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Abstract
Retroviruses comprise an ancient and varied group of viruses with the unique ability to integrate DNA from an RNA transcript
into the genome, a subset of which are able to integrate in humans. The timing of these integrations during human history has
dictated whether these viruses have remained exogenous and given rise to various human diseases or have become inseparable
from the host genome (endogenous retroviruses). Given the ability of retroviruses to integrate into the host and subsequently co-
opt host cellular process for viral propagation, retroviruses have been shown to be closely associated with several cellular
processes including exosome formation. Exosomes are 30-150 nm unilamellar extracellular vesicles that originate from
intraluminal vesicles (ILVs) that form in the endosomal compartment. Exosomes have been shown to be important in intercellular
communication and immune cell function. Almost every cell type studied has been shown to produce these types of vesicles, with
the cell type dictating the contents, which include proteins, mRNA, and miRNAs. Importantly, recent evidence has shown that
infection by viruses, including retroviruses, alter the contents and subsequent function of produced exosomes. In this review, we
will discuss the important retroviruses associated with human health and disease. Furthermore, we will delve into the impact of
exosome formation and manipulation by integrated retroviruses on human health, survival, and human retroviral disease
pathogenesis.
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Introduction

Retroviruses first emerged into the general public in the 1980s
during the beginnings of the AIDS epidemic. This disease is
caused by Human Immunodeficiency Virus (HIV), which is a
type of virus that requires reverse transcription of RNA to
DNA and integration into the host DNA for successful infec-
tion. Indeed, while HIV is the best known and most recent

retrovirus to enter the human population, retroviruses com-
prise a unique and diverse family of enveloped single-
stranded RNA viruses that evidence suggests has a long evo-
lutionary history dating back almost 450 million years ago in
vertebrates (Aiewsakun and Katzourakis 2017; Hughes and
Coffin 2005). Given the ancient history of retroviruses and
their ability to integrate in the host genome, there have been
instances when integrations have occurred in the germline,
giving rise to permanent viral elements in the human genome.
These elements, termed endogenous retroviruses, comprise
almost 8% of the human genome (Griffiths 2001).

The close association between retroviruses and humans has
allowed both endogenous and exogenous retroviruses to enter
many human processes, both natural and pathogenic such that
these viruses are thought to be involved in pregnancy, auto-
immunity, cancer, and inflammatory disorders to name a few
(Cloyd 1996; Ryan 2004). Indeed, retroviruses as a whole are
large determinants of human morbidity and mortality. They
have also become associated with intrinsic cellular processes
such as genetic transfer (transposons) and intercellular com-
munication (Izquierdo-Useros et al. 2011; Kitamura et al.
2003; Mittelbrunn and Sanchez-Madrid 2012). In particular,
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cells form extracellular vesicles including exosomeswhich are
30-150 nm in size to deliver messages as mRNA, miRNA,
and proteins to local and distal sites as a form intercellular
communication. This review will focus on the retroviruses
associated with human health and mortality, as well as their
association with exosomes and how the current understanding
of this association impacts retroviral pathology.

Retroviruses

Retrovirues are RNA viruses that can reverse transcribe into
the host-genome via a DNA intermediate, which can later
serve as the template for viral mRNA and proteins. The family
of retroviridae is split into two genera: orthoretrovirinae and
spumaretrovirinae. All viruses known to cause to disease in
humans and other animals are within the orthoretrovinae sub-
families. This subfamily is further classified into genera
alpharetrovirus , betaret rovirus , del ta ret rovirus ,
epsilonretrovirus, gammaretrovirus, and lentivirus
(Retrovidae 2012). Alpharetrovirus are not known to infect
humans and include avian leukovirus and rous sarcoma virus.
Betaretrovirus are also not known to infect humans but can
infect some animals. This subfamily includes Langur virus
and squirrel monkey retrovirus. Deltaretrovirus includes the
important human pathogen Human T cell Lymphotropic virus
Type 1 (HTLV-1) as well as HTLV-2, HTLV-3 and Bovine
Leukemia Virus (BLV). Both episolonretrovirus and
gammaretrovirus are not associated with human infection
and include Walleye dermal sarcoma virus and feline leuke-
mia virus respectively. Initial research had classified
Xenotropic murine leukemia virus-related virus (XMRV) as
a human pathogen within the subfamily of gammaretrovirus
(Denner 2010). XMRV is now understood to be a result of a
recombinant event and laboratory contaminant (Arias and Fan
2014). The subfamily of lentivirus is a large determinant of
human disease, specifically due to Human Immunodeficiency
virus (HIV), however it also includes HIV-2, feline
immunodefiency virus (FIV) and simian immunodefiency vi-
rus (SIV). Alpha, beta, gamma and epsilonretroviruses are
classified as simple while delta, lenti and spuma are classified
as complex.

Endogenous retroviruses (ERV) comprise approximately
50 groups and are distributed amongst gamma-like, beta-like,
epsilon-like and spuma-like groups (Escalera-Zamudio and
Greenwood 2016). Well characterized human ERV (HERV)
such as HERV-Wand HERV-K (HML2) are classified in gam-
ma and betaretrovirus respectively (Table 1).

