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Abstract
HIV-associated neurocognitive disorders (HAND) persist despite the successful introduction of combination antiretroviral therapy
(cART).While insufficient concentration of certain antiretrovirals (ARV)may lead to incomplete viral suppression in the brain, many
ARVs are found to cause neuropsychiatric adverse effects, indicating their penetration into the central nervous system (CNS). Several
lines of evidence suggest shared critical roles of oxidative and endoplasmic reticulum stress, compromised neuronal energy homeo-
stasis, and autophagy in the promotion of neuronal dysfunction associated with both HIV-1 infection and long-term cART or ARV
use. As the lifespans of HIV patients are increased, unique challenges have surfaced. Longer lives convey prolonged exposure of the
CNS to viral toxins, neurotoxic ARVs, polypharmacy with prescribed or illicit drug use, and age-related diseases. All of these factors
can contribute to increased risks for the development of neuropsychiatric conditions and cognitive impairment, which can signifi-
cantly impact patient well-being, cARTadherence, and overall health outcome. Strategies to increase the penetration of cART into the
brain to lower viral toxicitymay detrimentally increase ARV neurotoxicity and neuropsychiatric adverse effects. As clinicians attempt
to control peripheral viremia in an aging population of HIV-infected patients, they must navigate an increasingly complex myriad of
comorbidities, pharmacogenetics, drug-drug interactions, and psychiatric and cognitive dysfunction. Here we review in comparison
to the neuropathological effects of HIV-1 the available information on neuropsychiatric adverse effects and neurotoxicity of clinically
used ARV and cART. It appears altogether that future cART aiming at controlling HIV-1 in the CNS and preventing HAND will
require an intricate balancing act of suppressing viral replication while minimizing neurotoxicity, impairment of neurocognition, and
neuropsychiatric adverse effects.
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Introduction

In the early 1980s, infection with human immunodeficiency
virus (HIV-1) and acquired immunodeficiency syndrome
(AIDS) developed into an acute epidemic (Fauci 1999; Piot

et al. 2001). The first drug for treatment of HIV-1 infection,
azidothymidine (AZT)/zidovudine (ZDV) was reported in
1985 and approved by the Food and Drug Administration
(FDA) in the United States in 1987. The discovery of addi-
tional, new classes of antiretrovirals and the introduction of
combination antiretroviral therapy (cART), also known as
highly active antiretroviral therapy (HAART), in the mid-
1990s eventually changed the course of HIV-1 infection into
a chronic but manageable disease, if treatment is available
(Vella et al. 2012) (http://www.unaids.org/en/resources/fact-
sheet). Nevertheless, 2.1 million people become newly
infected by HIV-1 each year and more than 1 million people
die from AIDS-related causes. As of 2017, UNAIDS esti-
mates that the number of people living with HIV has grown
globally to 36.9 million with 21.7 million receiving cART
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(UNAIDS 2018). More than 1.2 million people live with HIV
in the USA alone (http://www.cdc.gov/hiv/) (UNAIDS 2013,
2015). HIVaffects all organs that are infiltrated by permissive
cells and thus enable the formation of viral reservoirs (Folks
et al. 1988; Rothenberger et al. 2015; Sung and Margolis
2018). HIV-infection of the central nervous system (CNS)
frequently causes neurological problems, including neuro-
pathic pain, and in about 50% of patients it leads to HIV-
associated neurocognitive disorder (HAND) (Tozzi et al.
2001; Simpson et al. 2002; Cysique et al. 2004; Antinori
et al. 2007; Heaton et al. 2010; Saylor et al. 2016). Despite
the use of antiretrovirals (ARVs) and effective virological con-
trol, HAND persists and the contributing neuropathological
mechanisms remain to be fully elucidated (Kaul et al. 2001;
Antinori et al. 2007; Kaul 2008; Heaton et al. 2010; McArthur
et al. 2010; Simioni et al. 2010; Saylor et al. 2016).

The advent and availability of cART together with early
intervention has lengthened patient lifespans to near normal
ages (Antiretroviral Therapy Cohort 2017) and reduced the
incidence of HIV-associated dementia (HAD), the most severe
form of HAND (Eisfeld et al. 2013; Heaton et al. 2015).
However, it has become evident over time that most ARVs
have neuropsychiatric adverse effects (DHHS 2018), and the
prevalence of cognitive impairment milder than dementia re-
mains high in individuals living with HIVand receiving cART
(McArthur et al. 2010; Heaton et al. 2011; Saylor et al. 2016).
Moreover, recent studies found that a temporary interruption
of cART in virologically controlled HIV patients gave rise to
significant improvements of neurocognitive function
(Robertson et al. 2010; Evans et al. 2011; Evans et al. 2012;
Underwood et al. 2014). Meanwhile, several lines of experi-
mental evidence suggest that at least some ARV compounds
can themselves exert neurotoxicity (Lewin et al. 1995; Carr
2003; Keswani et al. 2003; Robertson et al. 2012a; Akay et al.
2014; Sanchez et al. 2016; Sanchez and Kaul 2017). All these
observations suggest that HIV patients are at risk of exposure
to a combination of potential contributors to neurotoxicity and
HAND: namely HIV and its components and certain ARVs
and their combinations. In this review we will discuss current
information on HIV-1 and ARVeffects on the CNS, the com-
bination of which is encountered in the clinical setting as a
chronic situation. The neurotoxic and neuropsychiatric effects
of both the treatment and the disease itself requires a better
understanding of the pathological and pharmacological mech-
anisms at the organismal and cellular level.

