd et al. 2002; Sacktor et al. 2011; Gerena et al.
2012; Nakasujja et al. 2013; Meulendyke et al. 2014;
Sacktor et al. 2018), and antioxidants (Coenzyme Q10,
heme oxygenase-1, and dimethyl fumarate) (Cross et al.
2011; Louboutin and Strayer 2018; Velichkovska et al.
2018).

Although some ART drugs are associated with neurotoxic-
ity, several ongoing trials are testing treatment intensification
approach for cogni t ive improvement . One t r ia l
(NCT01448486) investigated the effects of raltegravir inten-
sification on neurocognitive performance but was unfortu-
nately stopped prematurely due to insufficient patient recruit-
ment. Maraviroc intensification in humans caused an

improvement in neuropsychiatric performance, hypothesized
to result from reducing the HIV burden in monocytes, leading
to two current clinical trials (NCT02159027 and
NCT02519777) (Burdo et al. 2013; Ndhlovu et al. 2014).
Cenicriviroc, when given to HAND patients, led to decreased
inflammatory monocyte activation and subtle improvement in
cognitive performance (D'Antoni et al. 2018).

Apart from a few mild successes in trials listed above, we
still have not discovered a consistent and efficacious treatment
or prevention of HAND. The explanation for this lack of ef-
fectiveness is multifactorial. Inherently, clinical trials fre-
quently fail despite promising preclinical results, due to inad-
equate patient recruitment/retention, fundamental differences
between animal models and human subjects, unforeseen ad-
verse effects, etc. More specifically, the underlying epidemi-
ology, natural progression, and pathogenesis behind HAND
still eludes us. Does persistent HAND despite virologic sup-
pression result from incomplete antiretroviral CSF penetra-
tion, direct or indirect neurotoxicity from antiretrovirals, or
something else entirely? Without a clear pathological target,
developing specific treatment modalities becomes exception-
ally challenging. This is why the impetus for the aforemen-
tioned clinical trials came either frommedications that showed
neuroprotection in other diseases or simply came from inci-
dental findings in the clinic. As such, it is unlikely that these
therapies could actually reverse ART-induced specific neuro-
toxicities rather than simply imparting general neuroprotec-
tion. In order to properly confront this disease entity, more
research to provide answers to preclinical questions about
HAND is essential.

Conclusions

Antiretroviral neurotoxicity is a growing body of research,
with novel molecular, cellular, and animal studies uncovering
the pathogenesis of such toxicity and relating it to clinical
manifestations seen in patients. Each medication has a unique
side effect profile, but understanding their long-term effects is
becoming increasingly relevant, as the development of new
therapy extends the average lifespan of PLWH. New chal-
lenges are being uncovered with this aging population, given
that they experience longer cumulative ART exposure, have
more comorbidities, and develop changes in their pharmaco-
kinetic responses to such drugs (Erdő et al. 2017). Although
HIV exerts neurotoxic effects on the brain and can use the
CNS as a reservoir for replication, the fact that regimens with
higher CPE do not necessarily lead to cognitive improvement
has led researchers to hypothesize that ART itself may, in part,
contribute to neurotoxicity (Caniglia et al. 2014). This theory
is supported by the persistence of HAND in the cART era
(Heaton et al. 2010).
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Despite the potential for ART-induced neurotoxicity,
viral load reduction in the plasma and CNS should remain
the principal objective of antiretroviral treatment. Moving
forward, we advocate for the following: 1) clinicians
maintain a high level of suspicion of HAND (even when
sufficiently treated), 2) scientists continue to unravel the
epidemiology and pathogenesis of ART-induced neuro-
toxicity with rigorous studies, and 3) researchers develop
and assess novel treatment options for such neurotoxicity,
including HAND.
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