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Abstract
Quetiapine, an atypical antipsychotic medication has lacked pre-clinical validation for its purported benefits in the treatment of
delirium. This laboratory investigation examined the effects of quetiapine on the attentional set shifting task (ASST), a measure of
cognitive flexibility and executive functioning, in a rodent model of lipopolysaccharide (LPS) mediated neuroinflammation. 19
Sprague Dawley female rats were randomly selected to receive intraperitoneal placebo (N = 5), LPS and placebo (N = 7) or LPS
and quetiapine (n = 7) and performed the ASST. We measured trials to criterion, errors, non-locomotion episodes and latency to
criterion, serum cortisol and tumor necrosis factor alpha (TNF-α) levels. TNF-α levels were not different between groups at 24 h.
Cortisol levels in the LPS +Quetiapine group were reduced compared to LPS + Placebo (P < 0.001) and did not differ from the
placebo group (P = 0.15). Analysis between LPS +Quetiapine and LPS + Placebo treated rats demonstrated improvement in the
compound discrimination reversal (CD Rev1) (P = 0.016) and the intra-dimensional reversal (ID Rev2) (P = 0.007) discrimina-
tions on trials to criterion. LPS +Quetiapine treated rats had fewer errors than LPS + Placebo treated animals in the compound
discrimination (CD) (P = 0.007), CD Rev1 (P = 0.005), ID Rev2 (P < 0.001) discriminations. There was no difference in non-
locomotion frequency or latency to criterion between the three groups in all discriminations (P > 0.0167). We demonstrated
preserved reversal learning, no effect on attentional set shifting and normalized cortisol levels in quetiapine-treated rats in this
neuroinflammatory model of delirium. This suggests that quetiapine’s beneficial effects in delirium may be related to the
preservation of reversal learning and potential downstream effects related to reduction in cortisol production.
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Introduction

Intensive care unit (ICU) delirium is an acute condition char-
acterized by fluctuating disturbances of consciousness, inat-
tention, and cognitive impairment and has been associated
with deleterious long-term outcomes in ICU survivors
(Girard et al. 2008, 2010; Pandharipande et al. 2013). Its path-
ophysiology is incompletely understood, although neuroin-
flammation has been implicated in its development in both
pre-clinical and clinical studies (Munster et al. 2011;
Westhoff et al. 2013; Kawano et al. 2018; Tanaka et al.
2018). Furthermore, functional MRI studies have observed
that the frontal cortex is abnormally affected by acute delirium
(Choi et al. 2012). In addition, delirium may induce long-term
gray and white matter abnormalities in the frontal cortex and
associated areas of the brain (Shioiri et al. 2010; Morandi et al.
2012; Shioiri et al. 2016). The frontal cortex plays a critical
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role in executive functioning, the collection of control pro-
cesses broadly responsible for complex goal-directed behav-
ior. Its impairment likely impacts patients with both
acute delirium and long-term cognitive impairment after
critical illness (Inouye et al. 2016; Stollings et al. 2016;
Duggan et al. 2017).

Quetiapine, an atypical antipsychotic medication with ac-
tivity at dopaminergic (D2), histaminergic (H1), serotoninergic
(5-HT1A, 5-HT2A), and noradrenergic (α1) receptor sites, has
been utilized to manage the symptoms of delirium. Quetiapine
has demonstrated clinical efficacy in the treatment of delirium
(Devlin et al. 2010, 2011, 2016). Compared to haloperidol,
quetiapine exerts substantial effects on the hypothalamic-
pituitary axis (HPA), reducing the secretion of adrenocortico-
tropic hormone (ACTH) and cortisol (Cohrs et al. 2006).
Increased cortisol levels have been observed in patients
with delirium and other conditions associated with execu-
tive dysfunction such as major depressive disorder and
schizophrenia (Carroll et al. 1976; Kazmierski et al. 2013;
Girshkin et al. 2014).

