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Abstract
Extracellular vesicles (EVs) are nanosized, membrane-bound vesicles released from eukaryotic and prokaryotic cells that can
transport cargo containing DNA, RNA, lipids and proteins, between cells as a means of intercellular communication. Although
EVs were initially considered to be cellular debris deprived of any essential biological functions, emerging literature highlights the
critical roles of EVs in the context of intercellular signaling, maintenance of tissue homeostasis, modulation of immune responses,
inflammation, cancer progression, angiogenesis, and coagulation under both physiological and pathological states. Based on the
ability of EVs to shuttle proteins, lipids, carbohydrates, mRNAs, long non-coding RNAs (lncRNAs), microRNAs, chromosomal
DNA, and mitochondrial DNA into target cells, the presence and content of EVs in biofluids have been exploited for biomarker
research in the context of diagnosis, prognosis and treatment strategies. Additionally, owing to the characteristics of EVs such as
stability in circulation, biocompatibility as well as low immunogenicity and toxicity, these vesicles have become attractive systems
for the delivery of therapeutics. More recently, EVs are increasingly being exploited as conduits for delivery of therapeutics for
anticancer strategies, immunomodulation, targeted drug delivery, tissue regeneration, and vaccination. In this review, we highlight
and discuss the multiple strategies that are employed for the use of EVs as delivery vehicles for therapeutic agents, including the
potential advantages and challenges involved.
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Introduction

Extracellular vesicles (EVs) are nanosized, membrane-bound
vesicles released from eukaryotic and prokaryotic cells that
can transport cargo including DNA, RNA, lipids, and proteins,
between cells as a form of intercellular communication (Fevrier
and Raposo 2004; Mathivanan et al. 2010; Raposo and

Stoorvogel 2013; Colombo et al. 2014; Zaborowski et al.
2015). EVs have been found in various body fluids such as
amniotic fluid, ascites, bile, blood, breast milk, cerebrospinal
fluid, saliva, semen, and urine. In the literature, EVis the general
name for various cell-derived vesicles, such as microparticles,
microvesicles, nanovesicles, nanoparticles, calcifying matrix
vesicles, argosomes, tolerosomes, oncosomes, prostasomes,
secretomes, exosomes, exovesicles, exosome-like vesicles, and
ectosomes (Colombo et al. 2014; Thery et al. 2018). Though the
nomenclature of EVs is still a matter of debate (Gould and
Raposo 2013; Thery et al. 2018; Chiang and Chen 2019), the
terms ectosomes, microparticles, andmicrovesicles mainly refer
to vesicles ranging in size from 150 to 1000 nm that are released
from the cell membrane by the budding process. The term
“exosome” was initially used to tag vesicles whose size ranged
from 40 to 1000 nmwith a 5’-nucleotidase activity (Trams et al.
1981). In the late 1980s, however, the use of this term was
restricted to only include vesicles of the endosomal origin rang-
ing in size from 30 to 100 nm (Johnstone et al. 1987; Fevrier and
Raposo 2004).
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Almost three decades ago EVs were considered to be cel-
lular debris that was deprived of any essential biological func-
tion(s). However, emerging literature strongly implicates crit-
ical roles of EVs in the context of intercellular signaling,
maintenance of tissue homeostasis, modulation of immune
responses, inflammation, cancer progression, angiogenesis,
and coagulation, under both physiological and pathological
states (Hu et al. 2012; Andaloussi et al. 2013; Yanez-Mo
et al. 2015; Di Rocco et al. 2016; Iraci et al. 2016; Kalra
et al. 2016; Hu et al. 2017a, b). Based on the ability of EVs
to shuttle proteins, lipids, carbohydrates, mRNAs, long non-
coding RNAs (lncRNAs), microRNAs, chromosomal DNA,
and mitochondrial DNA into target cells, the presence and
content of EVs in biofluids has been exploited for biomarker
research in the context of diagnosis, prognosis and treatment
strategies (Walker et al. 1988; Valadi et al. 2007; Lin et al.
2015; Ratajczak and Ratajczak 2016; Wang et al. 2017a;
Samanta et al. 2018; Abdel-Haq 2019). EVs are comprised
of lipid bilayer membranes coated with various ligands,
which, in turn, can interact with receptors on target cells,
thereby making these vesicles promising candidates for
targeted delivery (Agrahari et al. 2019). Due to their increased
stability in circulation and biocompatibility, as well as low
immunogenicity and toxicity, EVs are attractive systems for
transport and delivery of therapeutics. EVs are increasingly
being exploited as conduits for delivery of therapeutics for
anticancer strategies, immunomodulation, targeted drug deliv-
ery, tissue regeneration, and vaccination (Gyorgy et al. 2015;
Ohno et al. 2016). In this review, we highlight and discuss the
various strategies employed for the use of EVs as delivery
vehicles, including the potential advantages and challenges
involved.

Basic and Therapeutic Implications of EVs

EVs can be secreted in vitro by a variety of cells including
adipocytes, fibroblasts, glial cells, hematopoietic cells (B
cells, T cells, dendritic cells, mast cells, and platelets), intesti-
nal epithelial cells, neuronal cells, Schwann cells and numer-
ous tumor cell lines (Yanez-Mo et al. 2015; Hu et al. 2016a).
Additionally, in vivo EVs exist in various biological fluids
including blood, urine, saliva, epididymal fluid, amniotic liq-
uid, malignant and pleural effusions or ascites, bronchoalveo-
lar lavage fluid, synovial fluid and breast milk. Within these
fluid compartments, EVs serve as mediators for cellular com-
munication and cargo transportation, thereby regulating vari-
ous physiological processes (Schorey and Bhatnagar 2008;
Kooijmans et al. 2012; Vlassov et al. 2012; Hu et al. 2013;
Antimisiaris et al. 2018; Bunggulawa et al. 2018; Yang et al.
2018a). EVs bear combinations of ligands that engage differ-
ent cell surface receptors simultaneuosly and can communi-
cate without the need of direct cell-to-cell contact. For