HIV-1 Infection

HIV-1 infection can be transmitted through certain body fluids
including blood, semen, pre-seminal fluids, rectal fluids, vaginal
fluids, and breast milk. Consequently, HIV-1 can be contracted
through sexual contact, blood transfusion, needle-sharing, and

from an infected mother to a child. Human CD4 and
coreceptors, in particular chemokine receptors CXCR4
(CD184) and CCR5 (CD195), are the sites of host-virus inter-
action that mediate infection. The envelope protein of HIV-1,
gp120, binds to CD4 receptors exclusively expressed on specif-
ic immune cells, to engage chemokine coreceptors. This action
initiates infection of the virus’ primary target cells: macrophages
and T-lymphocytes (Alkhatib et al. 1996; Bleul et al. 1996;
Dragic et al. 1996; Oberlin et al. 1996; Trkola et al. 1996).
Presumably within hours of infection in the periphery, the virus
arrives in the brain where CCR3, besides CCR5, seems to facil-
itate HIVinfection ofmicroglia (He et al. 1997; Kaul et al. 2001;
Gonzalez-Scarano and Martin-Garcia 2005). Although CCR5-
preferring (R5) HIV-1 are generally considered as being
macrophage-tropic (M-tropic) and CXCR4-preferring virus
strains (X4) as infecting T-lymphocytes (T-tropic), the reality
appears less clear-cut. It has been discovered that syncytia-
inducing viruses initially thought to be only X4-tropic can in
fact be dual-tropic and infect via CXCR4 or CCR5 (Simmons
et al. 1996). Additionally, M- and T-tropic SIV strains can enter
target cells using CCR5 (Edinger et al. 1997). Overall, HIV-
infected CD4+ T-lymphocytes seem to be highly efficient prop-
agators of the virus, but also rapidly succumb to apoptosis, with
the exception of a distinct number of memory cells that form a
quiescent, latent reservoir (Bukrinsky et al. 1991; Pantaleo and
Fauci 1995; Chun and Fauci 1999; Alexaki et al. 2008). In
contrast, HIV-1 infected macrophages, which appear to be less
efficient virus producers, can be a comparably long-lived reser-
voir that presumably carries the virus into the brain and passes it
on to local macrophages and microglia (Ho et al. 1985; Koenig
et al. 1986; Kaul et al. 2001; Collman et al. 2003; Gonzalez-
Scarano andMartin-Garcia 2005). ARVs have variable penetra-
tion across the blood-brain barrier (BBB), let alone the ability to
reach therapeutic drug concentrations in the CNS. Several stud-
ies have reported a discordance between HIVRNA levels found
in the cerebral spinal fluid (CSF) versus the plasma. Patients
receiving cART and achieving suppression of plasma viremia
(<50 copies/mL) have presented with neurological symptoms
and were found to have higher levels of HIV RNA in the CSF
(>200 copies/mL). In some patients, genotyping revealed
resistance-associated mutations toward ARVs in the CSF viral
population; suggesting that treatment was failing specifically in
the CNS (Canestri et al. 2010; Peluso et al. 2012). Consequently,
the CNS constitutes an HIV-1 reservoir which poses a major
challenge for viral eradication (Nath 2015; Ellis and Letendre
2016; Gray et al. 2016).

HIV-1 Associated Neurocognitive Disorders
(HAND) and Neuropathology

HIV-1 infected adults and children of all ages are at risk of
developing neurological symptoms that comprise motor and
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cognitive dysfunction, termed HIV-associated neurocognitive
disorders (HAND) (Navia et al. 1986; Price et al. 1988; Kaul
et al. 2001; Antinori et al. 2007). Based on a panel of standard-
ized measures, HAND is classified into three categories of dis-
orders with increasing severity of dysfunction: i) asymptomatic
neurocognitive impairment (ANI), ii) mild neurocognitive dis-
order (MND) and iii) HIV-associated dementia (HAD). The
introduction of cART lowered the incidence of HAND’s most
severe form, dementia, indicating a beneficial effect on cogni-
tive function (Sacktor et al. 2001; Eisfeld et al. 2013; Heaton
et al. 2015). Nevertheless, HAND/HAD remains a significant
independent risk factor for death due to AIDS, and the preva-
lence of milder cognitive impairment (ANI,MND) continues to
be high in HIV patients on cART (McArthur et al. 1993; Ellis
et al. 1997; Wright et al. 2008; Heaton et al. 2010; McArthur
et al. 2010; Heaton et al. 2011; Saylor et al. 2016). Improved
control of viral replication in the periphery and efficient therapy
of opportunistic infections succeed in prolonging survival, but
current cART regimens largely fail to protect from HAND or to
reverse the disease (Cunningham et al. 2000; McArthur et al.
2003; Cysique et al. 2006; Giancola et al. 2006; Nath and
Sacktor 2006; Brew et al. 2009; Saylor et al. 2016). More than
90% of a group of 669HIV patients receiving the first iterations
of cARTand who passed away between 1996 and 2001, devel-
oped HAD in the last 12 months of life as an AIDS-defining
condition (Welch and Morse 2002). Also, the proportion of
new HAND/HAD cases with a CD4+ T cell count above 200
μl-1 is growing (Sacktor et al. 2002; McArthur et al. 2003).
Thus, as people live longer with HIV-1 infection the prevalence
of dementia could continue to rise despite cART (Lipton 1997;
Cunningham et al. 2000; Kaul et al. 2001; McArthur et al.
2003; Kaul et al. 2005; Kramer-Hammerle et al. 2005; Jones
and Power 2006; Saylor et al. 2016).

The neuropathology of HIV-1 infection is often described
as HIVencephalitis (HIVE); displaying activated resident mi-
croglia, microglial nodules, multinucleated giant cells, infil-
tration predominantly by monocytoid cells, including blood-
derived macrophages, and decreased synaptic and dendritic
density, combined with selective neuronal loss, widespread
reactive astrocytosis, and myelin pallor (Petito et al. 1986;
Masliah et al. 1997). A subset of those pathological features,
namely the increased numbers of microglia (Glass et al. 1995),
decreased synaptic and dendritic density, selective neuronal
loss (Achim et al. 1994; Wiley et al. 1994; Masliah et al.
1997), elevated tumor necrosis factor (TNF)-α mRNA in mi-
croglia and astrocytes (Wesselingh et al. 1997), and evidence
of excitatory neurotoxins in cerebrospinal fluid (CSF) and
serum (Heyes et al. 1991) present the best correlates of ante
mortem signs of cognitive impairment. Additionally, two re-
ports have also suggested an important role for myeloid cells
in the outcome of HIV-1 infection in the CNS, showing that
the risk of developing HAD correlated better with the amount
of proviral HIV DNA in circulating monocytes and

macrophages than with viral load (Shiramizu et al. 2005;
Shiramizu et al. 2006).