The attentional set shifting task (ASST) is a task of com-
plex cognitive processes associated with executive function-
ing and has been utilized across numerous species (Popik and
Nikiforuk 2015; Brown and Tait 2016). A correlate for the
Wisconsin Card Sorting Test (WCST), it measures the ability
of the animal to learn simple rules, discriminate stimuli within
a relevant dimension and update working memory in the set-
ting of changing dimensions. These presented stimuli (odor,
medium and texture) form an attentional set which are then
challenged with reversal learning. The attentional set is then
challenged by completely new stimuli to assess attentional set
shifting performance. Published lesion studies using the
ASST have demonstrated that the orbitofrontal cortex plays
a major role in reversal learning and the medial prefrontal
cortex in attentional set shifting in the rat (Birrell and Brown
2000; McAlonan and Brown 2003). Quetiapine has been
shown to preserve ASST performance in animal models of
stress and schizophrenia, conditions associated with deleteri-
ous effects on executive function (Nikiforuk and Popik 2012;
Nikiforuk 2013). Lipopolysaccharide (LPS) are large mole-
cules derived from the outer membrane of Gram-negative
bacteria and are ubiquitously used as a method to induce sys-
temic and neuroinflammation in experimental models. It has
been shown that a single dose of LPS may cause chronic
neuroinflammation with neurodegeneration in experimental
mice (Qin et al. 2007). Treatment with LPS disrupts perfor-
mance on the ASST, implicating the ASST as a useful animal
model for the executive dysfunction associated with ICU de-
lirium (Culley et al. 2014). In this study, we hypothesized that
the concurrent administration of quetiapine in LPS-treated rats
would preserve performance on the ASST. We utilized aged
rats (12–18 months) given that advanced age has been shown
to increase the risk of delirium in human populations (Kanova

et al. 2017). Furthermore, we hypothesized that cortisol levels
would be reduced in rats treated with LPS and quetiapine
compared to LPS alone.

Methods

Animals After approval from the Penn State College of
Medicine Institutional Animal Care and Use Committee
(Study Number: 47992), twenty-four Sprague-Dawley female
rats aged 12–18 months (Charles River, Frederick, MD) were
placed in single housing on recommendation of the institu-
tional veterinarian (23 × 45 × 15 cm plastic cages). Animals
were acclimatized over a period of seven days prior to exper-
imental testing. Testing was performed in the dark cycle of a
12-h light/dark cycle to optimize activity. Rats were placed on
a food restriction (15–20 g rat chow per day), offered water ad
libitum and weighed daily. We targeted an optimal weight of
85% of free-fed weight. All procedures adhered to the guide-
lines in the Principles of Laboratory Animal Care (National
Institutes of Health, Eighth Ed., National Academies Press
2011).

Apparatus All rats were trained to the apparatus during the
acclimatization phase (Fig. 1a). Digging bowls were white
porcelain 4 oz. ramekins (diameter: 9.5 cm, depth: 4 cm).
All animals were presented with the ramekins within home
cages on Day 3, introduced to the attentional set shifting ap-
paratus on Day 4–5, and trained to forage for food reward
within the apparatus on days 6–7. The test apparatus was a
clear plexiglass cage (40 × 70 × 18 cm) with opaque plastic
dividers, a design adapted from previous authors (Birrell and
Brown 2000; Popik and Nikiforuk 2015) (Fig. 1b). A remov-
able opaque divider provided a holding area for the animal
between sessions and a non-removable divider separated the
reward areas. The non-removable divider was utilized to pre-
vent animals from rapidly obtaining a reward after an error
was made, allowing the experimenter to remand the animal
back to the holding area to re-start the trial. A hinged lid was
added to prevent the animals from exiting the apparatus and to
reduce ambient noise during testing.