example, EVs can transfer MHC II / peptide complex from
antigen presenting cells to T cells and subsequently, antigen
presentation to secondary T lymphocytes, thereby facilitating
antigen-specific communication between nonadjacent APC
and Tcells (Arnold andMannie 1999). Additionaly, EVs stim-
ulated from dendritic cells in response to IL10 treatment, sup-
pressed inflammation and collagen-induced arthritis in mice,
thereby underscoring the use of EVs as a better therapeutic
approach compared with DCs for the treatment of autoim-
mune diseases such as rheumatoid arthritis (Kim et al. 2005;
Schorey and Bhatnagar 2008). In addition to the role of EVs in
antigen-specific communication, EVs released from epithelial
cell origin are known to carry antimicrobial peptides such as
cathelicidin-37 and beta-defensin 2, which during the infec-
tion by a protozoan parasite Cryptosporidium parvum, leads
to increased release of EV, thereby resulting in protection of
epithilial cells (Hu et al. 2013). Additionally, EV-cargo such as
miRNAs and lncRNAs are known to be stabilized in circula-
tion via protection of the vesicular structure, and are subse-
quently transferred to target cells to inhibit the expression of
target genes. EV-miRNAs have also been shown to trigger
malignancy by entering the tumor microenvironment. For ex-
ample, Felicetti et al., demonstrated that vesicles released from
miR-222-overexpressing cells were able to transfer miR-222-
dependent malignancy to recipient primary melanomas
(Felicetti et al. 2016). EVs are also involved in a variety of
physiological events such as the cross talk among glial cells.
As an example, EV-miR-9 released from HIV Tat protein
stimulated astrocytes can be taken up by microglia resulting
in increased migration of the latter cells (Yang et al. 2018a). A
study by Hu et al. has also demonstrated that lincRNA-Cox2
expression was increased in EVs derived from astrocytes ex-
posed to morphine, in turn, leading to impaired phagocytosis
in microglial cells (Hu et al. 2018).

During erythrocyte maturation, EV secretion serves an ex-
cretory function by which the unwanted proteins and RNA are
cleared from the cells. However, in cells that lack efficient
degradation capability or are located in close proximity to a
drainage system such as the tubules of the kidney or the gut, it
is EV release rather than lysosomal processing that is benefi-
cial for the cells (Johnstone et al. 1987; Johnstone 2006;
Vlassov et al. 2012).

The composition of the EV is primarily governed by the
physiological state of its environment as well as the type of
producer cell. While the membranes of all EVs are enriched
with cholesterol (Morelli et al. 2004; Llorente et al. 2013),
g lycosph ingo l ip ids (L lo ren te e t a l . 2013) , and
phosphatidylserine (Laulagnier et al. 2004; Morelli et al.
2004), the exact lipid profile of specific EVs tends to be sim-
ilar to, yet distinguishable from that of its cell of origin (Vidal
et al. 1989). The proteomic content of the EV is multifactorial;
some proteins are present in most EVs, including HSP70,
Alix, CD6, CD81, CD9, and major histocompatibility
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complex class II proteins (Simpson et al. 2009; Mathivanan
et al. 2012; Pleet et al. 2018). Other proteins are associated
with specific EV subsets, including receptors and other mem-
brane proteins, that confer various functions to the EV. As
with lipids and nucleic acids, the proteins incorporated into
EVs are related to, but distinct from, the overall protein pool in
the cell of origin, suggesting the existence of an intracellular
sorting mechanism that helps to determine the EV protein
content. The nucleic acid content of EVs is also variable,
including various types and quantities of DNA, ribosomal
RNA, mRNA, and non-coding RNAs such as miRNAs and
lncRNAs.

The mechanism(s) by which EVs interact with their recip-
ient cells still remain elusive. EVs are proposed to interact
primarily via the docking of the ligand on the vesicle surface
to the receptor(s) on the recipient cells. This docking elicits a
signaling response, followed by the transfer of membrane pro-
teins from the vesicle to the cell membrane, fusion of the
vesicle with the recipient cell membrane, vesicle uptake
through endocytotic processes (clathrin-coated pits, pinocyto-
sis, caveolae, macropinocytosis, and phagocytosis), and ulti-
mately extrusion through a vesicle-cell channel (de Curtis and
Meldolesi 2012; Mittelbrunn and Sanchez-Madrid 2012). The
fate of vesicular components in recipient cells could depend
on the mode of uptake, with processing through the
endosomal pathway potentially leading to degradation of EV
contents (Tian et al. 2013). Although the mechanism(s) of
cargo transfer remains to be elucidated, it is well-recognized
that endogenous EVs can exert diverse and potent effects on
recipient cells. The diversity of mechanisms by which EVs are
generated and can confer functional effects provides a plat-
form for both opportunities and challenges for developing EV-
based therapeutics.

In recent years, various novel EV functions have been elu-
cidated, with much of the diversity of the functions ascribed to
their cell of origin (Vlassov et al. 2012). For instance, EVs
have been investigated as immune response mediators with
roles specifically in antigen presentation (Thery et al. 2002,
2009). Furthermore, the role of EVs in angiogenesis, apopto-
sis, coagulation, and inflammation has now been well-
established (Janowska-Wieczorek et al. 2005; Becker et al.
2016; Todorova et al. 2017; Fu et al. 2018; Fujita et al.
2018; Deng et al. 2019; Silachev et al. 2019). Emerging liter-
ature has also demonstrated that distinctive properties of EVs
make them suitable carriers and vehicles for delivery of vari-
ous drugs and biomolecules, thereby underscoring their use in
therapeutic applications (Table 1) (Srivastava et al. 2016b, a).
EVs generated from various cell types, including but not re-
stricted to stem cells, stromal cells, progenitor cells, neuronal
cells, cancer cells, and circulating cells, have been tested for
their therpaeutic efficacy involving delivery via intraperitone-
al, intranasal, intrathecal and intravenous routes in various
in vivo model systems of disease pathogeneis. Role of

administration routes for EV drug delivery in animal models
will be further discussed in section 5 of this review.

Isolation and Characterization
of Blood-Derived EVs

EVs can be derived from various sources, including blood,
and have been shown to exhibit a change in their composition
as well as numbers, under various pathological conditions. It
has been shown that blood-derived EVs from healthy individ-
uals can be derived from endothelial cells, erythrocytes, leu-
kocytes, megakaryocytes and/or platelets. Under diseased
states however, the numbers and composition of these EVs
has been shown to be altered (Zara et al. 2019). As an exam-
ple, there are reports demonstrating increased numbers of EVs
derived from endothelial cells of patients with systemic lupus
erythematosus and cardiac failure and this was shown to pos-
itively correlate with increased risk for cardiovascular prob-
lems (Nozaki et al. 2010; Parker et al. 2014). It has also been
shown that increased platelet-specific EVs are a biological
marker for cerebral dysfunction(s) in patients with malaria
and furhter, that platelet-derived EV numbers are directly as-
sociated with coma depth and thrombocytopenia (Pankoui
Mfonkeu et al. 2010; Sierro and Grau 2019). Several excellent
review articles have described the biology and role of EVs in
various disease pathogenesis (Brites and Fernandes 2015;
Withrow et al. 2016; Zhang et al. 2016c; Gopal et al. 2017;
Huang-Doran et al. 2017; Kinoshita et al. 2017; Castro-
Marrero et al. 2018; Fujita et al. 2018; Konoshenko et al.
2018; Letsiou and Bauer 2018; Murphy et al. 2018; Yang
et al. 2018b; Aghabozorgi et al. 2019; Pegtel and Gould
2019; Watson et al. 2019; Wu et al. 2019; Zara et al. 2019;
Zhu et al. 2019), and the isolation and characterization of EVs
from various cells including blood (Aatonen et al. 2014;
Nguyen et al. 2016; Xu et al. 2016; Menck et al. 2017;
Mushahary et al. 2018; Gorgun et al. 2019; Kim et al. 2019;
Pulliam et al. 2019; Richter et al. 2019; Rossi et al. 2019;
Skalnikova et al. 2019; Weber et al. 2019).