All retroviruses have a general composition of 2 single-
stranded genomic RNA (gRNA) strands within a capsid
surrounded by an envelope. Most particles measure approxi-
mately 100 nm in diameter and carry group-specific antigen
(gag : caps id , nuc leocaps id , ma t r ix ) as we l l a s

retrotranscriptase (RT), integrase (IN), and the viral protease
(PR) (Kannian and Green 2010). While each individual retro-
virus has specific cellular tropisms, they infect by attaching to
the cell membrane via adhesion to a cellular receptor to viral
env, followed by membrane fusion and viral entry (Kannian
and Green 2010). Upon entry, the virus reverse transcribes the
gRNA to dsDNA and integrates into the host genome as a
provirus within the nucleus. There are multiple integration
sites between viruses and certain viruses may favor integration
into specific regions or have a non-redundant integration pat-
tern when evaluatingmultiple infections (Desfarges and Ciuffi
2010; Serrao and Engelman 2016). Since retroviruses can po-
tentially integrate anywhere in the human genome, they are de
facto protooncogenic due to mutagenesis that occurs with in-
sertions into genes or promoters (Downey et al. 2015). Once
integrated into the host genome, viral gene transcription can
be initiated from the long terminal repeats (LTR) at either end
of the provirus. Viral gene transcription is tightly controlled,
both by the virus and the host.

Viral gene expression and organization differs between
simple and complex retroviruses. The RNA transcript encodes
gag, pro, pol, and env but complex retroviruses also encode
additional regulatory genes through alternate gene splicing.
As an example, HTLV-1 also encodes tax, a pleiotropic regu-
latory gene. Reverse transcriptase and integrase are products
of the pol coding region while the protease is a product of the
pro coding region. Some of these genes, such as gag, pol and
env are involved in viral particle assembly as well as integra-
tion into the host genome. Due to the small size of viral ge-
nome, several host genes are also involved in these processes.
Indeed, retroviruses like other viruses are dependent on host
processes for further propagation. Prior thinking restricted this
to cooption of host transcription factors and DNA and RNA
transcription machinery. However, in recent years viruses
have also been noted to take advantage of another cellular
process for viral propagation and/or escaping immune surveil-
lance through the packaging of macromolecules into extracel-
lular vesicles for distribution outside the cell.

Extracellular vesicles (EVs) are vesicles released by cells
into the extracellular space. They comprise both microvesicles
(MVs) which originate from the plasma membrane and range
from 100 nm–1000 nm, apoptotic bodies which are the result

Table 1 Retrovirus taxonomy

Retrovirus subfamilies Virus examples

Alpharetrovirus ALV, RSV

Betaretrovirus MMTV, SRV, HERV-K

Gammaretrovirus FeLV, MLV, HERV-W

Deltaretrovirus HTLV-1, HTLV-2, BLV

Epsilonretrovirus WDSV, SnRV

Lentivirus HIV-1, HIV-2, FIV, SIV
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of dying cells blebbing and compartmentalizing (1μm-5μm),
and exosomes which range from 30 nm-100 or 150 nm
(Helwa et al. 2017; Zeringer et al. 2015). Exosomes are
intraluminal vesicles (ILVs) that formed in the endosomal
compartment and are released into the extracellular space after
fusion of multivesicular bodies (MVBs) with the plasma
membrane instead of fusion with lysosomes for degradation
(Bissig and Gruenberg 2014; Robbins and Morelli 2014). In a
process called Bback fusion^, ILVs deliver plasma membrane
invaginations (through clathrin-mediated and clathrin-
independent endocytosis) to the endosomal network, making
them (and therefore exosomes) capable of carrying both intra-
cellular and extracellular products (Alenquer and Amorim
2015; Nour and Modis 2014).

The exact intracellular signals that direct ILVs to the plas-
ma membrane for release are still under investigation.
Endosomal sorting complexes required for transport
(ESCRT) machinery has been studied in its role for directing
ubiquitin-labeled proteins into endosomes for delivery into
MVBs, and, as such, ESCRT proteins, like Alix and
TSG101, are enriched in exosomes (Matsuo et al. 2004).
Lipid raft-associated proteins such as transferrin and
caveolins, and other proteins involved in membrane traffick-
ing, like the tetraspanins CD9, CD63, and CD81, which have
been shown to bind to ESCRT machinery, are also enriched in
exosomes (Meckes and Meckes Jr and Raab-Traub 2011;
Sampey et al. 2014).

However, ESCRT is not the only method by which
exosome formation can occur as there are also ESCRT
independent methods by which proteins, lipids, and RNA
can enter the endosomal pathway. For example, oligoden-
drocytes direct exosome formation via the ceramide path-
way (Trajkovic et al. 2008), while other cell types rely on
oligomerization of tetraspanin complexes (Perez-
Hernandez e t a l . 2013 ; van Nie l e t a l . 2011) .
Furthermore, while knockdown of some ESCRT compo-
nents may abrogate exosome production, it does not
completely knock it out (Stuffers et al. 2009; Tamai
et al. 2010). Indeed, Rab GTPases, a known family of
conserved proteins that regulate vesicular trafficking and
membrane fusion events, are also involved in exosome
formation as denoted by their high abundance in isolated
exosomes (Schorey et al. 2015; Tamai et al. 2010). Several
are implicated in the release of exosomes, including
Rab11, Rab27, Rab5, Rab35, and Rab7, depending on cell
type (Alenquer and Amorim 2015; Schorey et al. 2015).
Rab 27a, in particular, regulates the fusion of MVBs at the
plasma membrane to release ILVs (Ostrowski et al. 2010;
Schorey et al. 2015). Knockdown of Rab 27a inhibits
exosome secretion from tumor cell lines (Ostrowski et al.
2010; Robbins and Morelli 2014). There are several other
Rabs that have also proven essential through a diminution
in exosome levels after their knockdown, including Rab