Training On Days 6–7, initial training was comprised of six
trials during the acclimatization phase. Rats were introduced
to the attentional set shifting apparatus with an uncovered
food reward (Fruit Crunchie, Bio-serv, NJ) in one ramekin in
trial 1. For trials 2–6, increasing amounts of sawdust were
utilized to obscure the food reward and encourage foraging
behavior. All animals were then trained on a simple (SD) and
compound discrimination (CD) during the training phase.
Nineteen animals successfully completed the training and
were included in the study. Five animals were excluded as
training non-responders.
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Testing Paradigm Relevant and irrelevant dimensions combi-
nations were pre-randomized to groups (Fig. 1c). Animals
were then randomized into three groups: Placebo + Placebo
(0.9% saline; (n = 5)), Lipopolysaccharide (50mcg/kg; E.coli/
0111:B4; Sigma-Aldrich, MO) treatment + Placebo (n = 7),
and Lipopolysaccharide (50mcg/kg) + Quetiapine (2.5 mg/kg;
3.5 mg/ml buffered solution; Sigma-Aldrich, MO) treatment
(n = 7). All animals received two separate intraperitoneal in-
jections and performed neurobehavioral testing 18 h after
intervention.

Testing Each rat then performed the attentional set shifting
task, a series of seven discriminations that tests attentional
set acquisition, reversal learning and attentional set shifting.
Simple discrimination (SD) was comprised of two stimuli
from one dimension (odor). The compound discrimination

(CD) added two irrelevant dimensions (medium and texture)
to the relevant dimension (odor) used in the SD phase. In the
intra-dimensional shift (ID) phase, all new stimuli were intro-
duced, with the relevant dimension remaining the same. With
the extra-dimensional shift (ED), all new stimuli were intro-
duced but a previously irrelevant dimension (texture), was
now relevant. The ED was performed to test attentional set
shifting, a measure of executive functioning. All reversal
learning stages (CD Rev1, ID Rev2, ED Rev3) demanded that
the rat learn that the previously correct stimulus was now
incorrect. The order of discriminations remained the same
for all animals. All animals received one practice 3-min trial
per discrimination that was excluded from the data analysis.
During the practice trial, animals were allowed free access to
the entire apparatus and allowed to explore or dig in the re-
wards bowls without interference.

Fig. 1 a The timing of acclimatization, testing and serum testing. Note
that rats followed a sequential series of experimental phases with
increasing complexity (simple discrimination (SD); compound discrimi-
nation (CD) compound discrimination reversal (CDRev1); Intra-
dimensional Discrimination (ID); Intra-dimensional Discrimination re-
versal (IDRev2); Extradimensional Discr imination (ED);
Extradimensional Discrimination Reversal (EDRev3)). b The
Attentional Set Shifting Apparatus. Note the non-removable divider

separating the reward bowls. The removable divider (black) separated
the holding area from the reward areas. c Stimuli pairings for the atten-
tional set-shifting task. Each rat performed a practice simple and complex
discrimination task prior to intervention. These odors and medium were
not used again. Rats were then randomized to receive one of three of the
clustered pairings for experimental testing. The ED discrimination was
randomized from one of the other two clusters to ensure animals were
exposed to entirely new stimuli
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Measurements Each discrimination was comprised of a series
of 3-min trials. Each trial started with the removal of the hold-
ing area divider. After retrieval of the reward or an error the rat
was replaced in the holding area for the next trial. If, after
3 min, the rat did not complete the trial with a successful
retrieval of reward, the animal was re-homed in the holding
area. Subsequently, the trial was re-started. Animals attempted
each discrimination until they reached trials to criterion
(TTC). In this study, TTC was the number of trials needed
to reach six consecutive correct trials in the discrimination.
The last five consecutive trials were subtracted from the num-
ber of trials needed to reach TTC. In addition, we measured
errors per discrimination (errors), defined as observer visual-
ized food foraging behavior (digging in the medium) within
the incorrect reward pot. Animals were permitted to smell and
touch the pot without penalty. To measure the behavioral ef-
fects of lipopolysaccharide treatment, we measured the num-
ber of non-locomotor episodes, defined as a 3-min trial where
the animal did not leave the holding area when the holding
divider was removed to commence the trial.