Bioengineering of EVs

In order to boost their therapeutic potential, EVs can be
bioengineered through modifications such as the loading of
drugs or attachment of molecules to their surface. Another type
of bioengineered EVs relies on the development of artificial
exosomes, exosome-based semisynthetic vesicles, exosome-
like nanovesicles, and exosome-mimetic nanovesicles (De La
Pena et al. 2009; Bryniarski et al. 2013; Jang et al. 2013;
Forterre et al. 2014; Jeong et al. 2014; Yoon et al. 2015).
These twomain categories of EV bioengineeringwill be referred
to in the following sections as engineered EVs and EVmimetics.
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Table 1 Origin and therapeutic application of EVs

Producer cell type Therapeutic applications Reference

Mesenchymal Stromal Cells

Protect against hyperoxia-induced lung and heart disease associated
with bronchopulmonary dysplasia

(Braun et al. 2018)

Ameliorate cognitive decline by rescuing synaptic dysfunction and
regulating inflammatory responses in APP/PS1 mice

(Cui et al. 2018)

Minimize the adverse effects of status epilepticus in the hippocampus and
prevent status epilepticus-induced cognitive and memory impairments

(Long et al. 2017)

Ameliorate autistic-like behaviors of BTBR mice (Perets et al. 2018)

Reduce spinal cord injury induced A1 astrocytes via inhibition of
nuclear translocation of NFκB p65 and exert neuroprotective effects
following spinal cord injury

(Wang et al. 2018a)

Improve myocardial repair following acute myocardial injury (Wang et al. 2018b)

Ameliorate myocardial inflammation in dilated cardiomyopathy (Sun et al. 2018)

Protect liver injury in an experimental model of autoimmune hepatitis – the
mechanism could be related to exosomal miR-223 regulation of NLRP3 and caspase-1

(Chen et al. 2018)

Facilitate targeted tumor cell ablation via magnetically induced hyperthermia (Altanerova et al. 2017)

Protect against cisplatin-induced renal oxidative stress and apoptosis in vivo and in vitro (Zhou et al. 2013)

Exert an anti-inflammatory role on T and B lymphocytes independently of
MSCs priming in inflammatory arthritis

(Cosenza et al. 2018)

Facilitate cutaneous wound healing via optimization of the characteristics
of fibroblasts

(Hu et al. 2016b)

Stimulate rejuvenation of human skin via promoting collagen I and elastin
synthesis in the skin

(Kim et al. 2017a)

Urine-Derived Stem Cells

Prevent kidney injury from type I diabetes (Jiang et al. 2016)

Embryonic Stem Cells

As a preventive vaccine for humans who are at high risk for the
development of cancer

(Yaddanapudi et al. 2019)

Alleviate osteoarthritis through balancing synthesis and degradation of
cartilage extracellular matrix

(Wang et al. 2017c)

Promote endogenous repair mechanisms and enhance cardiac function
following myocardial infarction

(Khan et al. 2015)

Adipose-Derived Stem Cells

Enhance bone regeneration, at least partially through osteoinductive effects (Li et al. 2018b)

Induced Pluripotent Stem Cells

Attenuate intracellular adhesion molecule-1 expression and neutrophil
adhesion in pulmonary microvascular endothelial cells

(Ju et al. 2017)

Promote the migration of fibroblasts in vitro and in vivo, suggesting a role in
the treatment of diabetic ulcers

(Kobayashi et al. 2018)

Cardiac Progenitor Cells

Stimulate angiogenesis (Kobayashi et al. 2018)

Recovers heart function in a rat model of ischemia-reperfusion injury (Ciullo et al. 2019)

Induce angiogenesis via enrichment of pro-angiogenic exosomal miRNAs (Namazi et al. 2018)

Cortical Neurons

Act as potential biomarkers for neurodegenerative disorders involving
endolysosomal dysfunction

(Miranda et al. 2018)

Circulating Cells

Dendritic cells Increase endothelial inflammation and atherosclerosis via membrane
TNF-α mediated NF-κB pathway

(Gao et al. 2016)

Red blood cells Induce proinflammatory cytokines, boosting T-cell responses in vitro (Danesh et al. 2014)

Macrophages Attenuate the growth and tube formation of endothelial cells, thereby
providing novel targets for the development of atherosclerosis therapy

(Huang et al. 2018)

Cancer Cells

K562 cells May act as an anti-tumor immune vaccine or a therapeutic tool (Li et al. 2018a)
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Engineered EVs

As mentioned previously, engineered EVs are primarily mod-
ified through the loading of drugs as well as via alteration or
attachment of molecules on their surface, to enhance delivery
efficacy of the therapeutic contents. The in vivo clearance of
unmodified EVs is very rapid following their administration.
Thus, these engineered surface modifications are meant to
extend the biodistribution, stability, and pharmacokinetic pro-
files of the EVs, thereby facilitating the proposed drug deliv-
ery. Several examples of successful engineering of EVs exist
in the literature, with the most recent examples listed in
Table 2.

EV mimetics

A possible substitute for naturally derived or purified EVs in
the development of drug delivery systems and therapeutics is
synthetically designed EV mimetics. Synthesis of EV mi-
metics permits scalable production for use in the clinical set-
ting and provides additional advantages over naturally occur-
ring EVs, in that EV mimetics are sterile and uniform in size
and content. EVmimetics, however, do not always function in
the same way as endogenous EVs due to the lack of several
additional components that are essential for the primary func-
tions of the EVs. Furthermore, the process of screening the
core component, extraction, and incorporation of the screened
core components into the liposomal complex is cumbersome
and labor intensive. Despite these limitations, several studies
have begun to evaluate the use of EVmimetics for therapeutic
applications. To date, three primary sub-types of EVmimetics
have emerged: artificial EV mimetics, physical-origin EV mi-
metics, and hybrid EV mimetics (Antimisiaris et al.
2018). Recent discussions on nanoparticles for drug de-
livery include an elegant review by DeMarino et al.
covering various aspects of nanoparticle formulation
and their applications in improving the delivery efficiency of
drugs (DeMarino et al. 2017).