Distinct brain regions suffer neuronal damage and loss in
association with HIV infection; including the frontal cortex
(Ketzler et al. 1990; Everall et al. 1991), substantia nigra
(Reyes et al. 1991), cerebellum (Graus et al. 1990), and puta-
men (Everall et al. 1993). Signs of neuronal apoptosis have
also been observed in brains of HAD patients (Petito and
Roberts 1995; Adle-Biassette et al. 1999; Rostasy et al.
2000). Especially within subcortical deep gray structures, ap-
optotic neurons were localized and correlated with signs of
structural damage and evidence of microglial activation
(Adle-Biassette et al. 1999).

Introduction of cART changed HIV neuropathology.
Although opportunistic infections were largely controlled or
absent, two post-mortem studies found more macrophage/
microglia infiltration and activation in the hippocampus and
basal ganglia (Langford et al. 2003b; Anthony et al. 2005).
However, whereas Anthony et al found an overall decrease in
HIVE in the Edinburgh cohort post-cART, Langford et al ob-
served an increase in HIVE in the University of California-
San Diego (UCSD) cohort in the cART era. HIV patients in
the UCSD cohort who had failed cART showed even more
signs of encephalitis and severe leukoencephalopathy
(Langford et al. 2003b). Another autopsy cohort from a pop-
ulation in Oslo, Norway, has found that HIV-induced brain
lesions increased with lengthened survival times (Maehlen
et al. 1995). Interestingly, this study noted that antiretroviral
treatment, particularly ZDV/AZT, reduced the incidence of
brain lesions but only if continued until death; those who
discontinued use presented an increase in HIVE. Another
post-mortem study of 436 HIV-seropositive patients who died
between 1985 and 1999 found an increase in HIVE over time
(p=0.014) despite increasing efficiency of cART regimens
(Neuenburg et al. 2002). Likewise, a study performed in
Brazil has found that HIVE is more frequent in autopsy cases
performed on patients who received cART for 3 months or
more than those who had no antiretroviral treatment (Silva
et al. 2012). A study in Milan, Italy, which was divided into
four time periods on the basis of wide treatment availability
(1984-1987 no therapy, 1988-1994 monotherapy, 1995-1996
dual combination therapy, 1997-2000 triple therapy) noted a
marked decrease in HIVE over time (Vago et al. 2002).
Interestingly, differences in treated and untreated patients in
the last period, for whom actual drug treatments received are
known, were not statistically significant. It is important to
note, as Bell points out in a review, that deaths and resulting
post-mortem studies among cART recipients represent a pop-
ulation of HIV patients who experienced treatment failure;
thus, neuropathology findings may not be representative of
treated patients who survive (Bell 2004). One report of the
changing neuropathology in the era of cART described vari-
ous forms of severe HIVE and white matter injury with
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extensive perivascular lymphocytic infiltration, suggesting
'burnt-out' forms of HIVE (Everall et al. 2005). Additional
recent reports have shown post-mortem findings of aging-
related accumulation of beta-amyloid implying an
Alzheimer's Disease-like neuropathology (Green et al. 2005)
and cART-treated individuals presenting a greater number of
hyperphosphorylated tau-positive neurofibrillary tangles and
pre-tangles when compared with age-matched controls
(Anthony et al. 2006). As the guidelines for antiretroviral
therapies are still evolving, the neuropathological nature of
HIV patients on modern drug regimens has yet to be fully
elucidated.

HIV-1 Neurotoxicity

Besides microglia and macrophages in the brain, neurons and
astrocytes also express chemokine receptors, including CCR5
and CXCR4 (Asensio and Campbell 1999; Kaul and Lipton
1999; Miller and Meucci 1999; Kaul et al. 2007), but the
latter cell types do not obviously permit productive HIV-1
infection under in vivo conditions. However, numerous
in vitro studies suggest that HIV-associated neuronal damage
prominently involves CXCR4 while CCR5 appears to play a
dual role by mediating either toxic or protective effects de-
pending on the available ligands (Hesselgesser et al. 1998;
Meucci et al. 1998; Kaul and Lipton 1999; Zheng et al. 1999;
Meucci et al. 2000; Kaul et al. 2007; Maung et al. 2014).
Besides intact HIV-1, picomolar concentrations of isolated
viral envelope gp120 suffice to trigger CXCR4 and CCR5
receptors to cause injury and death of neurons of humans
and rodents (Brenneman et al. 1988; Hesselgesser et al.
1998; Meucci et al. 1998; Kaul and Lipton 1999; Ohagen
et al. 1999; Chen et al. 2002; Garden et al. 2004; Iskander
et al. 2004; Walsh et al. 2004; O'Donnell et al. 2006; Kaul
et al. 2007). In addition to the Env glycoprotein gp120, ample
experimental evidence demonstrates that various other viral
proteins such as Tat, Nef, Vpr, and gp41, the membrane an-
chor of gp120, have the potential to cause neuronal injury and
death (Brenneman et al. 1988; Adamson et al. 1996; New
et al. 1997; Piller et al. 1998; Koedel et al. 1999; Kaul et al.
2001; Kaul et al. 2005; Mattson et al. 2005; Ellis et al. 2007;
Saylor et al. 2016; Langford et al. 2018).

The mechanisms remain controversial of how exactly
HIV-1 infection leads to neurocognitive and motor dysfunc-
tion and to neuronal injury and death (Kaul et al. 2001;
Gonzalez-Scarano and Martin-Garcia 2005; Kaul et al.
2005; Kramer-Hammerle et al. 2005; Mattson et al. 2005;
Ellis et al. 2007; Smith et al. 2016). It is generally agreed
upon that HIV-1 fails to infect post-mitotic, mature neurons
but we and others observed more recently that HIV-1 proteins
such as gp120 and Tat can compromise neurogenesis
(Krathwohl and Kaiser 2004; Okamoto et al. 2007;

Schwartz et al. 2007; Kaul 2008; Langford et al. 2018). All
the studies, especially those addressing neurotoxicity, have
contributed to the development of at least two different sce-
narios describing how HIV-1 causes brain injury and
neurocognitive dysfunction: the “direct injury” and the “indi-
rect’ or “bystander effect” hypothesis. The hypotheses are in
no way mutually exclusive, and the available data suggest a
role for both. The “direct injury” hypothesis poses that viral
proteins directly damage neurons absent any contribution of
non-neuronal cells (microglia/macrophages and/or astro-
cytes). Experiments supporting this scenario show that viral
envelope protein gp120, Tat, and Vpr are toxic in serum free
primary neuronal cultures (Meucci et al. 1998; Meucci et al.
2000) or in neuroblastoma cell lines (Hesselgesser et al. 1998;
Piller et al. 1998; Mattson et al. 2005).