Serum Cortisol and TnF- α Measurements After completing
the neurobehavioral testing, animals were deeply anesthetized
with isoflurane (5%) and a terminal cardiac puncture proce-
dure was performed to retrieve whole blood samples.
Procured samples were immediately centrifuged (1600 rpm,
10 min) and frozen to −80 °C. For serum cortisol and TnF-α
quantification, we used a competitive immunoassay (Enzo
Life Sciences, NY) and a solid phase sandwich ELISA assay
(R&D systems, MN), respectively. Frozen samples were
thawed and run in triplicate according to the manufacturer’s
instructions. Spectrophotometer OD values were quantified,
and calculated results were interpolated using a four-
parameter logistic (4-PL) curve-fit (Prism 7, GraphPad, CA).

Statistical Analysis

Descriptive statistics (mean, standard deviation) were calcu-
lated for the following variables: weight, serum TNF-α levels,
serum cortisol levels, trials to criterion, errors to criterion,
number of in phase trials of no locomotion, and latency to
trials to criterion. Analysis of variance models were used to
compare the treatment groups with respect to TnF-α levels
and serum cortisol levels. A general linear model (GLM) with
correlated errors was fit to assess the effects of group, day and
the interaction of group and day on weight (Diggle et al.
2002). GLM with correlated errors also were used to assess
the effects of group, discrimination, and the interaction of
group and discrimination on the outcomes of trials to criterion,
errors to criterion, number of trials of no locomotion, and

latency to trials to criterion. The GLM with correlated errors
takes into account the repeated measurement obtained per
animal. Residual diagnostics were used to ensure modeling
assumptions were met for normality. Pairwise comparisons
among the 3 treatments are presented for individual days in
Fig. 1. We were most interested in within-phase comparisons
in our post-hoc analyses and we used a Bonferroni adjustment
to determine significance. For our post-hoc analyses, the p
value had to be less than 0.0167 to be considered significant
(Bonferroni adjustment =α/R = 0.05/3 = 0.0167, where α =
significance level and R = number of treatment groups per
compared phase). All hypothesis tests were two-sided, and
all analyses were performed using SAS software, version 9.4
(SAS Institute Inc., Cay, NC).

Results

Weight Weight in grams did not differ between groups as
measured at regular intervals (Days 0, 3, 5) during the pre-
intervention time period (all P > 0.0167).

LPS and Quetiapine Effects on TnF-α and Cortisol Levels As
previously demonstrated by Culley and colleagues, TNF-α
levels were not significantly different between LPS-treated
groups at 24 h after LPS administration and were similar to
placebo animals (Fig. 2a). In contrast, values for cortisol levels
were different between groups. LPS-treated animals receiving
concurrent administration of quetiapine demonstrated a
5.04 ng/mL reduction in cortisol levels compared to LPS-
treated animals (95% CI (−2.92, −7.15) P < 0.001).
Furthermore, LPS +Quetiapine group cortisol levels did not
significantly differ from Placebo group (95% CI (−0.64, 4.00)
P = 0.15) (Fig. 2b).

Behavioral Findings

Trials to Criterion between Groups Data is presented in Fig.
2c. LPS +Quetiapine treated animals demonstrated less TTC
at CD Rev1 (mean difference = −11.70; 95% CI (2.57, 20.84)
P = 0.016) and ID Rev2 (95% CI (3.21, 16.64) P = 0.007
[0.137]) compared to LPS + Placebo treated animals indica-
tive of improved performance. No difference between LPS +
Quetiapine and LPS + Placebo groups was observed in the ED
(95% CI (−11.55, 3.27) P = 0.248) or EDRev3 (95% CI
(−7.98, 2.82) P = 0.31) phases.

Errors between Groups Data is presented in Fig. 2d. LPS +
Quetiapine treated animals had significantly fewer errors than
LPS + Placebo treated animals in the CD (mean difference =
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−1.68; 95% CI (−2.82, −0.54) P = 0.007), CD Rev1 (mean
difference = −2.17; 95% CI (−3.60, −0.73) P = 0.005), ID
Rev2 (mean difference = −2.02; 95% CI (−3.07, −0.98)
P < 0.001) discriminations. No significant differences in the
ED (P = 0.630) or ED Rev3 (P = 0.40) discriminations were
observed between these groups.