Artificial EV mimetics

Artificial EVs are generated through the assembly of lipids
into a bilayer model to resemble the membranes of natural
EVs, followed by functionalizing the vesicle surface with pro-
teins or other modifications, thereby allowing the surface to
have direct contact with the receptors of the target cells. In

some cases, artificial EVs are also tagged with hydrophilic
molecules to decrease their elimination and extend their time
in circulation. One limitation of artificial EV mimetics
is that it is based on the premise that EV function does
not require all the components of natural EVs for target-
specific, efficient drug delivery. Examples of artificial
EV mimetics that have been produced for drug discov-
ery and therapeutics are listed in Table 3. It is important to note
that most of the artificial EV mimetics investigated to date are
primarily liposomes.

Physical-Origin EV Mimetics

In this category of EV-mimetics, the starting material is not
artificial, but rather is derived from other non-EV cellular
components. These includeEV mimetics derived from whole
cells (termed “cellular vesicles” or “cell-derived vesi-
cles”). Nanovesicles can be generated from whole cells
using a variety of techniques, including extrusion
through nanopores or cutting the cells with blade-lined
microchannels (Jo et al. 2014; Yoon et al. 2015). These
physical-origin EV mimetics are able to overcome some
of the limitations of other types of EVs such as the
low-yield of EVs isolation from cell media or other
sources and the lack of a true physiological cell mem-
brane in artificial EV mimetics. Cell-derived vesicles
make up the majority of the physical-origin EVs that
have been investigated to date (Table 4), demonstrating prom-
ising features that could augment the efficiencies of drug
targeting (Fuhrmann et al. 2015a).

Hybrid EV Mimetics

Other types of EV mimetics have also been described in the
literature; the most common other type of EV mimetic is a
hybrid model. Hybrid EV mimetics link EVs to another bio-
logical messaging system in order to take advantage of the
characteristics of both systems. For example, exosomes have
been fused with liposomes, thereby altering the cellular uptake
of the EV through changes in the lipid composition or
the properties of the lipids making up the liposome
(Sato et al. 2016). Another example is the fusion of
non-enveloped viruses with EVs to create virus-EV particles
(Feng et al. 2013). This natural defense of the virus allows it to
escape neutralizing antibodies using the EV-like mem-
brane as camouflage.

Table 1 (continued)

Producer cell type Therapeutic applications Reference

HER2-positive cells Induce caspase activation and death of cancer cells (Barok et al. 2018)

Glioma cells Elicit immunosuppressive effects via the miR-10a/Rora and miR-21/PTEN pathways (Guo et al. 2018)
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Methods of Preparation and Engineering
of Engineered EVs and EV-Mimetics

EV Loading

On the basis of EVs biogenesis, the methods of EV loading
have been primarily categorized as follows: (a) strategies in-
cluding site of exosomal functional entities, e.g. transmem-
brane proteins and the use of their natural tropism to co-
localize the exogenous components; (b) strategies involving
the use of molecular mechanisms for the effective incorpora-
tion of exogenous molecules into EVs for their cytosolic

delivery; and (c) strategies involving enrichment of the quan-
tity of molecules into the cellular plasma membrane to be
encapsulated by passive mechanism during multivesicular
body formation. The techniques for the production of
bioengineered EVs are generally classified by the presence
or timing of EV isolation, including: (a) pre-loading modifi-
cations, (b) post-loading modifications, and (c) creation of
artificial mimetic structures of the natural exosomes.

Pre-loading Modifications The mechanisms of pre-isolation
engineering can be grouped into the following three primary
categories: (a) use of “exosome display” to engineer the

Table 2 Examples of EVengineering

Engineered EVs Therapeutic applications Reference

Drug-loaded EVs

Paclitaxel Exert a strong anti-proliferative activity on human pancreatic
cell line CFPAC-1

(Pascucci et al. 2014)

Paclitaxel Show potent anticancer effects in a model of murine Lewis lung
carcinoma pulmonary metastases.

(Kim et al. 2016)

Paclitaxel Accumulate in cancer cells upon systemic administration, and
improve therapeutic outcomes

(Kim et al. 2018)

Antibiotics Act as a potential antimicrobial agent against intracellular infections
of methicillin-resistant Staphylococcus aureus

(Kim et al. 2018)

Anthocyanidins Enhance anti-proliferative and anti-inflammatory effects against
various cancer cells in vitro and lung cancer tumor xenograft
in nude mice in vivo

(Munagala et al. 2017)

Iron oxide Facilitate targeted tumor cell ablation via magnetically induced
hyperthermia

(Altanerova et al. 2017)

Small interfering RNA (siRNAs) Reduce the expression of HER2, a breast cancer oncogenic
receptor tyrosine kinase

(Lamichhane et al. 2016)

siRNAs Deliver siRNAs into monocytes and lymphocytes, causing gene
silencing of mitogen-activated protein kinase 1

(Wahlgren et al. 2012)

Human siRNAs targeting Huntingtin mRNA Demonstrate bilateral silencing of up to 35% of Huntingtin mRNA
in the mouse striatum

(Didiot et al. 2016)

siRNA against GRP78 Sensitize Sorafenib-resistant cancer cells to Sorafenib and
reverse the drug resistance

(Didiot et al. 2016)

Heat shock proteins Cause effective natural killer cell anti-tumor responses in vitro (Lv et al. 2012)

Anti-inflammatory drugs Selectively taken up by microglial cells, and subsequently induced
apoptosis of microglial cells – a novel therapeutic approach for
treating brain inflammatory-related diseases

(Zhuang et al. 2011)

Catalase Provide neuroprotective effects in Parkinson disease
models in vitro and in vivo

(Haney et al. 2015)

Curcumin Aid in neurovascular restoration following ischemia-reperfusion
injury in mice

(Kalani et al. 2016)

Curcumin Improve oxidative stress, tight and adherent junction proteins and
endothelial cell damage during hyperhomocysteinemia

(Kalani et al. 2014)

ADAM10 Promote angiogenesis and vascular permeability in nasal polyps (Zhang et al. 2018b)

Porphyrins Induce a stronger phototoxic effect and cellular uptake in a
cancer cell model

(Fuhrmann et al. 2015b)

Targeted EVs

Interleukin 3 receptor-targeted Target chronic myelogenous leukemia cells and inhibit cancer cell
growth both in vitro and in vivo

(Fuhrmann et al. 2015b)

Glycosphingolipid-enriched Act as potent scavengers for amyloid-β peptide (Aβ) and suggest
a role of exosomes in Aβ clearance in the CNS

(Yuyama et al. 2014)

Rabies virus glycoprotein targeted Deliver siRNA specifically to neurons, microglia, and
oligodendrocytes in the brain

(Alvarez-Erviti et al. 2011)

Nucleolin-targeted Deliver siRNA or miRNA to breast cancer cells both in vitro and in vivo (Wang et al. 2017b)

J Neuroimmune Pharmacol (2020) 15:422–442 427



expression of transmembrane proteins for co-localization to
exogenous entities; (b) use ofmolecular mechanisms to direct-
ly incorporate exogenous molecules into EVs for their cyto-
solic delivery; and (c) enriching the quantity of molecules into
the origin cell’s plasma membrane to be encapsulated by pas-
sive mechanism during multivesicular body formation
(Garcia-Manrique et al. 2018). In each of these cases, the drug
of interest is loaded directly into or onto the surface of the
parental source cells and, as a result, the EVs are released or
isolated from the source cells pre-loaded with the drug of
interest. This approach is often employed when specific oli-
gonucleotides or proteins of interest are to be loaded in the
EVs wherein the parental source cells are designed to release
the EVs that are pre-loaded with either the specific oligonu-
cleotides or the protein of interest. Pre-loading modifications
of EVs can be achieved by the treatment of parental source
cells with drugs of interest or engineering of parental source
cells (Luan et al. 2017).