However, under conditions where glial and neuronal cells are
present and which recapitulate the cellular composition of the
brain, the indirect neurotoxicity mediated by macrophages and
microglia may predominate (Giulian et al. 1990; Genis et al.
1992; Gartner 2000; Kaul et al. 2001; Gonzalez-Scarano and
Martin-Garcia 2005; Kaul et al. 2005; Mattson et al. 2005;
Medders et al. 2010; Maung et al. 2014). Intact HIV-1, gp120,
and Tat seem to induce neuronal injury and apoptotic death
predominantly in an indirect manner via the induction of soluble
toxins from macrophages and microglia (Brenneman et al.
1988; Giulian et al. 1990; Kaul and Lipton 1999; Chen et al.
2002; Garden et al. 2004; Iskander et al. 2004; Walsh et al.
2004; Sui et al. 2006; Medders et al. 2010; Gill et al. 2015).

HIV-1 infected or gp120-exposed microglia and macro-
phages produce factors that stimulate the N-methyl-D-aspar-
tate-type receptor (NMDAR), an ionotropic glutamate and
neurotransmitter receptor (Dreyer et al. 1990; Chen et al.
2002; O'Donnell et al. 2006). Under normal physiological
conditions, activation of neuronal ionotropic glutamate recep-
tors initiates a transient depolarization and excitation that
serves a crucial role in neurocognitive function (Olney et al.
1991; Doble 1999). However, excessive and/or extended
stimulation of NMDARs leads to excitotoxicity through a
sustained elevation of the intracellular Ca2+ concentration,
which subsequently compromises mitochondrial function
and cellular energy metabolism and eventually results in the
excessive production of free radicals (Olney 1969; Doble
1999; Kaul et al. 2001; Gill et al. 2014). A mild but sustained
insult, such as macrophage toxins exert in HIV infection,
eventually triggers programmed cell death (apoptosis) of neu-
rons for which evidence has been found in post-mortem brains
of HIVE/HAD patients (Petito and Roberts 1995; Adle-
Biassette et al. 1999; Kaul and Lipton 1999; Ohagen et al.
1999). Neuronal apoptosis resulting from toxicity of HIV-1
or gp120 or Tat or a direct excitotoxic insult involves neuro-
nal, intracellular Ca2+ overload, activation of p38 MAPK and
p53, mitochondrial functional impairment with release of cy-
tochrome c, activation of caspases, cell cycle protein and other
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molecules, such as apoptosis-inducing factor (AIF) from mi-
tochondria, free radical formation, lipid release and peroxida-
tion, and chromatin condensation (Tenneti et al. 1998;
Asensio and Campbell 1999; Kaul and Lipton 1999; Garden
et al. 2002; Haughey and Mattson 2002; Jordan-Sciutto et al.
2002; Garden et al. 2004; Jana and Pahan 2004; Kaul et al.
2007; Medders et al. 2010). Moreover, the activation of the
unfolded protein response (UPR), amyloid precursor protein
processing and changes of cellular lipid metabolism, including
an increase in ceramide, sphingomyelin and hydroxynonenal
have been linked to oxidative damage and cellular distress
occurring in the pathways of HIV neurotoxicity (Haughey
et al. 2004; Mattson et al. 2005; Lindl et al. 2007; Saylor
et al. 2016; Stern et al. 2018b).

Antiretroviral drugs, neuropsychiatric
adverse effects and HAND

There are currently over 30 US FDA-approved ARVs utilized
for the treatment of HIV infection that have become available
since 1987 (Fig. 1). ARV drugs are classified based on the
mechanism of action and currently include i) nucleoside/
nucleotide reverse transcriptase inhibitors (NRTI), ii) non-
nucleoside reverse transcriptase inhibitors (NNRTI), iii) pro-
tease inhibitors (PI), iv) integrase strand transfer inhibitors
(INSTI), v) a fusion inhibitor (FI), and vi) two entry inhibitors
(EI), one blocking chemokine receptor CCR5, the other
inhibiting viral interaction with CD4. In addition, two drugs,
ritonavir (RTV) and cobicistat (COBI) are used as