2B, Rab9A, Rab5A, and Rab27b (Robbins and Morelli
2014). Being GTPases, the activation of each Rab is de-
pendent on an influx of calcium, as is the case for Rab 11
in the K562 cell line, which may involve SNARE com-
plexes (Colombo et al. 2014; Fader et al. 2009; Savina
et al. 2005). Altogether, there are clearly several players
within the cell that contribute to the endosomal compart-
ment and, ultimately, to the release of exosomes, further
emphasizing the importance of this pathway in normal
biology.

The contents of exosomes vary based on the cell of origin
but can include miRNAs, proteins, mRNAs, enzymes, lipids,
and carbohydrates. Almost every cell investigated has been
found to be capable of producing exosomes. The cargo of
exosomes released by regulatory T cells will necessarily differ
from the exosomes released by dendritic cells or activated T
cells. Indeed, while immunosuppressive exosomes have large-
ly been attributed to the Tregs, other cells can produce
exosomes that help reduce inflammation like mesenchymal
stem cells (MSCs) (Baglio et al. 2012; Narayanan et al.
2013). Since exosomes are a reflection of the content and
function of the cells from which they arise, they have become
another tool to assess the state of the host. Indeed, there is an
ever increasing number of studies utilizing exosomes as bio-
markers in cancer, autoimmune disease and neurodegenera-
tive disorders (Lin et al. 2015; Perez-Hernandez and Cortes
2015; Properzi et al. 2013).

Given their important role in intracellular communication,
methods of exosome isolation have been heavily investigated.
Their microscopic size and potential overlap with other mi-
croscopic organisms has necessitated careful isolation
methods. Traditionally, serial steps of ultracentrifugation have
been favored for the removal of these vesicles from fluid
preparations. However, this method is time consuming, vol-
ume limiting, wasteful, and can often result in exosomes that
are altered/ damaged (Lamparski et al. 2002; Zeringer et al.
2015). As such other technologies have been employed that
utilize size, charge, and chemical means for isolation of
exosomes. For example, there are certain products, like
ExoQuick®, which allow for polymer-based exosomal pre-
cipitation while other technologies allow for bead-based
immunonologic separation of exosomes based on tetraspanin
expression (Rider et al. 2016). Still other technologies, such as
qEV® columns, separate exosomes based on chromatography
and filtration (Lezin et al. 2005). Each method has its advan-
tages and disadvantages in the ability to specifically isolate
exosomes separately from other microvesicles (Helwa et al.
2017). Another method utilizing synthetic hydrogel nanopar-
ticles called Nanotrap particles ® has demonstrated specific
isolation of exosomes. The method of isolation requires size
and charge exclusion as well as binding to sugars on
tetraspanins (unpublished), which may explain the increased
specificity of the technology.
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Exosomes in Viral Infection

Considering that the function of released exosomes is depen-
dent on the cargo and receptors on the exosomes, it follows
that any alteration in the cell contents of the exosome-
producing cell would alter the contents of released exosomes.
Indeed, infected cells have been shown to vastly alter
exosomal contents. Hepatitis C Virus (HCV) infection repre-
sents a well-documented case of viral coopting of exosomal
communication for the delivery of viral components
(Anderson et al. 2014). It is well known that the HCV viral
genome can remain in ILVs and be secreted within exosomes,
where they can operate as infectious particles (Longatti et al.
2015; Ramakrishnaiah et al. 2013). By using a transwell assay,
Longatti et al. showed that they were able to infect Hu7 cells
after exposure to these shed exosomes without the need for
direct cell–cell contact. Further, this infection was inhibited by
blocking exosomal release with a sphingomyelinase inhibitor.
Other pathogens are closely associated with the Rab GTPases
and other components of the ESCRT pathway which allows
for incorporation of viral components into developing
exosomes. For example, HIV Gag has been shown to interact
with tetraspanins, especially CD63 and CD81, to aid in virion
egress (Madison and Okeoma 2015).

Trafficking of Antigens into Exosomes

Understanding how viral components incorporate into
exosomes requires knowledge of how macromolecules can
be generally directed to this pathway. Further elaborating on
the ESCRT pathway, the endosomal sorting complexes re-
quired for transport (ESCRT) is actually composed of four
sets of machinery referred to as ESCRT 0, I, ESCRT II, and
ESCRT III (Urbanelli et al. 2013). ESCRT 0 recognizes
ubiquinated proteins and recruits them for endosomal sorting
through interaction of its ubiquitin-binding Hrs FYVE domain
with phosphatidyl inositol 3-phosphate (PI3P) (Henne et al.
2011). ESCRT 1 is then recruited through tumor susceptibility
gene 101(TSG101) interaction with the hepatocyte growth
factor-regulated tyrosine kinase substrate (Hrs) PSAP of
ESCRT 0 (Schmidt and Teis 2012). ESCRT 1 then recruits
ESCRT II proteins which then recruit ESCRT III, which is
stabilized by the recruitment of Alix (ALG-2 interacting
protein X) (Villarroya-Beltri et al. 2014). For the complex to
dissociate from the plasma membrane requires energy in the
form of ATP. This is provided by the ATPase VsP4 (Henne
et al. 2011).

