
INVITED REVIEW

Dopaminergic Regulation of Innate Immunity: a Review

Monica Pinoli1 & Franca Marino1 & Marco Cosentino1

Received: 6 December 2016 /Accepted: 28 April 2017 /Published online: 3 June 2017
# Springer Science+Business Media New York 2017

Abstract Dopamine (DA) is a neurotransmitter in the central
nervous system as well as in peripheral tissues. Emerging
evidence however points to DA also as a key transmitter be-
tween the nervous system and the immune system as well as a
mediator produced and released by immune cells themselves.
Dopaminergic pathways have received so far extensive atten-
tion in the adaptive branch of the immune system, where they
play a role in health and disease such as multiple sclerosis,
rheumatoid arthritis, cancer, and Parkinson’s disease.
Comparatively little is known about DA and the innate im-
mune response, although DA may affect innate immune sys-
tem cells such as dendritic cells, macrophages, microglia, and
neutrophils. The present review aims at providing a complete
and exhaustive summary of currently available evidence about
DA and innate immunity, and to become a reference for any-
one potentially interested in the fields of immunology, neuro-
sciences and pharmacology. A wide array of dopaminergic
drugs is used in therapeutics for non-immune indications, such
as Parkinson’s disease, hyperprolactinemia, shock, hyperten-
sion, with a usually favorable therapeutic index, and they
might be relatively easily repurposed for immune-mediated
disease, thus leading to innovative treatments at low price,
with benefit for patients as well as for the healthcare systems.
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Introduction

Dopamine (DA) is a central nervous system (CNS) neuro-
transmitter involved in the control of several key functions,
such as cognition, motivation, movement and reward
(Feldman et al. 1997). Interestingly, a key role for the reward
system in the regulation of immunity has been recently
highlighted, as it was shown that in mice the host defense
against E. coli involved increased activity of the dopaminergic
neurons of the Ventral Tegmental Area, a pivotal component
of the reward system and induced the activation of both innate
and adaptive immunity (Ben-Shaanan et al. 2016). In contrast,
Cao and Aballay (2016) found that in the CNS the DA antag-
onist chlorpromazine results in protection against C. elegans
infection while treatment with DA leads to increased suscep-
tibility to P. aeruginosa (Cao and Aballay 2016).

DA is also present in peripheral tissues, where it affects
blood pressure, sodium balance and adrenal and renal func-
tions (Tayebati et al. 2011; Jose et al. 2003), as well as glucose
homeostasis and body weight (Rubí and Maechler 2010). DA
is however increasingly considered as a key transmitter be-
tween the nervous system and the immune system as well as a
mediator produced and released by immune cells themselves
(Basu and Dasgupta 2000; Sarkar et al. 2010; Levite 2012).
Virtually all human immune cells can be affected by DA, and
at least lymphocytes and dendritic cells have been reported to
produce DAwhich in turn may act as autocrine/paracrine me-
diator on immune cells as well as on neighboring cells
(Cosentino et al. 2007; Nakano et al. 2009).

The role of dopaminergic pathways has been so far, the sub-
ject of intense investigation in the adaptive branch of the im-
mune system (Basu and Dasgupta 2000; Sarkar et al. 2010;
Levite 2012), and their contribution has been established in
human disease such as multiple sclerosis (Cosentino and
Marino 2013;Marino and Cosentino 2016), rheumatoid arthritis
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(Capellino et al. 2010; Nakano et al. 2011), and Parkinson’s
disease (González et al. 2013; Kustrimovic et al. 2016).

Comparatively little is known about dopaminergic modu-
lation of the innate immune response, although experimental
evidence supports the ability of DA to affect innate immune
system cells such as dendritic cells, macrophages, microglia,
and neutrophils (Sarkar et al. 2010; Levite 2012).

The present review aims at providing a complete and ex-
haustive summary of currently available evidence about DA
and innate immunity, thus providing a reference for anyone
potentially interested in the fields of immunology, neurosci-
ences and pharmacology. Actually, a wide array of dopami-
nergic drugs is currently used in therapeutics for non-immune
indications (Table 1) with a usually favorable therapeutic in-
dex, and they might be relatively easily repurposed for
immune-mediated disease, possibly leading to innovative
treatments at low price, which would benefit patients as well
as the healthcare systems (Cosentino and Marino 2016).

Physiology and Pharmacology of Dopaminergic Pathways

DA is synthesized from the precursor l-dihydroxyphenylalanine
(l-DOPA) and in turn can be converted to norepinephrine or
epinephrine (Fig. 1). DA in human tissues can originate, not
only from endogenous biosynthetic pathways, but also from
many types of food (Kulma and Szopa 2007); indeed, several
studies analyzed the content of DA in different fruits and vege-
tables and featured its antioxidant effects, comparable to those of
the additives such as glutathione or butylated hydroxytoluene
used in the food industry. The fruits with the highest concentra-
tions of DA are bananas (around 42–55 μg/g). Avocado, cocoa
bean powder, broccoli and bruxelle sprouts containing moderate
amounts of DA (7 μmol/kg); fruits and vegetables such as to-
matoes, kiwi, pineapple, potatoes and peanuts, contain very low
levels of DA, less than 7 μmol/kg (Feldman et al. 1987; Kulma
and Szopa 2007). It should however be emphasized that DA
introduced with food is unable to cross the blood brain barrier,
and it is unclear whether intestinal absorption actually provides
elevant concentrations of DA in peripheral tissues. In this regard,
a pharmacokinetic study in dogs, showed that the absolute bio-
availability of an aqueous solution with 100mg of DA after oral
administration was only of 3% (Murata et al. 1988).

A plant remarkable for its possible applications in the clinic
is Mucunia pruriens, a tropical plant that is typically used as
fodder and becomes edible for humans after cooking. The
plant, and above all the seeds, is rich in l-DOPA, the precursor
of DA, and it could be a viable alternative for patients with
Parkinson’s disease who live in tropical areas and for whom
the cost of treatment with l-DOPA is above their possibilities.
Nevertheless, further studies are still necessary to characterize
side effects of the plant extracts and possible interactions with
other medications (Cassani et al. 2016).

The range of DA concentration in plasma of a healthy adult
subject is highly variable. Eichler et al. (1989) reported values
of 0.005527–0.527 nM. Eisenhofer et al. (2005) studied nine
patients with DA-producing paragangliomas, reporting a con-
centration range of DA between 0.08 and 5.679 nM. Recently,
Kustrimovic et al. (2016) reported that plasma DA was
3.2 ± 5.7 nM in healthy subjects, 2.7 ± 3.3 nM in
Parkinson’s disease patients without dopaminergic substitu-
tion therapy (P = 0.779 vs healthy subjects), and 8.0 ± 9.8
nM in Parkinson’s disease patients on dopaminergic substitu-
tion therapy (P = 0.003 vs healthy subjects).

The gastrointestinal tract has been suggested as the major
source of peripheral DA (Eisenhofer et al. 1997). Indeed, in
the periphery, DA can be produced at least by three different
sources, namely the neuroendocrine cells, the adrenal glands
and the neuronal fibers and DA content is correlated with
several functions, such as the secretion of insulin by β cells,
the homeostasis of sodium at the level of kidneys, the inhibi-
tion of the secretion of vonWillebrand factor and the decrease
of vascular permeability (Rubí and Maechler 2010). More
recently it was hypothesized that, an increase in the dopami-
nergic neurotransmission in the striatum may represent a risk
factor for the onset of obesity; in fact, the immoderate con-
sumption of carbohydrates stimulates the production and use
of DA in the brain (Blum et al. 2014). Obesity however can
also be related to dysfunction of the peripheral dopaminergic
system (Rubí and Maechler 2010; Leite et al. 2016).