Fig. 1. Timeline of FDA approval of ARVs. See main text for additional information on the various compounds
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pharmacokinetic enhancers (reviewed in (Badowski et al.
2016; Shah et al. 2016)). The first ARV was discovered in
1985 when a compound synthesized as a potential anti-
cancer agent, 30-azido-20, 30-dideoxythymidine, now known
under the name azidothymidine (AZT), showed in vitro inhi-
bition of HIV replication (Mitsuya et al. 1985). AZT was
eventually approved by the Food and Drug Administration
(FDA) in the United States in 1987. Several more drugs of
the same pharmacological class were developed and used as
monotherapy and later in dual combination, however, these
treatment strategies frequently led to mutations of HIV which
rendered the virus resistant to the drugs. The discovery of new
classes of antiretrovirals and the introduction of cART in the
mid-1990s eventually changed the course of HIV-1 infection/
AIDS into a chronic but manageable disease when treatment is
available (Vella et al. 2012). The Department of Health and
Human Services (DHHS) Panel on Antiretroviral Guidelines
for Adults and Adolescents (a working group of the office of
AIDS research) continues to update the combination regi-
mens, utilizing more than 25 antiretroviral drugs in order to
guide towards the best therapy for HIV+ individuals (http://
aidsinfo.nih.gov/guidelines). Currently both the National
Institutes of Health (NIH) DHHS Guidelines and the World
Health Organization (WHO) recommend a cART regimen
consisting of two NRTIs (usually abacavir/lamivudine (ABC/
3TC), tenofovir alafenamide/emtricitabine (TAF/FTC) or
tenofovir disoproxil fumarate/emtricitabine (TDF/FTC)) in
combination with either an INSTI such as bictegravir (BIC),
dolutegravir (DTG), or raltegravir (RAL) or an NNRTI, such
as efavirenz (EFV) (DHHS 2018). Whereas the DHHS has
created separate guidelines targeting i) adults and adolescents,
ii) perinatal, and iii) pediatric populations, the WHO has a
single set of abridged guidelines directed towards all of these
groups. The DHHS guidelines for adults and adolescents con-
tain multiple preferred regimens for adults and adolescents
with multiple alternative regimens in certain clinical situations,
while the WHO guidelines have preferred first-line regimens,
alternative first-line regimens, and first-line regimens for spe-
cial situations. These recommendations are for patients first
initiating ART or ARV-naïve patients as other factors must
be considered in the management of treatment-experienced
patients. The DHHS suggests alternative recommended regi-
mens for adults and adolescents and the WHO proposes pre-
ferred first-line and alternative first-line regimens for multiple
populations as illustrated in Fig. 2a and b, respectively (WHO
2018). ARV combinations and/or regimens are chosen consid-
ering primarily antiviral efficacy, potential adverse effects (tox-
icity), pill burden, drug-drug interaction, comorbid conditions,
and cost. Efficient cART has transformed HIV-1 infection into
a chronic condition, and infected individuals are approaching a
near normal life span leading to aging with HIV as a new
clinical phenomenon (Brew et al. 2009; Ciccarelli et al.
2011; Canizares et al. 2014; DeVaughn et al. 2015).

The life-saving effect of cART is indisputable. However,
the incidence of cognitive impairment milder than HAD per-
sists in HIV patients on cART (Robertson et al. 2007; Tozzi
et al. 2007; McArthur et al. 2010; Simioni et al. 2010; Heaton
et al. 2011; Saylor et al. 2016). This situation and distinct
patterns of viral drug resistance in plasma and cerebrospinal
fluid (CSF) compartments might at least in part be explained
by limited penetration of HIV protease inhibitors and several
of the nucleoside analogues into the brain (Cunningham et al.
2000; Kaul et al. 2005; Kramer-Hammerle et al. 2005). The
development of the CNS penetration effectiveness (CPE) rank
score by Letendre et al was largely based on available phar-
macokinetic rather than pharmacodynamic data of ARVs
(Letendre et al. 2008). This score has been well correlated to
suppression of CSF viral loads. However, there have been
conflicting reports on the effect of ARV CNS penetration on
patient cognition. Some studies report improved cognition
with higher CPE scores (Tozzi et al. 2009; Smurzynski et al.
2011; Carvalhal et al. 2016) while others observe cognitive
benefits from lower CPE regimens (Marra et al. 2009;
Kahouadji et al. 2013; Caniglia et al. 2014). The disparate
results of these studies are confounded further by other studies
which have found no significant relationship between CPE
score and cognitive functioning (Robertson et al. 2012b;
Ellis et al. 2014).

Multiple reports have meanwhile provided evidence that
many, if not the majority of approved ARVs and clinically
prescribed cART regimens have neuropsychiatric adverse ef-
fects; ranging from headache to insomnia, to depression and
anxiety to suicidal ideation among other symptoms.
Neuropsychiatric adverse effects reported by the DHHS
Panel on Antiretroviral Guidelines for Adults and
Adolescents and CPE scores (if available) are summarized in
Table 1 (DHHS 2018). Among patients with HIV or AIDS,
prevalence of major depression is reported to be between 22%
to 45% (Atkinson Jr. et al. 1988; Maj et al. 1994; Perkins et al.
1994; McDaniel et al. 1995; Kelly et al. 1998) yet it is pro-
spectively underdiagnosed (Evans et al. 1996; Halman 2001).
Therefore it is possible that pre-existing conditions can

�Fig. 2. Antiretroviral treatment regimen. (a) DHHS guidelines, the
representation is based on the Panel on Antiretroviral Guidelines for
Adults and Adolescents: Guidelines for the Use of Antiretroviral Agents
in Adults and Adolescents with HIV. Department of Health and Human
Services. Available at http://www.aidsinfo.nih.gov/ContentFiles/
AdultandAdolescentGL.pdf. Accessed [4/23/2019] [F-5, Table 6a]; (b)
WHO recommendations, the representation is based on updated
recommendations on first-line and second-line antiretroviral regimens and
post-exposure prophylaxis and recommendations on early infant diagnosis
of HIV: interim guidelines. Supplement to the 2016 consolidated guidelines
on the use of antiretroviral drugs for treating and preventing HIV infection.
Geneva: World Health Organization; 2018 (WHO/CDS/HIV/18.51).
Licence: CC BY-NC-SA 3.0 IGO. *For recommendations for childbearing
women see neuropsychiatric and developmental effects of ARV in tables 1
and 2. Modified from (Reust 2011)
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confound, exacerbate, or mask neuropsychiatric symptoms
caused by ARVs. Mania, psychosis, and major depression
are associated with HIV infection (Treisman et al. 1998).
Furthermore, the impact of depression on HIV patient health
can be significant and has been correlated with a more pro-
nounced decline in the number of CD4+ cells, disease progres-
sion, and increased mortality (Safren et al. 2009). In an aging
population of HIV patients, social isolation and depression are
particularly common and may contribute to morbidity, mor-
tality, poor medication adherence and retention in care
(Kalichman et al. 2000; Grov et al. 2010). A summary of
issues surrounding ART use specifically in the elderly popu-
lation has been recently reviewed (Guaraldi et al. 2018).

Neurotoxicity of antiretroviral drugs

Several studies observed that discontinuation of ARV use in
HIV patients with controlled suppression of viral loads and
neurocognitive impairment, resulted in significant improvement
of cognitive function (Robertson et al. 2010; Evans et al. 2011;
Evans et al. 2012; Underwood et al. 2015). In addition, clinical
and experimental evidence is accumulating that at least some
ARV compounds or combinations thereof (cART) have them-
selves neurotoxic effects and therefore possibly contribute to the
development of HAND (Lewin et al. 1995; Carr 2003; Keswani
et al. 2003; Robertson et al. 2012a; Akay et al. 2014; Ma et al.
2016; Sanchez et al. 2016; Shah et al. 2016). Table 2 summa-
rizes reports of neurotoxicity observed for ARV compounds.