While ubiquitination is a tool for protein sorting into
ESCRT-dependent exosomes, there are other mechanisms as
well. Syndecans, which are a main source of heparin sulfate in
the cell membrane, bind to syntenin which can interact with
CD63 and Alix (Villarroya-Beltri et al. 2014). Syndecans

possess lateral heparin sulfate polysacharide chains which
can be cleaved into shorter chains by heparanse activity in
the endosomes (Roucourt et al. 2015). Shorter heparain sulfate
chains condense and cluster leading to syndecan
oligermerization, which appears to allow for syntenin binding
in a cargo-dependent manner (Stoorvogel 2015). This ulti-
mately allows for sorting into endosomes. Indeed, silencing
of either syntenin or syndecans reduced exosome production
(Baietti et al. 2012). Therefore, any protein that can bind to
syndecans can also sort to exosomes. This suggest that
ubiquitination, which is usually the first step in the ESCRT
pathway, is not strictly necessary for sorting of cellular pro-
teins into exosome.

In addition to ESCRT dependent pathways, exosomes are
also known to form through ceramide oligomerization.
Ceramide can cause spontaneous bending and coalescence
of microdomains in endosomal membranes (Trajkovic et al.
2008). Furthermore, T cell CD63+ exosome shuttling to APCs
involved ceramide synthesis (Mittelbrunn et al. 2011).
Tetraspanin clustering in tetraspanin-enriched domains
(TEMs) also appears to be involved in exosome formation
and protein sorting. In particular, there are a number of viral
proteins known to preferentially sort to exosomes through
interactions with tetraspanins. In particular, EBV LMP1 binds
to CD63 and sorts to exosomes (Verweij et al. 2011).
Separately, CD81 plays an important role in exosome compo-
sition through interactions of its cytoplasmic domain (Andreu
and Yanez-Mo 2014). Another cited mechanism for protein
sorting into exosomes is through higher order oligomerization
(oligomerization of oligomers) of cytoplasmic proteins in a
process similar to pole formation in polarized cells which is
termed immediate mode exosome biogenesis (Fang et al.
2007). However, this mechanism was shown to be important
in protein sorting to shedding vesicles from the plasma mem-
brane, although the authors noted that it is often difficult to
differentiate these from endosomally derived vesicles (Shen
et al. 2011). Additionally, it has been shown that acylation
serves as another method of protein tagging for export in
microvesicles (Fang et al. 2007).

RNA localization to exosomes involves additional mecha-
nisms. It has been observed that miRNAs carry specific
EXOmotifs that allow for preferential packaging into
exosomes, as enrichment of specific miRNAs in exosomes
has been observed in human studies (Villarroya-Beltri et al.
2013). These motifs facilitate binding to heterogeneous ribo-
nucleoprotein A2B1 (hnRNPA2b1), which is preferentially
sumoylated in exosomes (Villarroya-Beltri et al. 2013). It is
an RNA binding and transport protein known to be particular-
ly important in RNA trafficking in neurons (Han et al. 2010).
Additionally, Annexin-2 may also play a role in RNA sorting
into exosomes (Hagiwara et al. 2015) (Filipenko et al. 2004).
Sorting of mRNAs into exosomes seems to involve binding to
the mRNA 3’UTR and the short motif CTGCC (Villarroya-
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Beltri et al. 2014). Interestingly, mRNA sorting also appeared
to be dependent on certain miRNAs (Zhang et al. 2015).

As has been illustrated, the mechanisms involved in the
formation of exosomes and the steps leading to macromole-
cule incorporation prior to their release is still under investi-
gation. An overview of retroviruses and specifically important
human pathogens in the retrovirus family have been given to
exemplify their importance in human pathology. Furthermore,
examples of how viral antigens can be incorporated at each
step of exosome formation has been briefly illustrated. For the
remainder of this review, how retroviruses specifically be-
come associated with exosomes and how this process aids or
alters retrovirus-associated diseases will be discussed through
the examples of HIV, HTLV-1 and endogenous retroviruses.

HIV

Asmentioned HIV, a lentivirus, is the most recent retrovirus to
enter the human population. Most agree that infection in
humans likely occurred in the early twentieth century through
exposure to SIV from chimps and eventual mutation to an
efficient human pathogen (Sharp and Hahn 2011). While
AIDS was not recognized as a disease until the 1980s, HIV
retains many of the mechanisms for infection and egress that
are seen with SIV infection. This includes close association
with exosome formation machinery for virion particle release.
Indeed, SIV has also been shown to incorporate viral antigens
into produced exosomes (Yelamanchili et al. 2015). In partic-
ular, both viruses require interactions with cellular factors like
TSG101 and Alix for viral budding, both of which are in-
volved in exosome biogenesis (Fisher et al. 2007; Jesus da
Costa et al. 2009). Additionally, HIV-1 tends to favor budding
from tetraspanin-enriched microdomains (TEM) containing
CD9, CD63, CD81, and CD82 (Krementsov et al. 2009;
Thali 2009). It has even been reported that tetraspanins can
be present in the envelope of budding HIV-1 (Thali 2011;
Tremblay et al. 1998), although there are conflicting reports
as to the significance of this finding. Some research supports
increased particle release with incorporation of tetraspanins
while other reports were equivocal in the change to virion
budding with tetraspanins (Krementsov et al. 2009; Thali
2009). Most agree that tetraspanins present on the virion
membrane did have a negative effect on subsequent Env-
induced virus-cell fusion (Gordon-Alonso et al. 2006).