Immune cells themselves may however produce and re-
lease DA (Cosentino et al. 2002, 2005, 2007). In particular,
treatment of lymphocytes with IFN-β leads to increased pro-
duction and release of DA (as well as of norepinephrine and
epinephrine) (Cosentino et al. 2005). DA content may differ in
distinct lymphocyte subsets. For instance, CD4 + CD25- T
lymphocytes were shown to contain on average 0.22 pM
while CD4 + CD25+ regulatory T cells 37.43 pM
(Cosentino et al. 2007). Besides by IFN-β, the release of
DA from lymphocytes may be also induced by high K+

(Cosentino et al. 2003).
It might then be possible that, although plasma DA is pres-

ent in the nM range, in particular situations or specific micro-
environments, such as at level of some cells or in the niche of a
tumor, DA levels can greatly increase. It was also shown that
the noradrenergic sympathetic fibers which extensively inner-
vated the spleen, are able to release in the small volume of the
varicose axon terminal, high amount of DA and a so high
concentration, in such a small area, may exert an immuno-
modulatory effect on splenocytes (Bencsics et al. 1997).

Dopaminergic Receptors

DA exerts its effects through the interaction with dopaminer-
gic receptors (DR), which are 7-transmembrane, G protein-
coupled receptors. DR are classified into D1-like (D1 and
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D5, previously known as D1a and D1b), located both pre- and
post-synaptically and D2-like (D2, D3 and D4), that are mainly
post-synaptic (Andersen et al. 1990; Sibley et al. 1993; Jaber

et al. 1996; Beaulieu and Gainetdinov 2011). D1-like family
activates Gαs/olf proteins to stimulate cyclic adenosine
monophosphate (cAMP) production by adenyl cyclase (AC),

Table 1 Pharmacological characteristics of dopamine and dopaminergic agonists and precursors

ATC1 name main therapeutic indications2 pharmacology3

dopamine precursors

N04BA01 levodopa Parkinson’s disease and related conditions dopamine precursor

N04BA04 melevodopa Parkinson’s disease and related conditions dopamine precursor

N04BA06 etilevodopa Parkinson’s disease and related conditions dopamine precursor

dopamine and dopamine analogues

C01CA04 dopamine shock (cardiogenic post-infarct, surgical,
hypovolemic, hemorrhagic, septic,
anaphylactic)

agonist at D1-like/D2-like DR

C01CA14 dopexamine inotropic agent, reduction of heart failure,
treatment of heart failure following
cardiac surgery

agonist at D1-like/D2-like DR and at β2-AR

dopamine agonists

C01CA16 ibopamine mydriatic (not cycloplegic) agonist at D1-like DR and at α-AR

C01CA19 fenoldopam iv emergency treatment of hypertension agonist at D1-like DR D1, weak agonist
at D2-like DR D4 and at α1- and α2-AR

G02CB01/N04 BC01 bromocriptine Parkinson’s disease and related conditions,
hyperprolactinemia

agonist at D2-like DR D2 and D3, agonist at
several 5-HT receptors, and at α1- and α2-AR

G02CB02 lisuride Parkinson’s disease and related conditions,
hyperprolactinemia, migraine prophylaxis

agonist at D2-like DR D2, D3 and D4, agonist
at some 5-HT receptors

G02CB03/N04 BC06 cabergoline Parkinson’s disease and related conditions,
hyperprolactinemia, uterine fibroids,
acromegaly (adjunctive therapy)

agonist at D2-like DR D2 and D3, weak agonist
at some 5-HT receptors, and at α1- and α2-AR

G02CB04 quinagolide hyperprolactinemia agonist at D2-like DR

G02CB05 metergoline hyperprolactinemia, migraine prophylaxis similar to bromocriptine

G02CB06 terguride hyperprolactinemia, pulmonary arterial
hypertension (orphan drug status)

agonist/antagonist at D2-like DR, partial
agonist/antagonist at several 5-HT
receptors, antagonist at α2-AR

N04 BC02 pergolide Parkinson’s disease and related conditionsa agonist at D1-like/D2-like DR as well as
at several 5-HT receptors

N04 BC03 dihydroergocryptine Parkinson’s disease and related conditions,
migraine prophylaxis, low blood pressure
in the elderly, peripheral vascular disorders

agonist at D2-like DR

N04 BC04 ropinirole Parkinson’s disease and related conditions,
moderate-to-severe primary restless
legs syndrome

agonist at D2-like DR D2, D3 and D4

N04 BC05 pramipexole Parkinson’s disease and related conditions,
moderate-to-severe primary restless
legs syndrome

agonist at D2-like DR D2, D3 and D4

N04 BC07 apomorphine Parkinson’s disease and related conditions,
erectile dysfunction, alcoholism and
opioid addiction

agonist at D2-like DR D2, D3 and D4

N04 BC08 piribedil Parkinson’s disease and related conditions agonist at D2-like DR D2 and D3,
antagonist at α2-AR

N04 BC09 rotigotine Parkinson’s disease and related conditions,
moderate-to-severe primary restless
legs syndrome

agonist at D1-like/D2-like DR

1 = from the ATC/DDD Index of theWHOCollaborating Centre for Drug StatisticsMethodology - http://www.whocc.no/, 2 = from the AIFAMedicines
Database - https://farmaci.agenziafarmaco.gov.it/bancadatifarmaci/home, 3 = from http://www.guidetopharmacology.org/PDSP Ki database and http://
kidbdev.med.unc.edu/databases/kidb.php/, a = withdrawn from the USmarket for human use after published evidence linking the drug to increased rates
of valvular heart disease http://www.fda.gov/Drugs/DrugSafety/PostmarketDrugSafetyInformationforPatientsandProviders/ucm051285.htm; http://
web.archive.org/web/20070408111551/http://www.fda.gov/cder/drug/advisory/pergolide.htm
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whereas D2-like family stimulates Gαi/o proteins, which inhib-
it AC, resulting in reduced cAMP levels (Beaulieu et al.
2015). D1-like DR may also increase intracellular calcium
levels while D2-like DR, particularly DR D3 and DR D4,
may have opposite effects (Missale et al. 1998).

The DR D2 receptor exists in two different isoforms: short
(S) and long (L), generated by the alternative splicing of an
exon and located, respectively, pre- and post-synaptically
(Missale et al. 1998; Lindgren et al. 2003). The DR D2L has
29 additional amino acids in the third intracellular loop,
resulting in a different affinity for G proteins (Usiello et al.
2000). DR D2 is the main target for several neuroleptic drugs.

In particular, it was shown that the action of one of the most
common of these drugs, haloperidol, is mediated by the long
isoform, as mice deficient for DR D2L lack the cataleptic
effect due to haloperidol. The main role of the short form,
which is localized at the pre-synaptic level, seems to be the
interference with DR D1 signaling (Usiello et al. 2000).

DR may also form oligomeric complexes together with oth-
er DR or with different receptors (Perreault et al. 2014). The
most extensively characterized allosteric interaction is between
DR D2 and the adenosine A2A receptor (A2AR) (Fuxe et al.
2005; Casadó-Anguera et al. 2016). This heteromer has been
described in neurons and it has been suggested to mediate the
depressant effects of adenosine analogues and the
psychostimulant effects of adenosine antagonists such as caf-
feine. It is also implicated in several neuropsychiatric disorders
(Bonaventura et al. 2015; Ferrè et al. 2016).

DR D2 may also form heteromers with the 5-HT receptors
5-HT2AR and 5HT1AR, which are presently investigated as
potential targets for novel neuroleptic drugs (Albizu et al.
2011; Łukasiewicz et al. 2016). Heteromers between DR D1

and DR D2 have also been described, even if their actual
occurrence remains controversial (Frederick et al. 2015). DR
D1-D2 heteromers may induce the release of intracellular cal-
cium, resulting in the activation of striatal neutrons (Hasbi
et al. 2011). They might be also involved in the sensitization
to cocaine (Capper-Loup et al. 2002) and have been proposed
as therapeutic targets in depression, anxiety-like behaviors
and schizophrenia (Shen et al. 2015). Circumstantial evidence
also exists about DR D1-D3 heteromers, which might have
therapeutic implications in Parkinson’s disease (Ferrè et al.
2010), DR D2-D3 heteromers as targets for neuroleptics
(Maggio and Millan 2010), and DR D2-D5 heteromers which
might affect calcium signaling and are possibly involved in
drug addiction and schizophrenia (So et al. 2009).