In a simple example of pre-loading modification, the pa-
rental source cells are exposed to the drug of interest for a
stipulated time, resulting in the drug-exposed cells secreting
EVs that are pre-loaded with the drug of interest. While this
method is simple, it is limited by a lack of control over the
loading efficiency of the drug into the secreted EVs. Despite
the limitations, several studies have successfully used this ap-
proach. One such study exposed the murine mesenchymal
stromal cell line, SR4987 treated with paclitaxel for 24 h,
and found significant anti-proliferative effects on CFPAC-1
cells (a paclitaxel-sensitive, human pancreatic cell line) when

compared with cells that were treated with conditioned medi-
um from untreated mesenchymal stromal cells (Pascucci et al.
2014). In another study, human adipose-derivedmesenchymal
stem cells that were incubated in p5 (a peptide derived from
p35) for 24 h were able to release biologically functional p5 to
inhibit p35 cleavage, CDK5 phosphorylation and calpain-
mediated p53 upregulation in bovine aortic endothelial cells.
The p5-incubated cells protected the aortic endothelial cells
from stress like hypoxia/ischemia, oxidative stress, and in-
flammation (Fang et al. 2016).

The effect of drug exposure is not limited to cellular uptake
of the drug, as the exposure can also cause reactive changes
within the cell that are reflected in the secreted EVs. For ex-
ample, exposure of human hepatocellular carcinoma cells to
heat shock or anticancer drugs such as paclitaxel, carboplatin,
etoposide, or irinotecan hydrochloride result in the release of
EVs that are loaded with heat shock proteins on their mem-
brane surface. These heat shock protein-bearing EVs can elicit
anti-tumor effects in natural killer cells, in vitro (Lv et al.
2012). In another study, human hepatocellular carcinoma cells
were exposed to the histone deacetylase inhibitor MS-275 for
72 h, and following exposure, EVs that were isolated from the
culture medium demonstrated increased cytotoxicity of natu-
ral killer cells and increased proliferation of peripheral blood
mononuclear cells, thereby suggesting a promising therapeu-
tic strategy against hepatocellular carcinoma (Xiao et al.
2013). Recently, Yuan et al. have also demonstrated the anti-
cancer potential of EVs that were released from human tumor
necrosis factor-related apoptosis-inducing ligand (TRAIL)-

Table 3 Examples of artificial EV mimetics

EV mimetics Therapeutic applications Reference

Exosome-mimicking liposomes Provide intracellular delivery of VEGF siRNA
resulting in effective silencing

(Lu et al. 2018)

Exosome-mimicking liposomes Facilitate fluorescent and magnetic imaging tracing by
applying localized nuclear magnetic interactions of
hydrogens via superparamagnetic labels

(De La Pena et al. 2009)

Exosome-mimicking liposomes
coated with Apo2L/TRAIL

Enhance tumor apoptosis-inducing ability for anti-cancer therapies. (De Miguel et al. 2013)

Exosome-mimicking liposomes
coated with Apo2L/TRAIL

Decrease synovial hyperplasia and inflammation in a rabbit
model of antigen-induced rheumatoid arthritis

(Martinez-Lostao et al. 2010)

Lipid nanoparticles bound to TRAIL More effective at sensitizing resistant sarcoma cells than
soluble recombinant TRAIL

(Gallego-Lleyda et al. 2018)

Exosome-like nanoparticles Intestinal mucus-derived nanoparticles possess NK T-cell
inhibitory activity for therapy in autoimmune liver disease

(Deng et al. 2013)

Exosome-like nanoparticles Ginger-derived nanoparticles activate nuclear factor erythroid
2-related factor 2 and inhibit the production of reactive
oxygen species in alcohol-induced liver injury

(Zhuang et al. 2015)

Exosome-like nanoparticles Broccoli-derived nanoparticles prevent mouse colitis by activating
AMPK signaling in dendritic cells

(Deng et al. 2017)

Exosome-like nanolipids loaded
with doxorubicin

Improve the chemotherapeutic inhibition of tumor growth compared
with free drug; prevent inflammatory bowel disease and
colitis-associated cancer

(Zhang et al. 2016b, a)

Exosome-like nanoparticles loaded
with 6-shogaol

Mitigate ulcerative colitis and foster wound healing in a murine
model of ulcerative colitis.

(Zhang et al. 2018a)
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transduced mesenchymal stromal cells in 11 different
cancer cell lines, suggesting the efficacy of these EVs
in inducing selective apoptosis in various cancer cells
(Yuan et al. 2017).

Extrusion Extrusion is a process by which EVs are derived
from cells through filters of reducing pore sizes (Jang et al.
2013). The vesicles are produced artificially by breaking up
the cells and reforming the contents in the exosome mimetics.
This technique has shown to produce higher quantities of EVs
when compared to the EVs released by the cells (Jang et al.
2013; Jang and Gho 2014; Lunavat et al. 2016). Investigators
have used this method to develop the exosome mimetic
nanovesicles to effectively deliver chemotherapeutics such
as doxorubicin, 5-fluorouracil, gemcitabine, and carboplatin
and study their effects on tumor growth (Jang et al. 2013). EVs
were also harvested from the same cells to compare the effi-
cacy of EVs to that of the exosome mimetic nanovesicles.
Both of the vesicles have similar efficacy in reducing tumor
growth, however, when compared to free drug exosome mi-
metics were more efficient compared to natural EVs. Another
interesting finding was that when the exosome mimetics were
isolated from the two cell lines containing cancer drugs and
injected into an immunocompetent mouse tumor model, they
both exhibited similar anti-tumor effects with no reported sys-
temic side effects. Other investigators have shown that loading
of RNAi in the exosome-mimetic nanovesicles was therapeu-
tically active (Lunavat et al. 2016). From this study, it
was reported that both exogenous and endogenous load-
ing methods were efficient to cause a reduction in the
expression levels of c-Myc. The positive findings of the
study imply that the exosome-mimetic nanovesicles
could, in fact, be used to overcome some of the scale-up issues
currently associated with the development of EV
therapeutics.