Importantly, HIV virion assembly and egress closely re-
sembles exosome biogenesis (Pelchen-Matthews et al.
2003), which may explain why HIV has been noted to take
advantage of several steps in exosome biogenesis. Gould et al.
(Gould et al. 2003) hypothesize that with the similarities be-
tween HIVassembly and egress and exosome biogenesis, HIV
has evolved to co-opt the exosome system and infect cells
through packaging of the viral genome in the BTrojan horse^

hypothesis (Gould et al. 2003). It is a theory supported by
observations that HIV virions are released with exosomes
and have enhanced infectivity in the presence of these vesicles
(Wiley and Gummuluru 2006). However, this mechanism oc-
curred via uptake by dendritic cells (DCs), which subsequent-
ly transferred endocytosed HIV to closely associated uninfect-
ed T cells (Piguet and Steinman 2007). Specifically, HIV is
endocytosed via DC sign into the endocytic pathway and traf-
ficked back to the cell surface in intact DCs for presentation to
T cells. While direct packaging of HIV genomic RNA into
exosomes has been observed in the U937 cell line, it was
not infectious (Columba Cabezas and Federico 2013) and this
observation has not beenmade in vivo. Furthermore, evidence
supports HIV virion budding from the plasma membrane
(Sundquist and Krausslich 2012), which would more closely
resemble the release of microvesicles than exosomes (Raposo
and Stoorvogel 2013).

Nevertheless, besides close association with components of
the exosome biogenesis machinery, HIV has also been noted
to preferentially incorporate mRNA, protein and miRNA into
released exosomes. For example, HIV has been shown to
traffic transactivating response element (TAR) RNA into
exosomes (Narayanan et al. 2013; Sampey et al. 2016). TAR
RNA is a pre-miRNA necessary for activation of the viral
promoter and viral replication through binding to HIV Tat
protein and interaction with the LTR promoter (Das et al.
2011; Swaminathan et al. 2014). The uptake of exosomal
TAR in recipient cells can downregulate apoptosis and is pos-
tulated to have a role in supporting HIV infection (Narayanan
et al. 2013). Importantly, TAR RNA was still able to be de-
tected in exosomes isolated from the serum of HIV-positive
patients on highly active antiretroviral therapy, indicating that
even with antiretroviral therapy, short transcripts remain pres-
ent in these exosomes (Jaworski et al. 2014). Indeed, the same
group later went on to find that exosomal TAR RNA could
stimulate proinflammatory cytokines in recipient cells through
activation of the nuclear factor kappa b (NFκB) pathway
(Sampey et al. 2016).

In a separate study, the HIV Nef protein was found in
released exosomes (Campbell et al. 2008). Later uptake of
these Nef+ exosomes led to increased susceptibility of naïve
Tcells to HIV infection (Arenaccio et al. 2014; Campbell et al.
2008). Indeed, another report found that exosomes from HIV-
infected cells could reactivate HIV in latently infected cells
(Arenaccio et al. 2015). This is similar to an observation in
SIV where plasma-derived exosomes could reactivate resting
CD4+ T cells (Hong, Schouest, and Xu. Scientific Reports
Nov 2017). Exosomal Nef has also been shown to increase
T-cell apoptosis in vitro, which may contribute to the CD4+ T-
cell depletion in AIDS pathogenesis (Lenassi et al. 2010).
Interestingly, Nef expression in CD4+ T cells was also noted
to decrease CD4 and MHC I export to released exosomes (de
Carvalho et al. 2014). The authors postulated that this
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decreases the ability of CD4+ T cells to inhibit HIV infection
in uninfected cells by using exosomes as decoys to soak up
HIV virions. This would further explain how Nef+ exosomes
enhance HIV infectivity. More recently, Luo disputed the in-
corporation of Nef into exosomes at all (Luo et al. 2015),
despite several reports finding motifs within Nef that are nec-
essary for exosomal incorporation (Ali et al. 2010; Campbell
et al. 2012). Nef may traffic to exosomes through association
with lipid-raft domains. Moreover, transfection of cell lines
with Nef increased exosome production (Madison and
Okeoma 2015).

In addition to HIV TAR RNA, gRNA, and proteins, HIV-
deried miRNAs can also be detected in exosomes isolated
from cell line cultures and HIV positive individuals. In partic-
ular, HIV-1 vmiRTAR, vmiRT88, vmiRT99 can be found in
exosomes isolated from the blood of HIV positive individuals
(Bernard et al. 2014). The authors showed that the presence of
vmi88 and vmi99 in released exosomes could stimulate the
release of TNFα from macrophages through TLR8 signaling
while separately vmiRTAR in exosomes reduced Bim and
Cdk9 expression in target cells leading to their reduced apo-
ptosis (Madison and Okeoma 2015).