NRTIs: Early versions of these ARVs carry a high risk to
trigger peripheral neuropathy, in particular didanosine (ddI),
stavudine (d4T), and zalcitabine (ddC) (Dragovic and
Jevtovic 2003). Mitochondrial polymerase γ, an enzyme re-
quired to maintain mitochondrial DNA (mtDNA) in axons
and Schwann cells seems to be the major undesired ‘off target’
(Dalakas 2001; Venhoff et al. 2010). NRTIs that appear less
likely to induce peripheral neuropathy or cellular neurotoxic-
ity are emtricitabine (FTC), lamivudine (3TC), tenofovir (TAF
or TDF) and abacavir (ABC) (Robertson et al. 2012a). The
earliest anti-retroviral drug ZDV/AZT has also been reported
to cause mitochondrial toxicity, impaired neurogenesis and to
damage neuronal dendrites and presynaptic terminals (Lewis
and Dalakas 1995; Ewings et al. 2000; Haik et al. 2000;
Sanchez et al. 2016). Overall, NRTIs seem to exert limited
CNS neurotoxicity that is compound- and cell-specific
(Robertson et al. 2012a; Shah et al. 2016).

NNRTIs: Rilpivirine (TMC278) and delavirdine (DLV) are
considered to be non-toxic in the CNS (Shah et al. 2016).
Etravirine (ETR) appeared so far to be clinically safe but signs
of a potentially neurotoxic effect were observed in vitro
(Robertson et al. 2012a; Floris-Moore et al. 2016). However,
multiple lines of evidence indicate neurotoxicity of efavirenz
(EFV) and nevirapine (NVP), which are approved by the FDAT
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and still frequently used in NNRTI regimen because they are
highly efficient antiretrovirals (http://aidsinfo.nih.gov/
guidelines), (Robertson et al. 2012a; Brown et al. 2014;
Funes et al. 2014). In the clinic, EFV has been found to be
associated with deterioration of neurocognition (Ciccarelli
et al. 2011; Decloedt and Maartens 2013; Ma et al. 2016). In
human neuron-like SHSY-5Y cells and primary rat striatal
neurons EFVwas found to cause a loss of ATP, depolarization
and fragmentation of mitochondria and increased mitophagy
and autophagy in general, indicating that interference with
cellular energy homeostasis is a mechanism of toxicity
(Blas-Garcia et al. 2014; Purnell and Fox 2014). This ARV
was also found to cause endoplasmic reticulum (ER) stress in
human brain endothelial cells and in microvessels of the brain
in HIV-transgenic mice (Bertrand and Toborek 2015). This
latter study reported that EFV compromised autophagy by
binding to a complex consisting of beclin 1, ATG14 and phos-
phatidyl inositol 3 kinase III (PI3KIII), which is necessary for
assembly of an autophagosome. An enzyme of the cyto-
chrome P450 (CYP) family, CYP2B6, influences the metab-
olism of EFV and therefore presumably, the concentration in
the brain. Thus, CYP2B6may influence neurocognition as the
8-hydroxy metabolite of EFV has been found to be neurotoxic
(Gatanaga et al. 2007; Decloedt and Maartens 2013).

PIs: This category of ARVs is very effective as
antiretrovirals and part of numerous treatment regimens (Fig.
2 and Table 1). Saquinavir (SQV) and nelfinavir (NFV) are
apparently well tolerated in HIV patients whereas ritonavir
(RTV) can be associated with adverse and toxic effects
(Bonfanti et al. 2000). PI, NTRI, INSTI and the CCR5 inhib-
itor maraviroc are all metabolized by enzymes of the CYP450
family, which plays crucial roles in the metabolism/activation/
inactivation of most pharmaceutical drugs (Ingelman-
Sundberg 2004). Many human CYP450 enzymes are
membrane-associated and located in the inner membrane of
the mitochondria or in the endoplasmic reticulum of cells. The
subclasses CYP2 and CYP3 are particularly important in the
metabolism of drugs and steroids, which explains why
polypharmacy in the form of cART generates a significant risk
of drug-drug interactions. However, on occasion the interac-
tions can be harnessed for therapeutic applications. RTV, pre-
viously used as an active PI antiretroviral, has been employed
at low doses to boost mono- or triple therapy due to the drug’s
ability to inhibit cytochrome P450 isoenzymes (Hsu et al.
1998; Gonzalez-Baeza et al. 2014). Other PIs have also been
linked to neurotoxicity, including amprenavir (APV), indina-
vir (IDV) and atazanavir (ATV) (James et al. 2002; Pettersen
et al. 2006; Vivithanaporn et al. 2016). A recent study found
that in non-human primates, rodents, and in vitro neuroglial
cell cultures, the PIs SQY and ATV in combination with the
NRTI tenofovir (TDF) and an INSTI and RTVand SQV sep-
arately all triggered stress in the endoplasmic reticulum (ER),
activated the β-site amyloid precursor protein cleaving

enzyme-1 (BACE-1), and induced neuronal damage
(Gannon et al. 2017).

INSTIs: A number of reports have implicated raltegravir
(RAL) and elvitegravir (EVG) in CNS toxicity because of
neuropsychiatric adverse effects (Harris et al. 2008; Cohen
et al. 2011; Teppler et al. 2011). Both bictegravir (BIC) and
dolutegravir (DTG)-containing regimens are supposed to pro-
vide the advantages of a low pill burden, high barrier to resis-
tance, and better tolerability than alternative ARVs, but at least
DTG is well recognized to cause neuropsychiatric adverse
effects , and the WHO international pharmacovigilance data-
base has reported neuropsychiatric events with all approved
INSTIs (Table 1) (Kheloufi et al. 2017).

FI: Enfuvirtide (T-20) is the only FDA approved fusion
inhibitor and has not displayed any conclusive evidence for
neurotoxicity. Although, some earlier reports suggested an
increased prevalence of sensory neuropathy (Lalezari 2003;
Fung and Guo 2004), others found no indications of toxicity
(Lazzarin et al. 2003; Fung and Guo 2004; Cherry et al. 2008).