Microfluidic Method This method has been recently used for
purification of vesicles from cell media or biological fluids
(Wang et al. 2013; Liang et al. 2017; Liu et al. 2017; Wu
et al. 2017) and whole cells (Yoon et al. 2015). This method
has been used in the preparation of liposomes and other types
of nanoparticles for drug delivery. In fact, it has been
established that one-step, the fully automated, and the scalable
microfluidic system can be used for ligand-targeted liposomes
(Ran et al. 2016; Rosenblum et al. 2018). This technique can
also be used to prepare exosome mimetics for efficient drug
delivery, however, this remains unexplored until now.

Post-Isolation Modifications

Incubation with Drugs Through a similar process, as is used
pre-isolation, drug loading of EVs can also be performed by
incubating the EVs post-isolation with the drug. Liposomes
have long been used to improve the therapeutic and pharma-
cokinetic profiles of therapeutic drugs through increased bio-
availability and retention in the target tissues, although
opsonization and rapid clearance continue to be a significant
hurdle for some of these nanoparticles (Zhang et al. 2005).

Recent reports have shown that curcumin, doxorubicin,
and paclitaxel can be passively loaded within EVs to improve
their therapeutic efficacy (Sun et al. 2010; Zhuang et al. 2011;
Yang et al. 2015). Doxorubicin- and paclitaxel-loaded EVs
have been demonstrated to cross the blood-brain barrier in
zebrafish (Yang et al. 2015), with paclitaxel-loaded EVs dem-
onstrating anti-tumorigenic effects (Pascucci et al. 2014; Rani
et al. 2015). Curcumin, on the other hand, interacts with the
lipid membrane of the EV to form a complex which, upon
administration to macrophages, exhibits better anti-
inflammatory efficacy than curcumin delivered alone (Sun
et al. 2010). Curcumin complex has also been delivered
in vivo in the lipopolysaccharide (LPS)-induced mouse model

Table 4 EV mimetics and their
therapeutic applications EV mimetics Therapeutic applications Reference

Cell-derived nanovesicles Possess similar physical character, protein,
and lipid content to exosomes and successfully
distributed to the tumor site in a mouse cancer model

(Goh et al. 2017b)

Cell-derived nanovesicles Prevent emphysema mainly via an
FGF2-dependent pathway

(Kim et al. 2017b)

Cell-derived nanovesicles
loaded with doxorubicin

Deliver doxorubicin preferentially to
cancerous cells over healthy cells

(Goh et al. 2017a)

EV-mimetic nanovesicles Promote hepatocyte proliferation and liver
regeneration by boosting the sphingosine
kinase 2 levels in recipient cells

(Wu et al. 2018)

EV-mimetic nanovesicles
loaded with doxorubicin

Reduce tumor growth without the adverse
effects observed with equipotent free drug

(Jang et al. 2013)

EV-mimetic nanovesicles
loaded with
lncRNA-H19

Neutralize the regeneration-inhibiting effect of
hyperglycemia, and could remarkably accelerate
the healing processes of chronic diabetic wounds

(Tao et al. 2018)

EV-mimetic nanovesicles
loaded with RNAi

Target c-Myc in cancer (Lunavat et al. 2016)
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of shock. This study demonstrated the stability of the
curcumin complex over a longer period, and also showed that
administration of curcumin-loaded EVs intranasally protected
mice from LPS-induced brain inflammation and autoimmune
encephalomyelitis, and delayed tumor growth (Zhuang
et al. 2011). Based on these findings, a phase I clinical
trial (NCT01294072) is currently ongoing to evaluate
the efficacy of plant exosomes to deliver curcumin drug to
colon cancer patients.

Sonication Several techniques have now been developed to
increase the efficiency of transferring drug into EVs, including
sonication. In this process, EVs are mixed with the drugs or
proteins of interest followed by sonicationwith a homogenizer
probe. The sonicator induces mechanical shear forces that
affect the EV membrane integrity and allow increased drug
entry into the EV (Kim et al. 2016). Although the membrane
integrity is affected, the sonication process does not appear to
alter other contents within the EVs significantly, and the mem-
brane integrity is restored within an hour of incubation. In
addition to being encapsulated inside the EV following
sonication, drugs could also adhere to the outer surface
of the EV membrane, resulting in two phases of drug
release. The first burst release phase results from the
release of the drug adhered to the outer membrane of the
EVs, followed by the slow release of the drug encapsulated
inside the EV (Kim et al. 2016).

Electroporation A popular method to load cargo into EVs is
electroporation, a process by which transient pores are made
into the membranes of the EVs. In this method, purified EVs
and the therapeutic cargo are mixed together in a buffer
followed by electroporation and incubation (Shtam et al.
2013; Tian et al. 2014; Lamichhane et al. 2015). After incu-
bation, the EVs are washed with PBS to remove unloaded
cargo followed by ultracentrifugation. A study by Alvarez-
Erviti et al. successfully engineered bone marrow dendritic
cells to express rabies virus glycoprotein peptide that was
fused to an EV membrane expressing Lamp2b. Intravenous
injection of these EVs tomice resulted in neuron-specific gene
silencing (Alvarez-Erviti et al. 2011). Similar studies have
been carried out with RAD51, luciferase and MAPK1
siRNAs loaded into EVs through electroporation and deliv-
ered to HeLa cells, endothelial cells, monocytes and lympho-
cytes respectively (Shtam et al. 2013; Banizs et al. 2014).
Other investigators have also loaded dsDNAs and chemother-
apeutic drugs in EVs using this technique (Tian et al. 2014;
Lamichhane et al. 2015). Overall, electroporation is one of the
most useful techniques for delivery of siRNA, DNA, chemo-
therapeutic agents as well as miRNA, mRNA and proteins
into EVs. Although this technique results in a minimal effect
on the EV components, it may produce aggregation
(Hertzberg and Wolff 1990; Weaver 1993; Hood et al. 2014;

Johnsen et al. 2016) and lacks significant scalability, that
would be necessary for large clinical investigations.