It is clear that HIV has evolved mechanisms to alter the
cellular microenvironment to its advantage through exosomal
cellular communication. Compounded with data indicating
the presence of exosomes containing HIV proteins in the se-
rum of HIV patients undergoing highly active antiretroviral
therapy (HAART), it becomes apparent that incorporation of
viral components into released exosomes may play a role in
HIV infection and viral persistence (Jaworski et al. 2014).
Indeed, the ability to detect viral antigens in exosomes even
in the absence of viral detection has yielded increased interest
in exosomal detection in HIVassociated neurologic disorders
(HAND), as well as in other disorders in which immune re-
sponses to a pathogen are suspected but where the pathogen is
difficult to detect.

HTLV

Like HIV, there are several other viruses that also target viral
RNAs and proteins for exosomal export. HTLV-1, another
human retrovirus and the cause of adult T-cell leukemia and
HTLV-1-associated myelopathy/tropical spastic paraparesis
(HAM/TSP), has also been shown to incorporate viral proteins
into shed exosomes (Anderson et al. 2016). Unlike HIV,
HTLV-1 has been in the human population for millennia (Li
et al. 1999; Novak 1999; Verdonck et al. 2007), likely
explaining the low incidence of human disease associated
with infection (less than 5% for both ATLL and HAM/TSP).
Jaworski and colleagues found that HTLV-1-infected cell lines
shed exosomes containing Tax (Jaworski et al. 2014), a pleio-
tropic transactivating protein implicated in the immune

dysregulation associated with infection (Currer et al. 2012;
Romanelli et al. 2013). Tax appears to be targeted for exosome
entry by ubiquitination (Jaworski et al. 2014; Shembade and
Harhaj 2010),which was noted earlier to be an important
method for protein trafficking using ESCRT machinery.
Indeed, prior studies have shown Tax colocalization with or-
ganelles undergoing exocytosis (Alefantis et al. 2005;
Alefantis et al. 2005). Exosomes shed from HTLV-1+ cell
lines were found to also contain viral mRNA and miRNAs
such as tax and hbz (Jaworski et al. 2014). Additionally,
exosomes shed from HTLV-1+ infected cell lines showed a
different cell miRNA profile, as well as a unique set of host
proteins and lipids, compared to those shed by uninfected cell
lines. In work from our laboratory in collaboration with Dr.
Fatah Kashanchi, it was further demonstrated that HTLV-1
Tax could be found in exosomes isolated from the cerebrospi-
nal fluid of some patients with HAM/TSP, while exosomes
from uninfected controls were negative (in submission).
Similarly, cultured, unstimulated peripheral blood mononu-
clear cells (PBMCs) from patients with HAM/ TSP were
shown to shed exosomes that contained Tax protein, as well
as tax mRNA. HBZ protein could also be detected in PBMC-
derived exosomes although no hbz mRNA could be found in
these exosome samples. While both tax and hbz mRNA are
expressed by HAM/TSP patient PBMCs in culture, their ex-
pression diverges in scale, time, and localization (Li et al.
2009; Rende et al. 2011). It was thought that the absence of
hbz mRNA in isolated exosomes likely results from hbz
mRNA preferential localization to the nucleus, whereas tax
mRNA can be found equally in both the nucleus and cyto-
plasm. Additionally, HBZ protein preferentially localizes to
the cytoplasm in HAM/TSP patients (Baratella et al. 2017).

These findings may have functional consequences as
HTLV-1 is a cell-associated virus and shedding of viral anti-
gens may contribute to the inflammatory immune response
particularly observed in patients with HTLV-I associated neu-
rologic disease (HAM/TSP). Indeed, it has previously been
shown that extracellular Tax can have damaging conse-
quences for neurons (Alefantis et al. 2005; Cowan et al.
1997), although neither study specifically implicated
exosomes. Once Tax protein or tax mRNA enter recipient
cells, it can stimulate the production of proinflammatory cy-
tokines, like interleukin (IL)-6 and tumor necrosis factor-α
(Dhib-Jalbut et al. 1994). Ongoing work in our laboratory
has found further evidence for functional consequences to
HTLV-1 antigen exosomal incorporation. We noted that target
cells exposed to PMBC-derived exosomes were susceptible to
lysis by HTLV-1-specific cytotoxic T cells. Specifically,
HTLV-1 Tax+ exosomes sensitized targets for lysis while
ND PBMC-derived exosomes were unable to elicit this re-
sponse (in submission). In addition, Tax+ exosomes isolated
from the HTLV-I infected C8166 cell line were noted to in-
crease the survival of IL-2 dependent cytotoxic T-cell line
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CTLL-2 and uninfected PBMCs in culture (Jaworski et al.
2014). Moreover, the majority of HAM/TSP PBMC
exosomes produced in culture appeared to be produced by
CD4+CD25+ T cells (in submission). HAM/TSP PBMC-
derived exosomes were also shown to reduce the
CD4+CD25+ T cell population when exposed to uninfected
PBMCs (Anderson, unpublished observations). The observa-
tion was particularly intriguing given the known dysfunction
of regulatory T cells (Tregs) in HAM/TSP patients (Anderson
et al. 2014; Grant et al. 2008; Yamano et al. 2005). This sup-
ported the theory that HTLV-1 antigen trafficking to exosomes
may support inflammatory responses in HAM/TSP through
diminished Treg function, since uninfected Treg exosomes
are typically suppressive through incorporation of anti-
inflammatory miRNA (Okoye et al. 2014). More work must
be done to understand if targeting of HTLV-1 Tax or other
antigens changes the host miRNA profile of produced Treg
exosomes or otherwise changes the function of released
exosomes.