EI: The CCR5 blocker maraviroc (MVC) is the only FDA-
approved synthetic molecule in its class. There is currently no
evidence of neurotoxicity, and to the contrary, several studies
found evidence for a neuroprotective effect of MVC
(Boesecke and Pett 2012; Garvey et al. 2012; Robertson
et al. 2012a; Kelly et al. 2013; Maung et al. 2014).
Ibalizumab is the first humanized monoclonal antibody re-
cently approved by the FDA for treatment of HIV-1 infection,
in particular for highly drug-resistant virus (Markham 2018).
Ibalizumab binds CD4 and blocks HIV entry into target cells
while apparently largely preserving the proteins physiological
function. The antibody is applied intravenously in the periph-
ery and it is not clear how much of it reaches the CNS. The
only current suggestion of a potential neuropsychiatric effect
is dizziness in treated individuals (Markham 2018).

The risks of neuropsychiatric polypharmacy created by
cART as treatment for HIV-1 infection are frequently further
complicated by the recreational use of psychostimulant drugs,
such as methamphetamine (METH) (Urbina and Jones 2004;
Kapadia et al. 2005; Mitchell et al. 2006; Soontornniyomkij
et al. 2016). Notably, drug abuse itself, including that of
METH, increases the risk of contracting HIV-1 (Urbina and
Jones 2004; Kapadia et al. 2005; Mitchell et al. 2006), and
METH using cART–treated HIV positive individuals often
show elevated viral loads (Ellis et al. 2003; Hinkin et al.
2007). Under these conditions, the brain of a significant pro-
portion of HIV patients is exposed to HIV-1, combinations of
ARVs and psychostimulants at the same time, and METH-use
results in more neurocognitive deficits, neuropathology and
neuronal injury than either virus and psychostimulant alone
(Langford et al. 2003a; Langford et al. 2003b; Chana et al.
2006; Cadet and Krasnova 2007; Pang et al. 2012;
Soontornniyomkij et al. 2016; Sanchez and Kaul 2017).
While we and others have been able to recapitulate in animal
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models some of the combined effects (Roberts et al. 2010;
Pendyala et al. 2012; Bortell et al. 2015; Hoefer et al. 2015;
Soontornniyomkij et al. 2016) the interplay of virus and
psychostimulant and cART regimen is incompletely under-
stood (Langford et al. 2003a; Cadet and Krasnova 2007;
Sanchez et al. 2016; Soontornniyomkij et al. 2016).

For that reason, our group investigated recently in vitro the
potential contributions of the various factors to neuronal damage
and loss (Sanchez et al. 2016). We exposed mixed neuronal-
glial cerebrocortical cell cultures to ARVs of four different phar-
macological categories (NRTI: AZT, NNRTI: NVP, PI: SQV
and INSTI 118-D-24) in the presence or absence of METH,
and HIV-1 envelope gp120, an established inducer of viral neu-
rotoxicity. In order to assess acute, short-term and long-term
effects, respectively, the cerebrocortical cells were incubated
with the treatments for 24 h and 7 days. We observed that
ARVs caused changes to neurites and presynaptic terminals
predominantly during the 7-day exposure and alterations
depended on specific compounds and their combinations with
and without METH. In contrast to ARVs applied as single com-
pounds, specific drug combinations with and without METH or
viral envelope gp120 as well as METH and gp120 each alone,
all significantly diminished neuronal ATP levels. Loss of ATP
was associated with activation of adenosine monophosphate-
activated protein kinase (AMPK) and autophagy, which, how-
ever, failed to restore neuronal ATP to normal levels. In contrast,
boosting autophagywith rapamycin abrogated the lasting reduc-
tion of ATP during exposure to cART in the presence or absence
of METH or gp120.

The findings of our investigation speak to the complexities
of the overall effects of exposure to HIV and cART in the
presence and absence of the psychostimulant METH
(Sanchez et al. 2016). The ARVs/cART, HIVgp120 and
METH triggered each alone and in combination a comparable
loss of neuronal ATP but showed no additive effect. Also,
ARVs/cART, METH or HIV/gp120 could each induce neuro-
nal damage in terms of compromising neuronal dendrites and
presynaptic terminals or depleting neuronal ATP or, in the
case of gp120, causing the frank loss of neurons themselves
when applied separately, but not necessarily when combined
with ARVs. Distinct ARV combinations lacked a detectable
effect on neuronal dendrites or presynaptic terminals in the
presence or absence of METH, yet significantly reduced neu-
ronal ATP levels. Thus, neurons managed to maintain their
dendrites and presynaptic terminals despite compromised neu-
ronal energy homeostasis, a scenario that may explain, at least
in part, a slow, yet progressive neurological disease, such as
HAND. Notably, METH, which itself is toxic to neurons
(Cadet and Krasnova 2007), lacked any detectable damaging
effect on neurites and synapses in combination with several
ARVs and even counteracted a significant loss of neuronal
ATP in combination with cART. In contrast, long-term expo-
sure to the admixture of four ARVs and psychostimulant

compromised neuronal dendrites and synapses, an injury that
others observed too, as a result of ARV treatment (Robertson
et al. 2012a). Similarly, a loss of neuronal ATP occurred when
four ARVs and METH were combined with HIV-1 gp120.

Our findings were in accordance with earlier reports that
ARVs disturb mitochondrial function by altering mitochondri-
al membrane components, such as transporters, and mitochon-
drial bioenergetics, in particular membrane potential, by af-
fecting mitochondrial kinases, such as Thymidine kinase 2
(TK2) and deoxyguanosine kinase (dGK) (Sun et al. 2014),
and by inhibiting mitochondrial polymerase γ and conse-
quently mtDNA homeostasis (Arnaudo et al. 1991; Cherry
et al. 2002; Cote et al. 2002) or by stimulating major deletions
in neuronal mtDNA (Apostolova et al. 2011; Zhang et al.
2014). Moreover, our results indicated that neuronal energy
homeostasis could significantly change without precipitating
obvious structural neuronal damage or loss. The mechanism
regulating such neuronal adaptation may serve cellular robust-
ness and resilience and remain to be elucidated.