No information on DR homo/etero oligomeric complexes
exist in immune cells, where also the signal transduction mech-
anisms acted upon by such receptors remain so far ill defined.

The Innate Immune System

Innate immune cells include: granulocytes (neutrophils, eo-
sinophils, basophils, and mast cells), monocytes/macro-
phages, dendritic cells, natural killer (NK) cells and innate
lymphoid cells (ILC). In the CNS, innate immune responses
are mediated by resident microglia, comprising perivascular
and juxtavascular subsets, and astrocytes. Agents of innate
immunity, besides anatomical barriers such as skin and muco-
sal surfaces, include effector molecules such as the comple-
ment system and antibacterial peptides, as well as several
types of cells. The complement system is a proteolytic cas-
cade which acts as a first-line host defense against pathogenic
infections, selectively recognizing foreign pathogens and

Fig. 1 Biosynthetic pathway of the catecholamines dopamine,
noradrenaline and adrenaline from the amino acid tyrosine. The
synthesizing enzymes are shown to the right of each arrow, while
enzyme cofactors are shown to the left (reproduced from the Wikimedia
Commons- http://commons.wikimedia.org)
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damaged self-cells (Noris and Remuzzi 2013; Degn and Thiel
2013). Antibacterial peptides are cationic peptides with an-
tibiotic and immunomodulating properties (Table 2; Boman
2003; Ganz 2003; Zanetti 2004).

Innate immune system cells express pattern recognition
receptors (PRR), which recognize both exogenous pathogen-
associated molecular patterns (PAMP) and endogenous dan-
ger - or damage-associated molecular patterns (DAMP). PRR
include: toll-like receptors (TLR, Btoll^ meaning in German
Bamazing^ or Bgreat^), NOD-like receptors (NLR, NOD
meaning Nucleotide-binding Oligomerization Domain), C-
type lectin receptors (CLR), RIG-I-like receptors (RLR,
RIG-I meaning Retinoic acid-Inducible Gene 1), and AIM2-
like receptors (ALR, AIM-2 standing for Babsent inmelanoma
2^, which is a protein contributing to the defense against bac-
terial and viral DNA). PRR may also include formyl peptide
receptors (FPR, binding N-formyl peptides derived from the
degradation of bacterial or host cells) and scavenger receptors
(binding oxidized or acetylated low-density lipoprotein)
(Kawai and Akira 2010; Takeuchi and Akira 2010, Saxena
and Yeretssian 2014). Examples of PAMP and DAMP
interacting with PRR are provided in Table 3 and Table 4,
respectively. Among PRR, TLR and NLR are the most exten-
sively characterized. In humans, 10 functional TLR have been
identified (12 in mice, with TLR1–TLR9 being conserved in
both species), which recognize microbial membrane compo-
nents such as lipids, lipoproteins and proteins (TLR1, TLR2,
TLR4, TLR5, TLR6, expressed on cell surfaces) and micro-
bial nucleic acids (TLR3, TLR7, TLR8 and TLR9, expressed
exclusively in the endoplasmic reticulum, endosomes,

lysosomes and endolysosomes; Kawai and Akira 2010). As
for NLR, the 22 human receptors are divided into five sub-
families by their N-terminal effector domains which confer
unique functional characteristics. NLRA (CIITA) are tran-
scriptional regulators of MHC class II antigen presentation.
NLRB (NAIP) proteins contribute to host defense and cell
survival. NLRC include NOD1 (NLRC1) and NOD2
(NLRC2), the first NLR to be identified, which sense bacterial
peptidoglycan and are key players in tissue homeostasis and
host defense against bacterial pathogens. The pyrin domains
(PYD) containing NLRP subfamily (NLRP 1–14) have a role
in inducing the inflammasome. The NLRX subfamily so far
comprises only NLRX1, which may affect mitochondrial ac-
tivity; however, the its precise role of this subfamily remains
to be established (Saxena and Yeretssian 2014).

The primary function of the innate immune system is usu-
ally considered the defense of the host from infections by other
organisms. In recent years, evidences were accumulated re-
garding its key role in noninfectious diseases like atherosclero-
sis (Chávez-Sánchez et al. 2014; Courties et al. 2014), cancer
(Marcus et al. 2014; van den Boorn and Hartmann 2013), au-
toimmune diseases such as multiple sclerosis and other demy-
elinating diseases (Hernandez-Pedro et al. 2013; Mayo et al.
2012), systemic sclerosis (O’Reilly 2014), autoimmune uveitis
(Rosenbaum and Kim 2013), lupus erythematosus (Aringer
et al. 2013), neurodegenerative diseases (Boutajangout and
Wisniewski 2013), gastrointestinal diseases such as inflamma-
tory bowel disease (Levine and Segal 2013), obesity (Lumeng
2013), diabetes (Lee 2014) and liver inflammation (Meli et al.
2014; Liaskou et al. 2012). Innate immunity is also involved in
preeclampsia (Perez-Sepulveda et al. 2014), organ transplanta-
tion (Farrar et al. 2013), and possibly even in psychiatric dis-
eases (Jones and Thomsen 2013).

Effect of DA on Innate Immune Cells

Neutrophils

Neutrophils are the first line of host defense against a wide
range of infectious pathogens exerting their role in host de-
fense through the secretion of cytokines, proteases, reactive
oxygen species (ROS) generation and neutrophil extracellular
traps (NET) formation (Kumar and Sharma 2010). In the past,
these cells were considered as playing a role only in the early
stages of acute infection, given their short lifespan, but it is
now acknowledged that they can survive more than the pos-
tulated few hours and that they exert a more complex role in
the communication with both the innate and adaptive immune
system (Mantovani et al. 2011; Amulic et al. 2012;
Kolaczkowska and Kubes 2013; Pinoli et al. 2016a).
Neutrophils are involved not only in the generation but also
in the maintenance of in loco inflammation (Kruger et al.

Table 2 Human antimicrobial peptides (based on Boman 2003, Ganz
2003, Zanetti 2004)

Name Distribution

α-Defensins

HNP1–3 granulocytes (spleen, thymus, lung?)

HNP4 Granulocytes

HNP5 Paneth cells of the intestine, genital tract

β-Defensins

hBD-1 skin, lung, gut (epithelial cells)

hBD-2 skin, lung, gut (epithelial cells)

hBD-3 skin, lung, tonsils

hBD-4 testis, gastric antrum

Cathelicidin family

LL-37 (proFALL, hCAP18) granulocytes, lung, skin, testis,
gut, lymphocytes

Saposin family

Granulysin cytolytic T cells, NK cells

Abbreviations: HNP human neutrophil peptide, hBD human beta
defensin, LL-37 37-residue peptide whose N-terminal sequence is LL,
FALL 39-residue peptide whose N-terminal sequence is FALL, hCAP
human cationic antimicrobial protein.
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2015). The existence of DR on human neutrophils was initial-
ly reported in 1999 by Sookhai and co-workers, who identi-
fied, by means of immunohistochemistry, the presence of the
D1-like DR D1 (Sookhai et al. 1999). The presence of the D2-
like DR D2, D3 and D4 was subsequently reported (Pereira
et al. 2003; Boneberg et al. 2006). Chen and colleagues, by
means of qRT-PCR, andMcKenna and colleagues, using flow
cytometry, showed the presence on human neutrophil of all
five DR, both at mRNA and membrane protein level (Chen
et al. 2014; McKenna et al. 2002; Pinoli et al. 2016b). In

particular, it was observed that mRNA levels of DR were
expressed with the following order of magnitude,
D4 > D3 > D1 > D5> > D2 (Chen et al. 2014). On the contrary,
McKenna found that DR D5 had the highest expression,
whereas DR D1 the lowest (McKenna et al. 2002).