Non-locomotion between Groups There were no observed dif-
ferences in non-locomotion frequency between the LPS +
Quetiapine and LPS + Placebo groups in all discriminations
(all P > 0.0167). The placebo group had fewer non-locomotion
periods in all discriminations compared to the other two groups
however this was not statistically significant (all P > 0.0167).

Fig. 2 a, b. Serum TNF-α and cortisol Levels 24 h after intervention. No
difference was observed between groups with respect to TNF-α levels.
The serum cortisol level of the LPS +Quetiapine group was significantly
lower than the LPS + placebo group. No difference was observed be-
tween the LPS +Quetiapine and placebo groups with respect to serum
cortisol levels. *denotes a p value of between group effect (p < 0.001). c
Post-intervention trials to criterion between groups. The y-axis demon-
strates trials to criterion (TTC), the number of trials (not including the last
five) prior to reaching six consecutive trials on individual discriminations
in placebo, LPS + Placebo or LPS +Quetiapine treated groups. LPS +
Quetiapine treated rats displayed improved reversal learning compared
to LPS + Placebo treated rats. Attentional set shifting (ED) did not differ

significantly between LPS + Placebo and LPS +Quetiapine treated rats.
The placebo group significantly outperformed both treatment groups in
all phases of the attentional set shifting task. * denotes p value of between
group effect (p < 0.0167). d Post-intervention errors to criterion between
groups. The y-axis quantifies the number of errors, defined as digging
behavior in the incorrect reward pot, prior to achieving TTC. LPS treated
animals sharply deviated from LPS +Quetiapine treated rats in number of
errors at the CD, CD Rev. 1, and ID Rev2 phases. The CD improvement
may be indicative of improved discriminative learning by quetiapine
treated rats. Though EDRev3 performance was not significant by
Bonferroni correction, quetiapine treated rats did have improved perfor-
mance. *denotes p value of between-group effect (p < 0.0167)
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Discussion

In this study of quetiapine in a model of systemic inflamma-
tion designed to simulate delirium, we were able to provide
some of the first pre-clinical evidence to support the use of
quetiapine for the cognitive dysfunction associated with acute
delirium. LPS + Quetiapine treated rats demonstrated pre-
served reversal learning by trials to criterion compared to
LPS + Placebo treated rats (CDRev1, IDRev2). In addition,
LPS + Quetiapine treated rats compared to LPS + Placebo
treated rats showed a reduction in errors to criterion in the
CD, CDRev1, and IDRev2 trials. The improvement in CD
between groups may demonstrate a beneficial effect on dis-
criminative learning with Quetiapine treatment and this may
have contributed to the improvement in reversal learning.
Based on the aforementioned lesion studies, this may impli-
cate the orbital prefrontal cortex in the cognitive dysfunction
associated with delirium. The orbital prefrontal cortex in the
rat is tasked with the integration of spatial working memory,
decision making and inhibitory response control (Dalley et al.
2004; Kolb and Gibb 2015). Although primitive in rats, its
function correlates with studies in primates and humans.
Imaging studies in humans have demonstrated that larger or-
bital cortex volumes are associated with improved attentional
control and reduced perseverative error on the WCST (Nestor
et al. 2015; Ohtani et al. 2017) . Due to multiple neurotrans-
mitter effects exerted by quetiapine, the pharmacological
mechanism is unclear. Quetiapine demonstrates 5-HT2A an-
tagonism and partial 5-HT1A agonism among other pharma-
cological properties. Previous observations in primates have
demonstrated selective serotonin depletion affects reversal
learning but not attentional set shifting in the ASST (Roberts
et al. 2005). Quantitative in-vitro receptor autoradiography
has suggested that quetiapine increases 5-HT1A, decreases 5-
HT2A but exerted minimal effects on dopaminergic receptor
density in the frontal cortex, implying that dopaminergic
mechanisms are less likely cause of its beneficial effects
(Tarazi et al. 2001).