Approaches to balancing viral suppression
with neuropsychiatric adverse effects
and neurotoxicity

In advancing the 90-90-90 world treatment targets launched
by the UNAIDS in 2014, speed has been emphasized in terms
of scaling-up and providing early initiation of HIV treatment.
Accordingly, strides have been made in providing safe, toler-
able, effective ARVs with higher barriers to resistance and
lower pill burden in therapy regimes (DHHS 2018). There
has been an increasing interest in simplifying drug regimens
of HIV patients from three drugs to two drug regimens.
However, a recent study into this strategy discovered that the
majority of these patients had a decline in neurocognition.
Only patients switched to an INSTI/PI combination remained
neurocognitively stable (Arendt et al. 2019).

With the popularization of commercialized direct-to-
consumer genetic testing kits capable of detecting single nu-
cleotide polymorphisms (SNPs), the information available to
clinicians and the general public is higher than ever. The
Precision Medicine Initiative, launched in 2015, is a data-
driven field of medicine that attempts to take into account
individual differences in people’s genes, microbiomes, envi-
ronments, and lifestyles. Pharmacogenomic testing for HIV
patients can be performed on several genes to guide selection
of antiretroviral therapy (ART). Genotypic co-receptor tro-
pism assays should be used if prescription of a CCR5 antag-
onist is being considered. Due to the ability of HIV to develop
resistance to ARVs, genotypic and tropism testing is recom-
mended at entry into care. The genotypic assay to assess mu-
tations in the gp41 gene is associated with resistance to the
fusion inhibitor enfuvirtide while phenotypic tropism assays

J Neuroimmune Pharmacol (2021) 16:90–112102



can determine whether the virus is susceptible to CCR5 inhi-
bition by maraviroc (DHHS 2018). In prescribing the NRTI
abacavir, the major histocompatibility complex class I allele
HLA-B*5701 confers a 60% chance of a hypersensitivity re-
action to the drug and genotyping for the gene has become
standard clinical practice (Hetherington et al. 2002; Mallal
et al. 2002; Saag et al. 2008; Novelli 2010). In the case of
efavirenz, CYP2B6 polymorphisms can result in poor metab-
olism thus increasing the plasma concentration of the drug and
causing more severe CNS symptoms (Marzolini et al. 2001).
The pharmacogenetics of ARVs has been reviewed previously
(Tozzi 2010; Pavlos and Phillips 2012).

Polypharmacy and comorbidity is unavoidable in an aging
population of HIV patients and raises the risk of drug-drug
interactions. In fact, HIV infected individuals have an in-
creased risk for cardiovascular disease, hepatic and renal dis-
ease, osteoporosis, in addition to mental, neurological and
substance-use disorders (Esser et al. 2013; Brothers et al.
2014; Guaraldi et al . 2014; Achhra et al . 2015;
Nedelcovych et al. 2017; Cook et al. 2018). The risk of ad-
verse effects and outcomes increases with the increasing
number of medications and nearly 50% of older adults take
one or more medications that are not medically necessary
(Maher et al. 2014). Drug-to-drug interactions can delay, de-
crease, or enhance absorption of drugs, thus decreasing or
increasing their efficacy and causing adverse effects. For ex-
ample, the ARVs atazanavir and rilpivirine require an acidic
gastric pH for effective dissolution and absorption, and ant-
acids, H2 blockers, and proton pump inhibitors are likely to
lower treatment efficacy (Luber 2005; Beique et al. 2007;
Crauwels et al. 2013). In contrast, ritonavir or cobicistat po-
tently inhibit CYP3A and cause drugs metabolized through
the CYP3A pathway, such as statins and antipsychotics, to
accumulate (Fichtenbaum et al. 2002; Chauvin et al. 2013;
DHHS 2018). Opioid use among HIV-infected individuals is
common with prescription rates as high as 53%, due to the
prevalence of chronic pain caused by HIV infection, aging,
and adverse effects of medications. This high proportion of
opioid use in the HIV-infected population puts them at risk
for addiction (Cunningham 2018). The pharmacokinetics of
both methadone and naloxone are affected by boosted prote-
ase inhibitors and certain NNRTIs (Clarke et al. 2001a,
2001b; McCance-Katz et al. 2003; Scholler-Gyure et al.
2008; Sekar et al. 2011; Gruber et al. 2012; Bruce et al.
2013a; Bruce et al. 2013b; Bruce et al. 2013c; Crauwels
et al. 2014). These extensive pharmacological interactions
can be further compounded by coinfection with hepatitis C,
a common comorbidity which the CDC estimates that ap-
proximately 25% of HIV patients in the US have. Co-
infected individuals require complicated multi-drug antiretro-
viral therapy (Cope et al. 2015; Wyles 2015; King and Menon
2017). Furthermore, certain ARVs have been implicated in
higher rates of comorbidities as a result of drug toxicity

(Chow et al. 2003; Palacios et al. 2006; Guaraldi et al.
2014; Schouten et al. 2014). Highlighting this issue further,
a recent study by Molas et al surveying 1259 HIV patients
has found that 70% of patients receiving ART took co-
medication with 44.7% having at least one clinically relevant
potential drug-drug interaction (Molas et al. 2018). Individual
differences in viral resistance and tropism as well as the pa-
tient’s pharmacogenetic and pharmacoecologic background
highlight the importance of developing personalized drug re-
gimes in an era of precision medicine.

In achieving active viral suppression and providing treat-
ments with speed and early initiation, it is important to con-
sider not only increasing lifespan but also preservation of
quality of life. In addition to direct neurotoxicity, the neuro-
psychiatric adverse effects related to certain ARVs can lead to
poor adherence, treatment interruptions, or change of drug
regimens. These factors are confounded further by
polypharmacy, viral resistance, and a patient’s pharmacoge-
netic and pharmacoecologic situation. Discerning the safety of
strategies to increase cART penetration into the CNSmay be a
balancing act of suppressing viral replication while minimiz-
ing neurotoxicity, impairment of neurocognition and neuro-
psychiatric adverse effects.
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