Functional studies performed in in vitro conditions, usually
report inhibitory effects of DA on several neutrophil functions
as for example the inhibition of fMLP-stimulated superoxide
anion production by human neutrophils (Yamazaki et al.
1989). DA has also been reported to attenuate CD11b/CD18

Table 3 PAMP detection by TLR and other PRR (reproduced with permission from Kawai and Akira 2011)

Species PAMP TLR Usage PRR Involved in Recognition

Bacteria, mycobacteria LPS TLR4

lipoproteins, LTA, PGN, lipoarabinomannan TLR2/1, TLR2/6 NOD1, NOD2, NALP3, NALP1

flagellin TLR5 IPAF, NAIP5

DNA TLR9 AIM2

RNA TLR7 NALP3

Viruses DNA TLR9 AIM2, DAI, IFI16

RNA TLR3, TLR7, TLR8 RIG-I, MDA5, NALP3

structural protein TLR2, TLR4

Fungus zymosan, β-glucan TLR2, TLR6 Dectin-1, NALP3

Mannan TLR2, TLR4

DNA TLR9

RNA TLR7

Parasites tGPI-mutin (Trypanosoma) TLR2

glycoinositolphospholipids (Trypanosoma) TLR4

DNA TLR9

hemozoin (Plasmodium) TLR9 NALP3

profilin-like molecule (Toxoplasma gondii) TLR11

Table 4 DAMP interaction with TLR and NLR and their physiological effects (reproduced with permission from Tolle and Standiford 2013)

DAMP Receptor Effect

ECM components

Fibronectin TLR4 Increase NF-kB, promote leukotriene synthesis and PMN migration,
activate the adaptive immune system

Hyaluronan TLR4 ± TLR2, NLR3 Induce proinflammatory cytokines, activate DCs and macrophages

Heparan sulphate TLR4 Increase TNFα expression, activate DCs

Stress-response molecules

Heat shock proteins TLR2, TLR4 Induce cytokines and protein kinases, activate PMNs

HMGB1 TLR2, TLR4 Induce NF-kB nuclear translocation and cytokine expression

Nucleic acids TLR3, TLR7, TLR9 Induce cytokine expression, activate DCs, stimulate recruitment of leukocytes and PMNs

microRNA TLR8 Induce NF-kB and cytokines expression

Immunomodulatory proteins

β-Defensins TLR1/TLR2, TLR4 Induce NF-kB and cytokine expression, activate DCs and monocytes

Surfactant protein A TLR4 ± TLR2 Reduce NF-kB and cytokine expression

Surfactant protein D TLR2, TLR4 Inhibit cytokine production and recruitment of PMNs

Others

Uric acid NLR3 Increase IL-1β expression
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expression in these cells, with consequently diminished ability
of human neutrophil adherence to the endothelium, as well as
a decrease in the production of ROS and superoxide anions,
cell migration and phagocytic activity (Wenisch et al. 1996;
Sookhai et al. 2000; Matsuoka 1990; Trabold et al. 2007).

A study about the morpho-functional changes that occur in
neutrophils following treatment with DA, also showed that
DA increases in vitro neutrophil apoptosis both in healthy
subjects and in patients with systemic inflammatory response
syndrome (SIRS) (Sookhai et al. 1999).

It is interesting to note that in rats, dopaminergic agents are
able to influence the number of neutrophils during anaphylac-
tic shock: DA antagonists, such as chlorpromazine and
pimozide, reduced neutrophil count, while agonists like apo-
morphine, led to an increased number of neutrophils, which is
typical of conditions occurring during anaphylactic shock
(Altenburg et al. 1995). Dopaminergic agonists are able to
reduce the Th17-induced response and ovalbumin antigen-
induced activation of neutrophils in a mouse model of airway
inflammation (Nakagome et al. 2011).

It was recently reported that treatment with L-DOPA, the
precursor in the synthesis of DA, led to neutropenia in a pa-
tient with Parkinson’s disease. Neutrophils of the patient were
shown to have reduced mRNA levels of all D2-like DR and
increased mRNA levels of tyrosine hydroxylase and DR D5

(Cordano et al. 2015).

Eosinophils

Eosinophils are associated with allergy and asthma
(Rothenberg and Hogan 2006) and exert a protective role
against parasites, as highlighted by the discovery of eosinophil-
ic granules content on helminth surface (Cadman et al. 2014).

These cells express on their membrane all the five DR
(McKenna et al. 2002). Aside from this data, only a few studies
are reported in literature about the ability of DA to modulate
eosinophil functions. The first report comes from an in vitro
study in rats and dates back to 1979. The study shows that
treatment of animals with l-DOPA or apomorphine results in
a biphasic effect on eosinophil counts. At high concentrations
of both drugs, eosinophil count decreases, whereas at low con-
centrations, the scenario is exactly the opposite (Podolec et al.
1979). Administration of DA, in a patient awaiting heart trans-
plant, resulted in a reduction in the explanted heart of eosino-
philic myocarditis and peripheral eosinophilia (Takkenberg
et al. 2004) suggesting that DA might be an additional medi-
cation in some patients awaiting transplant.

Basophils

Basophils are less than 1% of total blood leukocytes and are
considered the most important cells protecting against infec-
tions of parasites (Karasuyama and Yamanishi 2014). They

produce cytokines involved in the cross-talk with the adaptive
immunity, such as IL-4 (Karasuyama et al. 2011). To our
knowledge, no data are present in literature about the presence
of DR on these cells as well as about a possible role of DA as
modulator of basophil functions.

Mast Cells

These cells, mainly present in the airways, were firstly de-
scribed in the 1878 by Paul Ehrlich and are involved in most
of the inflammatory processes of the respiratory system
(Erjefält 2014). In mice, bone-marrow derived mast cells con-
tain DA and express the rate-limiting enzyme TH, necessary
for the biosynthesis of DA (Rönnberg et al. 2012). Several
dopaminergic agents exhibit a dose-dependent inhibition of
degranulation in the mast cell line RBL-2H3, but this effect
might not involve DR (Seol et al. 2004). In contrast, Mori and
colleagues showed that treatment with DA induces mouse
bone marrow-derived mast cell degranulation, and that a D1-
like DR antagonist reverses this effect (Mori et al. 2013).

Monocytes/Macrophages

Monocytes and macrophages, together with dendritic cells,
represent the mononuclear phagocyte system, which plays a
key role maintaining tissue integrity during development.
Mononuclear phagocytes are also critical in tissue restoration
after injury, as well as in the initiation and resolution of innate
and adaptive immune responses. Due to their heterogeneity,
human monocytes are divided in subsets based on the differ-
ent stages of differentiation, size and activation. They are
characterized by the expression of CD14, the LPS-receptor,
and by another marker, the CD16. Monocytes in peripheral
blood are usually considered as classical (CD14++CD16-),
intermediate (CD14++CD16+) and lastly non classical mono-
cytes (CD14 + CD16++) (Williams et al. 2012).

Ilya Mechnikov introduced the term macrophage (from
Greek, Blarge eaters^), based on their ability to engulf micro-
organism and damaged tissues (Zalkind 2001). They originate
from monocytes, which leave the bloodstream and undergo
morpho-functional changes in response to several differentia-
tion factors such as granulocyte-macrophage colony-stimulat-
ing factor (GM-CSF) and macrophage colony-stimulating fac-
tor (M-CSF) (Parihar et al. 2010).