Saponin Assisted Loading Another method for EV loading is
the permeabilization of the EV membrane through the use of
saponin. Saponin is a detergent-likemolecule that interacts with
cholesterol in the EV membrane resulting in pore formation
(Jacob et al. 1991; Jamur and Oliver 2010). This technique
was used in a study assessing the use of catalase-loaded EVs
derived from macrophages for drug delivery in Parkinson’s
disease, which resulted in protection against oxidative stress
and neurodegeneration (Haney et al. 2015). The authors com-
pared different loading techniques and showed that EVs loaded
by saponin permeabilization showed no alterations in EV size
or morphology and had similar loading efficiencies and
sustained release compared to sonication and extrusion
methods. The EVs that underwent sonication appeared to have
more non-spherical morphology than those undergoing saponin
permeabilization (Haney et al. 2015). Others have shown sim-
ilar success with saponin in preparing a porphyrin-EV complex,
which was shown to be taken up by MDA cells (Fuhrmann
et al. 2015b). Although saponin permeabilization is a simple
and easy procedure for loading therapeutic proteins, it has
not yet been well-studied. Additionally, it is important to
ensure removal of the saponins after use, as prolonged expo-
sure may affect the EV morphology, uptake, and stability.

Freezing and Thawing Another simple method of instilling
drug within the EVs is through freeze and thaw cycles. In this
method, drugs are incubated with the EVs at 37°C followed
by rapid freezing at -80 °C and then thawed to room temper-
ature. This process is repeated for a minimum of 3 cycles for
drug encapsulation (Sato et al. 2016). The major drawback of
this procedure is that it can induce aggregation, and it tends to
result in lower drug loading than many of the other methods.
Of note, however, this method can be used for fusion of
exosomes with liposomes to develop exosome mimetic parti-
cles (Sato et al. 2016).

Surface Modification Method The proteins located on the sur-
face of EVs are significantly associated with the biodistribution
characteristics of the EV. Modification of the surface proteins
through gene transfer vectors can, therefore, improve the
targeting efficiency of the exosomes (Sato et al. 2016). Some
of the transmembrane proteins that are most commonly altered
include tetraspanins, Lamp-2b, glycosyl-phosphatidyl-inositol,
platelet-derived growth-factor receptors, and lactadherin
(Mentkowski et al. 2018). For example, fusing rabies viral gly-
coprotein with Lamp-2b on EVs results in specific delivery of
the EVs to neurons and glia (Alvarez-Erviti et al. 2011; Liu
et al. 2015). Similarly, immature dendritic cells have beenmod-
ified to express Lamp-2b fused with αv integrin-specific iRGD
peptide to target tumor cells (Tian et al. 2014). Several methods

J Neuroimmune Pharmacol (2020) 15:422–442430
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have been adapted for surface modification of EVs while en-
suring that functionality is retained. One such method is
copper-catalyzed azide-alkyne cycloaddition (CCAAC)
(Smyth et al. 2014; Oude Blenke et al. 2015; Wang et al.
2015) which has been used successfully for delivering chemo-
therapeutics (Lee et al. 2016). Recently, modifiedmethods have
been developed for loading and surface modification of
exosomes. Anchor peptides such as CP05 have been demon-
strated to aid in targeting, loading and purification of diverse-
origin-exosomes through binding to CD63- exosomal surface
protein. Furthermore, it was shown that exosomal anchor pep-
tide could be used as a tool for exosomal engineering, probing
gene function in vivo, as well as targeted therapeutic drug de-
livery (Gao et al. 2018).

Methods of EV Delivery

Therapeutic efficacy and toxicity of EVs are critically influ-
enced by their biodistribution (Wiklander et al. 2015). For

relevance in a clinical setting, EVs must be stable and capable
of delivering their cargo through the commonly used
(preferably non-invasive) administration routes. Here we
compare various administration routes currently used for ef-
fective EV delivery of therapeutics in vivo (Johnsen et al.
2014; Lener et al. 2015).

It has been well-established that systemic administration of
EVs results in accumulation in the liver, kidneys and spleen
resulting in the rapid removal of the EVs from blood circula-
tion. Multimodal imaging of systemically administered
luciferase-loaded EVs in vivo revealed that the half-life of
EVs was less than 30 minutes in most tissues and the EVs
were completely cleared from the animals by 6 hours (Lai
et al. 2014). Likewise, a pharmacokinetic analysis revealed
that the half-life of EVs loaded with luciferase-
lactadherin fusion protein in the circulation is approxi-
mately 2 minutes and only weakly detectable after 4
hours, indicating rapid clearance in vivo (Takahashi et al.
2013). These results are in line with previous studies demon-
strating that EVs can be detected in the liver and/or spleen, but

Table 6 Clinical trials involving EVs as therapeutic agents

Status Study title N Aims NCT #

Completed Effect of Exosomes Derived From
Red Blood Cell Units on Platelet
Function and Blood Coagulation

18 In Vitro Study of the Effect of Exosomes
Derived From Red Blood Cell Units on
Platelet Function and Blood Coagulation
in Healthy Volunteers' Blood

02594345

Recruiting MSC-Exos Promote Healing
of MHs (MSCs)

44 To assess the safety and efficacy of
mesenchymal stem cells (MSCs) and
MSC-derived exosomes (MSC-Exos) for
promoting the healing of large and refractory
macular holes (MHs).

03437759

Enrolling by invitation Effect of Plasma Derived Exosomes
on Cutaneous Wound Healing

5 Effect of autologous exosomes rich plasma
on cutaneous wound healing

02565264

Active, not recruiting Study Investigating the Ability of
Plant Exosomes to Deliver Curcumin
to Normal and Colon Cancer Tissue

7 Investigate the ability of plant exosomes to
more effectively deliver curcumin to normal
colon tissue and colon tumors

01294072

Active, not recruiting Edible Plant Exosome Ability to
Prevent Oral Mucositis Associated
with Chemoradiation Treatment
of Head and Neck Cancer

60 To investigate the ability of plant (grape)
exosomes to prevent oral mucositis
associated with chemoradiation treatment
of head and neck cancer.

01668849

Not yet recruiting Allogenic MSC-Derived Exosome in
Patients With Acute Ischemic Stroke

5 Effect of miR-124 enriched MSC derived
Exosome on the improvement of disability
of patients with acute ischemic stroke

03384433

Not yet recruiting Plant Exosomes and Patients Diagnosed
with Polycystic Ovary Syndrome (PCOS) 17

176 Investigating the Ability of Plant Exosomes
to Mitigate Insulin Resistance and Chronic
Inflammation in Patients Diagnosed with
Polycystic Ovary Syndrome

03493984

Not yet recruiting iExosomes in Treating Participants
with Metastatic Pancreas Cancer
with KrasG12D Mutation

28 Study the best dose and side effects of
MSC-derived exosomes with KrasG12D
siRNA (iExosomes) in treating participants
with pancreatic cancer with KrasG12D mutation

03608631

Unknown Effect of Microvesicles and Exosomes
Therapy on β-cell Mass in Type I
Diabetes Mellitus (T1DM)

20 Effect of Cell-Free Cord Blood-Derived
Microvesicles On reducing inflammation
and improving β-cell Mass in T1DM Patients

02138331

Unknown DC-Derived exosome in Human Sepsis 50 Investigate the Impacts of Peripheral Blood
DC- Derived Exosomes at Early Phase
on the Prognosis in Human Sepsis

02957279
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not in circulation, at 24 h after systemic administration
(Peinado et al. 2012; Ohno et al. 2013).