Secondly, we observed that quetiapine exerts a strong ef-
fect on cortisol secretion. It is known that older rats demon-
strate a more robust neuroinflammatory response to a periph-
eral immune challenge (Tanaka et al. 2018). This exaggerated
and persistent response may result in prolonged cognitive im-
pairment after surgical or systemic insult (Hovens et al. 2016;
Kawano et al. 2018). We found a reduction in serum cortisol
levels at 24 h in LPS +Quetiapine compared to LPS + Placebo
treated rats. This observations corroborates with studies that
have documented ACTH and cortisol reduction with the ad-
ministration of olanzapine and quetiapine in both healthy sub-
jects and patients with major depressive disorder (Cohrs et al.
2006; Nothdurfter et al. 2014). Given that LPS administration
has been shown to cause a direct dose-dependent stimulation
of cortisol secretion, these findings suggest that quetiapine

may have strong inhibitory qualities on the HPA axis
(Beishuizen and Thijs 2003; Vakharia and Hinson 2005).
Furthermore, we surmise that the cognitive preservation dem-
onstrated by the LPS +Quetiapine group on the ASSTmay be
related to its salutatory effects on cortisol secretion. Clinical
associations between hypercortisolemia, cognitive impair-
ment and delirium have been previously documented
(Maclullich et al. 2008; Kazmierski et al. 2013, 2014; Sun
et al. 2016). The mechanism by which quetiapine exerts these
beneficial effects on systemic cortisol secretion are less clear.
Quetiapine is a potent noradrenaline (NE) reuptake inhibitor
and increases noradrenaline release in the prefrontal cortex via
inhibition of the noradrenaline transporter (Pira et al. 2004;
Cross et al. 2016). It has been demonstrated that the prefrontal
cortex exerts modulatory control on HPA axis activity and the
sympathoadrenal system (Diorio et al. 1993; Radley et al.
2006; Myers et al. 2017). Furthermore, it has been observed
that the medial prefrontal cortex may exert inhibitory effects
on the sympathoadrenal system (Ondicova et al. 2012). Thus,
it is reasonable to theorize that quetiapine-mediated NE re-
lease in the PFC may exert the observed cortisol suppression
via this mechanism, but more evidence is required to support
this theory.

Our study did have limitations. Our smaller sample size
may have limited our ability to detect some potential dif-
ferences although we attempted to control for this error
using a post-hoc Bonferroni adjustment. Studies utilizing
female compared to male animals in the ASST have not
demonstrated appreciable sex-related differences, however
this study should be repeated in male rats to analyze for
gender-related differences (McLean et al. 2008; Alexander
et al. 2013). Animals were single-housed based on the rec-
ommendation of the institutional veterinarian, we acknowl-
edge that this may have added additional stress on the
animals and potentially affected the results of a neurobe-
havioral study. Future research into other behavioral
markers of delirium in rats would strengthen the ASST as
an animal model for executive dysfunction in delirium. In
addition, it is unclear how long the LPS-mediated deficits
persist in the ASST, which may expand the ASST as a
model for the observed long-term cognitive impairments
associated with acute delirium. Quetiapine has multiple
neurotransmitter binding sites therefore further testing
quetiapine’s specific receptor targets may elucidate the
mechanisms by which it both ameliorates cognitive dys-
function and cortisol suppression. In addition, noradrener-
gic modulation of the HPA axis is unclear and further stud-
ies exploring these mechanisms would improve our under-
standing of cortisol’s effects on reversal learning and
quetiapine’s modulatory role. Finally, finding clinical as-
sociations between cortisol and measures of executive
function in quetiapine-treated patients with delirium would
be useful to confirm our findings.
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Conclusion

To our knowledge, we have provided the first pre-clinical
observation of quetiapine’s beneficial effects on cognitive
flexibility in a neuroinflammatory model designed to mimic
delirium. Secondly, we observed that quetiapine exerts strong
inhibitory effects on the HPA axis suggesting a role for
noradrenergic-mediated cortisol suppression in the treatment
of acute delirium. In addition, we believe that this study con-
firms the utility of the ASST as a model for the study of
delirium-related cognitive impairments. Finally, we believe
that these findings strengthen the evidence for quetiapine in
the treatment of delirium-related cognitive dysfunction.
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