Several studies indicate that human monocytes express DR
both at mRNA and protein level (McKenna et al. 2002;
Watanabe et al. 2006; Coley et al. 2015; Gaiazzi et al.
2016a, b). DA and dopaminergic agents can affect several
functions of these cells; for example, DA is able to decrease
LPS-induced proliferation of human monocytes (Bergquist
et al. 2000), while the D1-like DR agonist SKF-38393 in-
creases CD14 + CD16+ monocyte chemokinesis (Coley
et al. 2015). Recently, it was shown that in LPS-stimulated
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bonemarrow-derived macrophages, the inflammatory process
is mitigated by the action of DA on DR D1, through the inhi-
bition of the NLRP3 inflammasome, a cytosolic protein com-
plex that induces inflammation in response to bacterial path-
ogens. Moreover, DA, acting on DR D1, can prevent systemic
and neuro-inflammation also in vivo (Yan et al. 2015).

Monocytes oxidative burst is under an endogenous dopa-
minergic tone (Carvalho-Freitas et al. 2007, 2008, 2011).
Monocytic cell lines, such as RAW 264.7 (a mouse cell line),
contain DA (Brown et al. 2003), and, like the human cell line
U937, expesses l-DOPA decarboxylase, the enzyme that con-
verts l-DOPA into DA (Kokkinou et al. 2009). Moreover,
these cells are able to produce DA: stimulation with LPS in-
duces an increase of DA levels within 48 h (Brown et al.
2003). In addition, it has been shown that DA at high concen-
trations (millimolar range), increased the apoptosis of RAW
264.7 and decreased their proliferation (Brown et al. 2003).
DA is also able to induce cytokine production in monocytes
(Gaskill et al. 2012). Haskò and colleagues confirmed that
treating mouse macrophages with DA suppresses LPS-
induced IL-12p40 production (a cytokine secreted primarily
by antigen-presenting cell that has a key role in determining
the type of immune response to antigens). However, such
effect might be mediated by adrenergic receptors (Haskó
et al. 2002). DA and dopaminergic agonists are able to inter-
fere with the production of TNF-α and nitric oxide (NO) in
mouse monocytes (Haskó et al. 1996; Chi et al. 2003), and
DA can also modulate the expression of surface markers in
cells from guinea pigs, such as the Fc-gamma receptor, impor-
tant for the host defense. Fc-gamma receptor on these cells is
reduced following treatment with dopaminergic agents
(Gomez et al. 1999).

In viral infections, DA may play a negative role. In fact,
primary monocyte-derived macrophages (MDM) inoculated
with HIV and in the presence of DA, are more susceptible to
virus infection; indeed, DA increases the viral replication
(Gaskill et al. 2009). This DA-dependent effect was confirmed
by means of a pan-DR antagonist, flupenthixol, which abro-
gated the activation of DR (Gaskill et al. 2014). The same
results were obtained during treatment with methamphet-
amine. In this case researchers observed an increase in the
activity of reverse transcriptase of the virus in human macro-
phages that was blocked after treatment with SCH-23390 and
SKF-83566, two D1-like DR antagonists (Liang et al. 2008).

Microglia

A specialized population of macrophages resident in the CNS
is microglia. Originally described in 1932 by del Rio-Hortega,
these cells show a unique phenotype different from both glia
and neurons (Block and Hong 2005, Kettenmann et al. 2011).
Upon activation, they change their morphology from ramified
to amoeboid, increase their phagocytic activity and increase

their release of pro-inflammatory mediators (Pannell et al.
2014, Nayak et al. 2014). Microglia is divided into subpopu-
lations according to anatomical location: perivascular microg-
lia, mainly within the basal lamina of a blood vessel and
juxtavascular microglia, externally in contact with the basal
lamina of the blood vessel (Gehrmann et al. 1995).

Unregulated activation of microglia can lead to neuroin-
flammation resulting in the neurodegeneration that occurs in
several diseases (Block and Hong 2005) like Alzheimer’s dis-
ease (Meda et al. 1995; Rogers et al. 2007; Li et al. 2014;
Bodea et al. 2014) and Parkinson’s disease (Qian and Flood
2008; Mastroeni et al. 2009; Tanaka et al. 2013; Wang et al.
2015), as well as multiple sclerosis (Li et al. 1996; Duffy et al.
2016; Raine 2016).

Cultured murine and rat glial cells express all five DR
(Färber et al. 2005; Huck et al. 2015). Human elderly microglia
expresses all DR with the exception of DR D1, based on RT-
PCR and immunohistochemistry studies (Mastroeni et al.
2009). DA can influence the functions of these cells attenuating
the release of nitric oxide in microglia derived from mice and
rats (Chang and Liu 2000; Färber et al. 2005). Moreover, DA
significantly stimulated both human, mice and rats microglial
chemotaxis (Färber et al. 2005; Mastroeni et al. 2009).
Dopaminergic regulation ofmicroglia has been recently revised
in detail by Gaskill and colleagues (Gaskill et al. 2013).

Dendritic Cells

Dendritic cells (DC) are antigen-presenting cells and their
name comes from protrusions, similar to dendrites of neurons
that grow on their surface during maturation. They are divided
into two major subgroups: myeloid dendritic cells, similar to
monocyte, and plasmacytoid dendritic cells, which look like
plasma cells (De Kleer et al. 2014). DC possess high phago-
cytic activity as immature cells and high cytokine producing
ability as mature cells. They are able to migrate into the lym-
phoid organs and regulate T cell responses both in the steady-
state and during infection (Mellman and Steinman 2001; De
Kleer et al. 2014). DC are important for T cells activation and
DA seems to play an important role in this context (Pacheco
et al. 2009; Levite 2015). DR are expressed on human
monocyte-derived DC and on peripheral blood DC (Nakano
et al. 2008; Gaiazzi et al. 2016b) and these cells also produce
and store DA in compartments close to the plasma membrane
(Nakano et al. 2009). Moreover, mouse bone marrow-derived
DC express TH (Prado et al. 2012). DR expression can be
modulated by different kind of stimuli. For example, Prado
and colleagues found that both immature and mature mouse
DC express on their surface all the DRwith the only exception
of DR D4, while treatment with LPS induces a significant
down-regulation of DR D5, suggesting a role of this receptor
in the cell maturation’s process (Prado et al. 2012). Similarly,
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treatment with D1-like DR agonists provides improvement in
a model of autoimmune disease in mice (Nakano et al. 2008).

Haloperidol, a D2-like DR antagonist (a typical neuroleptic
drug), is able to suppress murine DC maturation and to atten-
uate the secretion of IL-12p40, which is an important marker
of cell maturation (Matsumoto et al. 2015). In human
monocyte-derived DC, risperidone, an atypical neuroleptic
drug acting preferentially on DR D2, but also on 5-HT recep-
tors, was able to modulate the production of pro-inflammatory
cytokines (Chen et al. 2012).

Similarly, Nakano and colleagues report that DA present in
dendritic cells is able to polarize versus Th2 differentiation
while on the contrary, the result of DA depletion is the shift
versus Th1 differentiation (Nakano et al., Int Immunol.
2009;21:645–54).

Natural Killer Cells

Natural Killer (NK) cells play an important role in innate
immunity and their primary role is the killing of pathogens
and protection of the organism against external invasion
(Vivier et al. 2008). They show the ability to eliminate cancer
cells and virus-infected cells (Moretta et al. 2014), thanks to
the secretion of a large amounts of cytokines, like
granulocyte-macrophage colony-stimulating factor (GM-
CSF), TNF-α, interferon (IFN)-γ, and chemokines such as
CC chemokine ligand (CCL) 3, macrophage inflammatory
protein (MIP)-1, CCL4 and CCL5 (Walzer et al. 2005).

DR are expressed on NK (McKenna et al. 2002; Zhao et al.
2013a; Boneberg et al. 2006) and treatment of NK cells de-
rived from mouse spleen with SKF-38393 (D1-like DR ago-
nist) enhanced NK cytotoxicity, whereas quinpirole, a D2-like
DR agonist, weakened the cytotoxic activity (Zhao et al.
2013a). Spleen-derived NK of rats with a hyperactive dopa-
minergic system had a reduced killing capacity compared to
those of hypodopaminergic rats (Teunis et al. 2004). The sup-
pression of immune status observed after the treatment with
morphine (Bayer et al. 1990; Saurer et al. 2004), was antago-
nized with 7-OHDPAT, a D2-like agonist (Saurer et al. 2004).
In addition, in human peripheral-blood derived NK, drugs
acting as dopaminergic antagonists may inhibit NK cell re-
sponses (Theorell et al. 2014; Won et al. 1995).