Despite the advanced development of drugs for the treat-
ment of various brain disorders, delivery of these drugs to the

brain, however, remains a significant challenge because of
difficulty in penetrating the blood-brain barrier (Gabathuler
2009). Intranasal delivery provides a practical, noninvasive
method for delivering therapeutic agents to the brain, the

Fig. 2 Examples of organ systems targeted by EV administration.
The organ disease-specific studies have utilized various EV-related inter-
ventions, including: a umbilical cord mesenchymal stem cell (MSC)-de-
rived, cardiac progenitor cell-derived, hypoxic cardiosphere-derived, or
embryonic stem cell-derived exosomes, or curcumin-loaded exosomes; b
hypoxia preconditionedMSC-derived exosomes or bonemarrow-derived
A1 exosomes; cMSC-derived exosomes; d umbilical cord MSC-derived
or urine-derived stem cell exosomes; e MSC-derived exosomes; f iron

oxide exosomes, tumor associated antigen containing exosomes, pacli-
taxel containing exosomes, trastuzmab-emtansine containing exosomes,
or GM-CSF expressing embryonic stem cell-derived exosomes; g adi-
pose-derived, induced pluripotent stem cell-derived, or umbilical cord
MSC-derived exosomes; h MSC-derived or adipose-derived stem cell
exosomes; i miR-223 containing exosomes; j LDL-stimulated macro-
phage-derived exosomes

Fig. 1 Bioengineered EVs. a
Schematic showing classification
of bioengineering of EVs for
effective drug delivery systems; b
Schematic showing various route
of administration of EVs in the
in vivo model systems
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quantities of drug administered nasally and that are
transported directly from nose to brain, however, is small
(Johnson et al. 2010). Zhuang and colleagues showed that
intranasal delivery of EV-encapsulated curcumin or Stat3 in-
hibitor, JSI-124 (cucurbitacin I), resulted in the compounds
reaching microglial cells. Additionally, administration of the
curcumin or JSI-124 EVs inhibited LPS-induced microglial
cell activation, delayed experimental autoimmune encephalo-
myelitis (EAE) disease, and inhibited tumor growth in vivo
(Zhuang et al. 2011). Recently, intranasal delivery of
lincRNA-Cox2 siRNA loaded EVs showed decrease of
LPS-Induced microglial proliferation in mice (Liao et al.
2019). Table 5 summarizes the administration routes used
for EV drug delivery in the studies published to date.

Therapeutic Applications of EVs

With increased promising preclinical and early clinical evi-
dence, exploring the potential of EVs as therapeutic agents
have attracted a lot of attention and have made its way into
the clinics. As shown in Table 6, EVs are currently being
tested as drug delivery vehicles in several different trials.
Given the ability of EVs to modulate various responses in
recipient cells and strong candidacy as a biomarker for a va-
riety of diseases, there is a growing interest in using them as
therapeutic entities (Fais et al. 2016). In non-small cell lung
cancer (NSCLC), tumor-associated antigen (TAA) loaded
dendritic cell-derived EVs (Dex) showed immunomodulatory
response and underwent phase I clinical trial (Escudier et al.
2005; Morse et al. 2005). In this study, MAGE antigen-loaded
Dex therapy in 15 MAGE3+ advanced melanoma patients
resulted in no detectable MAGE-specific T cell responses in
peripheral blood, although enhanced NK cell effector func-
tions were observed in 8 out of 13 patients (Escudier et al.
2005). In another study, 3 out of 9 patients with advanced
MAGE+ NSCLC who received MAGE3 A1-loaded Dex suc-
cessfully developed MAGE3 A1-specific systemic immune
responses as determined by delayed type hypersensitivity
(DTH) reactivity, although only minimal increases in
peptide-specific T cell activity were detected (Morse et al.
2005). The demonstration of Dex administration safety pro-
file, the feasibility of therapy and success in some patients
resulted in the clinical phase II trial for the treatment of non-
small-cell lung cancer patients (Besse et al. 2016). In this
study, to overcome the minimal peptide-specific activity,
TLR4L- or interferon (IFN)-γ-maturated Dex was used to
induce greater T cell stimulation compared to Dex from im-
mature DCs (Segura et al. 2005; Viaud et al. 2011).

In another series of cancer trials, the ascites-derived
exosomes in combination with the granulocyte-macrophage-
colony-stimulating factor (GM-CSF) in the immunotherapy of
colorectal cancer (CRC) were proven safe and well tolerated

in phase I clinical trial. The ascites-derived exosomes isolated
by sucrose/D(2)O density gradient ultracentrifugation is 60-
90-nm vesicles that contain the diverse immunomodulatory
markers of exosomes and tumor-associated carcinoembryonic
antigen (CEA) (Dai et al. 2008). The above studies indicate
that this therapeutic concept is safe and feasible, thus reinforc-
ing the use of EVs as a new therapeutic approach against
diseases (Figs. 1 and 2).

Conclusions and Future Perspectives

The significant advancements in the knowledge surrounding
the biology of EVs over the past several years have opened
new avenues in the field of life sciences, especially in medi-
cine. Not the least of these is the work that has been done in
investigating the role of EVs in both health and diseases,
resulting in novel prospects for the advancement of enriched
therapeutic EVs. These interventions could help in the synthe-
sis of new cargos inspired by natural vesicles or conventional
synthetic alternatives (liposomes, polymersomes, inorganic
nanoparticles, and so on) without serious inconveniences.
Furthermore, the development of EVs for drug delivery has
generated significant excitement in the field; however, the
main limitations/challenges of EVs as genuine therapeutic
agents include developing methods for efficient, large-scale
clinical grade production, isolation, storage, modification, pu-
rification as well as target delivery. For example, storage and
retrieval conditions of EVs and EV mimetics can can alter
their characteristics (Thery et al. 2018). Although efforts have
been made in this regard (Zhou et al. 2006; Yuana et al. 2015;
Reiner et al. 2017; Leiferman et al. 2019), currently there are
no standard operating procedures for long term storage of
various types of EVs. Additionally, organ- or cell- specific
delivery of therapeutics with EVs poses yet another challenge.
Indeed, targeted delivery of EVs has gained increasing atten-
tion in the field (Table 5). Recent investigations are focused on
overcoming these limitations by establishing artificial EV mi-
metics or by generating vesicles from membrane fragments
created by the extrusion or slicing of cells. Ultimately, regard-
less of the methods used, the development of multidis-
ciplinary teams with skills in applied biology, pharma-
cology, chemical engineering, material sciences, and
medicine will be required to translate EV-based therapy
to clinical practices successfully.
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