Of interest in the pathogenesis of HAM/TSP is the lack of
documented infection of resident neuronal cells. While astro-
cytes and microglia can be infected in vitro, they have not
been shown to be infected in vivo (Lepoutre et al. 2009).
Moreover, the loss of oligodendrocytes that occurs with dis-
ease progression cannot be explained by active infection. One
hypothesis is that the proinflamatory environment contributes
to their eventual breakdown, while others have proposed di-
rect targeting of oligodendrocytes through a mechanism of
molecular mimicry of HTLV-I Tax with a neuronal protein
(Irish et al. 2009; Kubota et al. 2000; Levin et al. 2002).
Exosomal Tax may therefore ultimately explain both possibil-
ities by contributing to the inflammatory cytokine production
through packaging of these cytokines, as well as induction in
recipient cells. Additionally, exosomal Tax uptake in uninfect-
ed cells could explain targeting by HTLV-1-specific T cells in
the presence of uninfected resident neuronal cells. Clearly,
further research must be undertaken to further elucidate the
role of exosomes in the disease progression of HAM/TSP and
potential targeting of therapeutics.

Endogenous Retroviruses

Endogenous retroviruses represent exogenous retroviruses
that integrated into the germline and have since been main-
tained in human hosts. As mentioned they represent close to
8% of the human genome and are a type of transposable ele-
ment (Griffiths 2001). Each has a similar structure to a typical
retrovirus with a 5′ and 3′ LTR flanking the gag, pro, pol, and
env genes. However, many of these proviruses have acquired
fatal mutations such as stop codons that prevent the translation
of functional proteins or the production of infectious retroviral
particles (Downey et al. 2015); as such they are thought to be

relatively silent. However, a growing pool of evidence is
showing that their expression can be increased in conditions
such as autoimmunity, cancer and pregnancy, making them a
potential large cause of human morbidity and mortality
(Douville and Nath 2014; Gonzalez-Cao et al. 2016; Nexo
et al. 2016; Ryan 2004). Indeed, the HERV-K group, which
is closely related to betaretroviruses, is characterized by the
most complete proviruses and has been the best studied in
association with clinical disease (Barbulescu et al. 1999).
HERV-K consists of 11 subgroups, of which HML-2 is the
most important due to its potential oncogenic activity
(Downey et al. 2015; Subramanian et al. 2011).

Though endogenous retroviruses are generally silenced
(Schulz et al. 2006), in the environment of hypomethylation
that can occur with cancer, there can be instances of increased
gene expression (Ehrlich 2009). Demethylation of HERV-K,
and HERV-W has been reported in several different types of
cancer (Downey et al. 2015; Gimenez et al. 2010; Stengel
et al. 2010). Once demethylated, inflammatory factors can
then allow for activation of the provirus and subsequent pro-
tein expression. Therefore, these endogenous retrovirus pro-
teins and mRNAs can potentially be trafficked into exosomes,
similar to what has been observed for HIV and HTLV-1.
Indeed, exosome analysis of tumor samples showed increased
endogenous retrovirus mRNA content compared to epider-
moid carcinoma tumor cell exosomes (Balaj et al. 2011).
Specifically, in analyzing exosomes from patients with fre-
quent c-MYC amplification such as those with glioblastoma
multiforme (GBM), medulloblastoma, atypical teratoid
rhabdoid tumor (AT/RT), and malignant melanoma, it was
found that these exosomes were enriched for mRNA from
HERV-K, HERV-C, and HERV-W (Balaj et al. 2011).
Moreover, HERV-K RNA could be transferred to human um-
bilical vein endothelial cells (HUVECs) in vitro via medullo-
blastoma exosomes suggesting that endogenous retrovirus ex-
pression can potentially spread through cells. It is as yet un-
clear if HERV product detection in exosomes is a biomarker
of cancer or a potential cause of disease (Downey et al. 2015).
Further investigation is necessary in order to understand the
dynamics of this relationship between endogenous retrovirus
expression, exosome production, and oncogenesis.

As mentioned, endogenous retroviruses have also been im-
plicated in the field of autoimmunity. In mice, MuLV Gag and
Env proteins were detected in exosomes produced by mesen-
chymal stem cells (MSCs) in Type 1 diabetes NOD mice (Dai
et al. 2017). Furthermore, autoantibodies against the gp70
subunit of MuLV Env could be detected in addition to the
presence of T cells specific to the MuLV Gag protein
(Bashratyan et al. 2017). These T cells were later shown to
contribute to the loss of islet cells in the mouse model of T1D.
This demonstrates in an animal model that endogenous retro-
viral antigens can potentially precipitate autoimmune re-
sponses through immune targeting, similar to the sensitization
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for cell lysis observed after exposure to exosomes carrying
HTLV-1 Tax (Anderson et al. 2016).