Astrocytes

Astrocytes are the most abundant glial cells in the CNS
(Kimelberg and Nedergaard 2010) and are divided in two
main subtypes: protoplasmic astrocytes, mostly found in the
grey matter, and fibrous astrocytes present in the white matter
(Sofroniew and Vinters 2010). The most common marker
used to identify astrocytes is the glial fibrillary acid protein
(GFAP), even if they show a local and regional variability due
to the action of different signaling molecules (Sofroniew and

Vinters 2010). The most important functions of these cells
include the regulation of cerebral blood flow and the forma-
tion and elimination of synapses (Chung et al. 2015). They
have an important role not only in physiological, but also in
pathological conditions such as Rett syndrome, fragile Xmen-
tal retardation, Alexander’s disease and possibly in Down
syndrome (Molofsky et al. 2012). This emerging role in neural
circuit maturity is also linked to the development of several
psychiatric and neurological disorders resulting from synaptic
deficit (Seifert et al. 2006; Molofsky et al. 2012; Clarke and
Barres 2013; Moraga-Amaro et al. 2014; Koyama 2015;
Pekny et al. 2016).

The presence of DR on astrocytes was described in rats and
monkeys, in particular fo the DR D2 (Bal et al. 1994; Khan
et al. 2001). In addition, in rat astrocytes, a non-toxic concen-
tration of DA influenced intracellular calcium signaling
(Vaarmann et al. 2010) and the increase in Ca2+ levels oc-
curred through the stimulation with a D1-like DR agonist
and was prevented by a dopaminergic antagonist (Liu et al.
2009; Zhang et al. 2009). Moreover, DA stimulates cAMP
production in cultured striatal astrocytes of rat and DA-
induced effect is mimicked by the D1-like agonist SKF-
38393 (Zanassi et al. 1999).

Effect of DA on Complement and on Antibacterial
Peptides

Complement

In vitro, the complement factor C5a, which has several harm-
ful effects during sepsis, blunted PC12 cell production of nor-
adrenaline and dopamine, possibly inducing apoptosis in these
cells. Blockade of C5a receptors might represent a promising
complement-blocking strategy in the clinical setting of sepsis
(Flierl et al. 2008). In a prospective randomized trial in pa-
tients undergoing coronary artery bypass grafting, the D1-like
DR agonist fenoldopam reduced the release in blood of the
complement component C3a (but not of C4a and C5a) and of
IL-6 and IL-8 (but not of IL-10, IL-12, and tumor necrosis
factor α), suggesting that fenoldopam may induce a partial
attenuation of the inflammatory response (Adluri et al. 2010).

Antibacterial Peptides

No evidence exists so far regarding any direct connection
between dopaminergic pathways and antibacterial peptides.
Nonetheless, it has been shown that some antibacterial pep-
tides may display cytoprotective properties at least in vitro on
dopamine-producing cells like the neuroblastoma SH-SY5Y
cells (Nam et al. 2013; Kim et al. 2014). DA at high concen-
trations (10–100 μM) displays significant affinity for β2-
adrenoceptors (Katritch et al. 2009), which in turn may affect
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the expression of several antibacterial peptides in many epi-
thelia (reviewed in Scanzano and Cosentino 2015). DA there-
fore might contribute to the modulation of antibacterial pep-
tide production also through adrenergic mechanisms.

Dopaminergic Modulation of Innate Immunity:
Clinical and Therapeutic Relevance

Dopaminergic modulation of the immune response plays a role
in several immune-mediated diseases including autoimmune
disease, like multiple sclerosis (MS; Cosentino and Marino
2013; Marino and Cosentino 2016) rheumatoid arthritis (RA;
Capellino et al. 2010; Nakano et al. 2011), and HIV (Gaskill
et al. 2013, 2014; Williams et al. 2014). Most of the informa-
tion available regard however the adaptive arm of immunity.

Peripheral immunity is also being recognized as a novel
player in neuroinflammation and neurodegeneration, such as
in Parkinson’s disease (PD) (González et al. 2013;
Kustrimovic et al. 2016), amyotrophic lateral sclerosis
(ALS), Alzheimer’s disease (AD) and traumatic brain injury
(TBI). However, it is presently unknown whether dopaminer-
gic modulation of peripheral immunity has any role in disease
progression and/or in the response to treatments.

Dopamine, together with noradrenaline, is the drug of
choice in the treatment of septic shock, where catecholamines
are used as vasopressor agents, and the relevance of their
immunomodulatory potential in this context has never been
assessed so far.

Immune-Mediated Diseases

Multiple Sclerosis

MS is a chronic demyelinating disease induced by an autoim-
mune response against constituents of the central nervous sys-
tem. It affects about 2.4 million individuals worldwide and is
clinically characterized by progressive loss of neurological
functions due to the destruction of the sheath axonal myelin
in different areas of the brain and spinal cord.

The involvement of DR-operated modulation of the im-
mune response is well established in autoimmune diseases
(Pacheco et al. 2014) and specifically in MS (Cosentino and
Marino 2013; Marino and Cosentino 2016), in particular in
the relapsing-remitting (RR) form (Zaffaroni et al. 2008;
Cosentino et al. 2012). Among DR, evidence points to a crit-
ical role of D1-like DR, and in particular of the DRD5 subtype
(Prado et al. 2013; Cosentino et al. 2014). Zaffaroni et al.
(2008) performed a longitudinal study in RR-MS undergoing
treatment with IFN-β and found that the mRNA levels of DR
D5 during 12 months of treatment in circulating lymphocytes
were significantly increased and in parallel, DR D2 mRNA
levels progressively decreased. Overall, it seems that IFN-

beta shifts dopaminergic pathways in circulating lymphocytes
towards a prevalent DR D5 modulation. In contrast to exten-
sive information about dopaminergic pathways in T lympho-
cytes during MS, little is known about dopaminergic modula-
tion of innate immunity.

Monocytes and DC exert a key role in antigen presentation,
promotion of inflammation and tissue damage in MS and
recently the presence of DR was described in DC and mono-
cytes of MS patients (Gaiazzi et al. 2016a, b). In a mouse
model of EAE, it was shown that DC express DR D5 which
favor IL-23 and IL-12 production, contributing to CNS re-
cruitment of pathogenic Th17 cells and disease severity
(Prado et al. 2012). Monocytes appear to play a central role
in MS, contributing to the breakdown of the blood-brain bar-
rier and facilitating the trafficking of T cells within the CNS
(Waschbisch et al. 2011). Among innate immune cells that
have a possible role in this disease, they are also NK cells;
indeed, their depletion exacerbates the disease in EAE
(Chanvillard et al. 2013). Mast cells in the meninges contrib-
ute to the early development of EAE in rodent model (Sayed
et al. 2010) and accumulate in plaque (Olsson 1974). Lastly,
neutrophils of MS patients display a pro-inflammatory pheno-
type and infiltrate the CNS in the early stages of the disease
(Hernandez-Pedro et al. 2013; Naegele et al. 2012; Hertwig
et al. 2016) and seems to contribute, through the production of
reactive oxygen species, at least at the brain level to the in-
flammatory response associated with the severity of symp-
toms (van Horssen et al. 2011; Steinbach et al. 2013).

Rheumatoid Arthritis

RA is an autoimmune disease in which the main characteristic
is the irreversible joint destruction associated with progressive
disability (McInnes and Schett 2011). It can occur at any age,
but is most common between 40 and 60 years and the frequen-
cy is higher in women than men (Heidari 2011). Innate immu-
nity is critical in the pathogenesis of RA. Macrophages infil-
trating in the synovial tissues have a pivotal role and at pres-
ent, the currently most widely used therapy includes metho-
trexate and proinflammatory cytokine inhibitors that act de-
creasing the production and/or the activity of cytokines such
as TNF-α and IL-1, produced primarily by macrophages
(Arend 2001). As in tumors, even in RA, macrophages display
a pro-inflammatory phenotype, with reduced expression of
pro-apoptotic genes and increased production of pro-
inflammatory mediators, like IL-1β (Gierut et al. 2010).
Both in peripheral blood and in synovial fluids of RA patients,
in comparison to healthy control, it was identified a little but
significantly increased number of DC (Gierut et al. 2010),
acting as antigen presenting cells and contributing to disease
progression (Lutzky et al. 2007). Neutrophils, as well as NK,
are prevalently found in synovial fluid of RA patients
(Falgarone et al. 2005). They participate to the disruption of
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joint (Kaplan 2013) and, releasing NET and producing pro-
inflammatory cytokines, contribute to the development of the
pathology, (Wright et al. 2014). The cross-talk with other im-
mune cells leads to the release of cytokines, among which,
TNF-α has the pivotal role in the onset of RA and also in the
NK-dependent DC maturation (Shegarfi et al. 2012). On the
contrary, NK cells can act as immune regulator against acti-
vated T cells and macrophages through their cytotoxic effects
(Ahern and Brennan 2011; Arend 2001).

The dopaminergic system has a strong impact on RA
(Pacheco et al. 2014) as suggested by the increased expression
of DR on synovial fibroblasts of patients with RA (Capellino
et al. 2014), that also present DA transporter, and tyrosine
hydroxylase (Capellino et al. 2010). In a RA mouse model,
Nakano and colleagues showed that DA released by DC in-
duces the IL-6-dependent production of IL-17 by T cell that
leads to the differentiation of Th17 lymphocytes esulting in
exacerbated cartilage destruction, and this effect is prevented
by the D1-like DR antagonist SCH-23390 (Nakano et al.
2011; Nakashioya et al. 2011).

Haloperidol, a D2-like DR antagonist, showed an anti-RA
effect, mitigating the effects due to oxidative stress in adult
female albino rats (Fahmy Wahba et al. 2015) while the DR
agonist cabergoline, reduced the levels of prolactin in ten fe-
male rats with active RA and contribute to the ameliorating of
disease (Mobini et al. 2011). Despite the established role of
innate immunity in RA, no studies so far evaluated the rela-
tionship between dopaminergic pathways and innate immune
cells in the specific context of RA. The observations by
Capellino et al. (2014) showing that elevated expression of
DR in synovial fibroblasts of patients with RA is associated
with an anti-inflammatory effect may suggest that dopaminer-
gic agents lead to a reduction of inflammation, therefore indi-
cating DR on immune cells as therapeutic targets even in RA.

Amyotrophic Lateral Sclerosis

ALS, also known as Lou Gehrig’s disease and motor neuron
disease, is a neurodegenerative disorder due to a progressive
loss of neurons which control the voluntary muscles, charac-
terized by weakness, muscle wasting, fasciculations, and in-
creased reflexes. The disease is manifested by age 60, or ear-
lier in cases of heredity. 90% of the cases are sporadic, with
uncertain etiology, while 10% has a family history with mu-
tations in several genes, among which superoxide dismutase-1
is the best characterized (Zhao et al. 2013b).

In 1993, Takahashi and colleagues hypothesized that spo-
radic ALS and idiopatic Parkinson’s disease share the same
pathogenesis, as evidenced by a progressive fall in 6-
fluorodopa uptake during time (Takahashi et al. 1993). Some
years later, through single photon emission computed tomog-
raphy techniques, a deficit in the nigrostriatal dopaminergic
pathway in a subset of patients with sporadic ALS was

demonstrated (Borasio et al. 1998). This evidence is corrobo-
rated by the low levels of homovanillic acid, the major catab-
olite of DA, in the cerebrospinal fluid of ALS patients
(Mendell et al. 1971). Moreover, in in vivo experiments it
was demonstrated a decreased DR D2 binding in the striatum
of ALS patients (Vogels et al. 2000). Indeed, the treatment
with bromocriptine, a DR D2 agonist, acts as neuroprotective
agent and improves the motor function and slows the progres-
sion of the disease (Nagata et al. 2016).

Several lines of evidence suggest a potential involvement
of innate immunity in the pathogenesis of ALS (Moisse and
Strong 2006; Gendelman and Mosley 2015; Malaspina et al.
2015). At the level of CNS, in in vivo models, microglia
activation occurs and increases in parallel to the development
of ALS. In fact, in vitro experiments activated microglia, as
well as astrocytes, leads to motor neuron death producing pro-
inflammatory cytokines (Moisse and Strong 2006; Phani et al.
2012). Additionally, in a mouse model of ALS, peripheral
monocytes exert a protective role, improving the survival of
motor neurons after the infiltration in the CNS due to the frank
breaching of the blood brain barrier (Zondler et al. 2016). ALS
itself leads to a change in the phenotype and functions of
monocytes (Zondler et al. 2016). On the contrary, infiltrating
monocytes/macrophages can exacerbate the neurodegenera-
tion with the release of pro-inflammatory mediators (Zhao
et al. 2013b). Finally, the contribution of innate immunity is
sustained by the recent finding of Murdock and colleagues of
2016, who showed an increase in the percentage of neutro-
phils and a decrease of the the percentage of monocytes in
ALS patients compared to controls, even if only monocyte
levels correlate with the progression of the pathology
(Murdock et al. 2016). No direct evidence for dysegulation
of DR pathways in immune cells exists so far in ALS, how-
ever the expression and functional relevance of DR in cells
deeply involved in the pathogenesis of the disease, such as
monocytes/macrophages and neutrophils, suggests that
dopaminegic agents might affect at least some key mecha-
nisms involved in ALS.

Alzheimer’s Disease

AD is a neurodegenerative disorder that slowly destroys mem-
ories and intellectual ability. The symptoms range from an
initial loss of short term memory, up to problems with speech
and inability to take care of themselves. The causes are mostly
unknown, but genetic heritability, traumatic brain injury, hy-
pertension and depression are important risk factors. At the
level of the brain, the formation of plaques constituted by β-
amyloid protein and the neurofibrillary tangles formed by τ
protein, determines a loss of connection between neurons and
neuron death themselves (Bakota et al. 2017).

The role of the dopaminergic system in AD is still debated.
It was highlighted that in 30–40% of AD patients, the
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degeneration of dopaminergic neurons is linked with a deteri-
oration of cognitive tasks (Lopez et al. 1997; Nobili et al.
2017). In mouse model of AD, it was demonstrated that the
dysregulation of dopaminergic system is implicated in the de-
cline of memory and learning (Martorana and Koch 2014).
Pizzolato and colleagues found that alterations of DR D2 at
the level of striatummay participate in the extrapyramidal man-
ifestations that occur in AD (Pizzolato et al. 1996). Recently,
several evidences about the role exerted by neuroinflammation
in the course of AD are emerging (Guillot-Sestier MV and
Town 2013; VanItallie 2017). In the review of Heneka and
colleagues it was highlighted that the chronicle deposition of
amyloid aggregate in the brain, activate the microglia, which
release cytokines andmediators, exacerbating the neurotoxicity
(Heneka et al. 2015). However, it was shown that IL-10/STAT3
pathway, can block the innate immune recognition at the level
of brain, as well as the the phagocytosis, reducing the neuroin-
flammation (Guillot-Sestier MV1 et al. 2015). More recently, a
key role of dopaminergic pathway wa reported. As example,
Nobili and coworkers (Nobili et al. 2017) report that alteration
of dopaminergic system in the midbrain is commonly linked
with cognitive impairment in AD patients.