Although there still remains controversy, several families
of endogenous retrovirus have been associated with multiple
sclerosis (MS) (Morandi et al. 2017), a debilitating progres-
sive neuroinflammatory disorder thought to be caused by
damaging immune responses to self. This includes HERV-W
and HERV-K (Ryan 2011). In particular, MS-associated retro-
virus (MSRV) of the family HERV-W had been demonstrated
to have increased env and polmRNApresent in PBMC, serum
and CSF samples as compared to healthy controls (Garson
et al. 1998; Mameli et al. 2007; Morandi et al. 2015; Nowak
et al. 2003). Even more suggestive was a reported increased
expression of MSRV Env in MS lesions (Perron et al. 2012).
However, there are conflicting reports in the literatures as to
expression levels of HERV-W in MS patients and what role it
may ultimately play in disease pathogenesis (Downey et al.
2015).

Besides being potential pathologic determinants, the lon-
gevity of the presence of endogenous retrovirus sequences in
the human genome suggests a potential beneficial or even
necessary role in human function. Syncytin-1, a protein
expressed by HERV-W is important in trophoblast fusion in
the formation of the placenta (Mi et al. 2000; Potgens et al.
2004). Syncytin-1 is mostly limited to cytotrophoblast,
synctiotrophoblast, and extravillous trophoblasts, mediating
fusion between cytotrophoblasts and synctiotrophoblasts
(Holder et al. 2012; Noorali et al. 2009). Synctin-2 is separate-
ly encoded by ERVFRD-1 (Malassine et al. 2008). Both
synctins are retroviral like envelope proteins and both can be
detected in exosomes produced by the placenta (Lokossou
et al. 2014). Synctin-1 and Synctin-2 were found to be incor-
porated at the surface of placental exosomes (Lokossou et al.
2014), potentially aiding in binding upon release or mainte-
nance of the synctitial trophoblast layer that allows for proper
separation of fetal and maternal circulation. The authors sug-
gest that the presence of these proteins may allow for a type of
exosomal tropism so that released exosomes deliver products
to specific locations (Vargas et al. 2014).

Conclusion

The detection of retroviral antigens in exosomes has implica-
tions in many diseases. As has been illustrated in the examples
discussed in this review, viral antigens in exosomes could
potentially aid in viral persistence and propagation such as
occurs in HIV. These antigens could also serve to alter im-
mune response or even enhance inflammatory responses, as
was discussed in the examples of HAM/TSP. Interestingly,
HTLV-1 is a primarily cell-associated virus, such that cell-
free viral particles are often difficult to detect in patient sero-
logic samples (Bangham and Matsuoka 2017). Therefore, the

virus typically exists as a provirus, much like endogenous
retroviruses. The most obvious difference between the state
of the HTLV-1 provirus and endogenous proviruses is that the
HTLV-1 provirus typically has not been mutated (Mansky
2000). However as was discussed, some HERVs like HML-
2 have intact genomes and can undergo demethylation given
the correct conditions in the host, as can occur in cancer or
other conditions associated with global hypomethylation. This
allows for the gene transcription and translation of endoge-
nous retroviral proteins, although the production of intact in-
fectious viral particles has not been reported (Bannert and
Kurth 2004). In these scenarios, endogenous retrovirus anti-
gens such as Env proteins have been found in serum
exosomes. Intriguingly, exosomes carrying endogenous retro-
virus antigens induced anti-self responses in B and T cells in
an autoimmune disease model in mice (Dai et al. 2017),
supporting the theory that endogenous retroviruses are asso-
ciated with pathological responses in autoimmune disease
(Nexo et al. 2016).

Given these examples of detection of retroviral antigens
(proteins, mRNA, etc) in exosomes despite the absence of
free-viral particles, exosome isolation and characterization of
the contents becomes of import in inflammatory disorders,
cancer, and neurologic diseases. Indeed, exosomes represent
a potential detection tool for the myriad of meningitides and
encephalitides for which an inciting pathogen is suspected.
The etiology for over 50% of meningitis and encephalitis
cases is currently unknown (Jarrin et al. 2016; Tunkel et al.
2008). Furthermore, there are several neurologic diseases such
as MS, amyotrophic lateral sclerosis (ALS), and Parkinson’s
disease (PD) which have an inflammatory component and
have been hypothesized to have a viral trigger (Douville and
Nath 2014; Zhou et al. 2013). ALS has even been thought to
be associated with increased expression of HERV-K proteins
(Alfahad and Nath 2013; Douville et al. 2011). Additionally,
recent data has demonstrated that exosomes containing HIV
antigens are still present in the serum of patients under
HAART for whom there is no detectable virus (Jaworski
et al. 2014), indicating that tracking of exosomal cargo could
monitor potential viral reservoirs. Collectively, the observa-
tions presented in this report on exosomes containing retrovi-
ral antigens in the CSF of patients with HTLV-1 associated
neurologic disease, HAND, and diseases associated with in-
creased endogenous retroviral expression will be of relevance
to many systemic and neurologic diseases in which viruses are
thought to play a role.
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