Innate immunity may have a role in AD. Indeed, after the
rupture of blood brain barrier, neutrophils can migrate into the
brain and, in a mouse model of AD, by means of in vivo
imaging techniques it was observed that they infiltrate the
amyloid plaques (Baik et al. 2014). In transgenic models of
AD, it was observed that neutrophils are present at the level of
amyloid plaques, where they release NETs and IL-17 contrib-
uting to neuronal damage and blood brain barrier disruption.
Indeed, in animal models, neutrophils depletion reduces the
severity of AD progression (Zenaro et al. 2015). Peripheral
monocytes of AD patient migrate into the brain to remove the
aggregates of amyloid and Saresella and colleagues showed
that monocytes of AD patients have an inflammatory pheno-
type and are involved in the activation of both innate and
acquired immunity (Saresella et al. 2014).

It was reported that the frequency of NK cells of AD patients
is not modified, but they are less active (Jadidi-Niaragh et al.
2012) while peripheral myeloid DC are decreased in patients
with AD, compared to controls, and this correlates with the
severity and progression of pathology (Ciaramella et al. 2016).

As in ALS, no investigation exists on the involvement of
DR pathways in immune cells in AD, with the only exception
of one small study showing that DR mRNA levels in circulat-
ing PBMC do not differ between healthy subjects and AD
patients (Cosentino et al. 2009).

HIV

HIV is a virus that attacks the cells of immune system, primar-
ily CD4+ T cells and macrophages. There are two main types:
HIV-1, the most common type found in the worldwide; and

HIV-2, mainly found in Western Africa. Several lines of evi-
dences suggest the participation of innate immunity in the
early phases of HIV infections. Macrophages are the primary
target for of HIV in the CNS. It was indeed postulated that the
entry of HIV in the brain is tightly linked with blood derived
macrophages, as suggested by the presence of the virus in the
conventional sites of macrophages, like meninges and the
perivascular areas (Nottet and Gendelman 1995). The viral
reservoir at the level of the brain is a substantial problem
because current therapies with antiretroviral drugs present a
variable blood-brain barrier penetration. The possibility to use
macrophages as carriers of antiretroviral agents is was tested
in mice during HIV-1 encephalitis by the group of Gendelman
who found that the administration of bone marrow macro-
phages loaded with nanoparticles prepared using indinavir
(an antiretroviral agent) could reach brain areas reducing the
replication of the virus (Dou et al. 2009).

DA exerts a very strong impact on the function of macro-
phages during HIV infection. In drug abusers, increased DA
levels in plasma correlate with enhanced entry of HIV into
macrophages (Carbone et al. 1989; Gaskill et al. 2014). This
effect requires the activation of DR expressed on monocyte-
derived-macrophages (Gaskill et al. 2009; Gaskill et al. 2012),
and it is suppressed by the D1-like/D2-like DR antagonist
flupenthixol (Gaskill et al. 2014). Similarly, CD14 + CD16+
monocytes express the mRNA of all five DR and all DR are
functional, as shown by the up-regulation of Erk2. Moreover,
treatment with DA, as well as with the D1-like DR agonist
SKF-38393, increased cell migration and transmigration
across an in vitro BBBmodel (Coley et al. 2015). Both infect-
ed and non-infected monocytes can cross the BBB. Two other
components of innate immunity should be mentioned because
it seems to play a role in the progression of HIV, namely DC
and NK cells (Altfeld and Gale 2015). During HIV infections,
DC play a pivotal role as sentinels that alert other cells by
through the secretion of a series of cytokines, even if evi-
dences exists about their contribute to HIV infection and pro-
gression (Manches et al. 2014). IFN-α-producing DC activate
T cells and exert themselves an antiviral effect (Borrow and
Bhardwaj 2008). However, although there are some signs of a
possible modulation of dopaminergic system on these cells,
such as the membrane expression of all the DR (Gaiazzi et al.
2016b), it is still unclear whether treatment with dopaminergic
agents may alter some behaviors that may be useful in the
course of the disease. Epidemiologic data strongly support
also the role of NK cells in the antiviral control through the
activation of killer immunoglobulin-like receptors (KIRs)
(Carrington and Alter 2012).

Once in the brain, HIV disrupts central dopaminergic path-
way also by acting on the dopamine transporter (DAT). By
means of a computational model, a two amino acids mutation
in DAT results in attenuation of the damage induced by HIV-1
protein transactivator of transcription (tat) (Midde et al. 2015).
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Tat is a regulatory protein essential for the replication of the
virus; mutant tat could inhibit the activity of HIV reverse
transcriptase (Lin et al. 2015). Tat is also able to enhance
Parkinson’s-like behavior in the rats (Liu et al. 2014).

Septic Shock

Septic shock is a dangerous medical circumstance resulting
from the aggravation of sepsis, a condition due to severe in-
fection, leading to an abnormal distribution of the blood flow
in the tissues (Singer et al. 2016). The treatment involves the
use of antibiotics, the recovery of the fluids and the use of
vasopressors, like dopamine and norepinephrine.

DA together with other inotropes is the first vasopressor used
in the case of sepsis or septic shock that occurs during an over-
whelming immune response to bacterial infections that trigger
an inflammatory response throughout the body (Zhang and
Chen 2016). The treatment with DA results in hemodynamic
effects, like increase in blood pressure and flow and vasodilata-
tion (McDonald et al. 1964) and endogenous DA itself increases
under inflammatory conditions (Beck et al. 2004).

The DR-mediated effects on immune cells during sepsis are
different. In neutrophils, there is a suppression of the respirato-
ry burst, migration and TNF-α production, and an increase of
apoptosis (Beck et al. 2004). The inhibition in cytokine pro-
duction following treatment with DAwas also shown in mac-
rophages (Tarazona et al. 1995). Interestingly, Torres-Rosas
et al. (2014), observed that the electroacupuncture in the sciatic
nerve of mice increased the production of DA in the adrenal
medulla. DA, acting on DR D1, was in turn able to reduce the
levels of cytokines and the systemic inflammation in the pe-
ripheral blood of mice, thus preventing the development of
polymicrobial peritonitis (Torres-Rosas et al. 2014). DA is also
able to modulate the secretion of several hormones during sep-
sis, for example prolactin (Bernton et al. 1988; Zhu et al. 1996,
1997). During sepsis, prolactin is decreased and this could be
correlated with an impairment of the immune system leading to
a susceptibility to infection (Beck et al. 2004).

However, there are some studies showing that norepineph-
rine is better than DA in the treatment of septic shock as it has
fewer side effects (Sandifer and Jones 2012; Vasu et al. 2012).
In particular, DA, in comparison to norepinephrine, was asso-
ciated with increased arrhythmic events and mortality (De
Backer et al. 2010, 2012; Martin et al. 1993; Hollenberg
2007; Xu and Peter 2011; Shenoy et al. 2011; Ventura et al.
2015; Avni et al. 2015).

From a general point of view, during infections the dopa-
minergic system undergoes profound changes. For instance,
infection with Toxoplasma gondii induces significant changes
in infected human and animal’s behavior (Flegr 2007, 2013;
Webster 2007; Vyas 2015), which at least in animals can be
blocked by treatment with dopaminergic antagonists (Martin
et al. 2015). Moreover, Toxoplasma gondii possess TH, the

rate-limiting enzyme in the synthesis of DA, and cells
encysted with parasite may contain high levels of DA
(McConkey et al. 2013).

Interestingly, it has also been suggested that DA, as well as
noradrenaline, may alter bacterial internalization in Peyer’s
patches by acting on receptors situated on the intestinal epi-
thelial cells (Brown and Price 2008; Green and Brown 2016).

Conclusions and Perspectives

Despite the extensive knowledge available on the role of do-
paminergic pathways in the adaptive branch of the immune
system (Basu and Dasgupta 2000; Sarkar et al. 2010; Levite
2012), comparatively little is known about dopaminergic
modulation of innate immunity. Nonetheless, available evi-
dence clearly points to a prominent role of dopaminergic
mechanisms in the functional modulation of key innate im-
mune cells such as neutrophils, monocytes/macrophages, NK
cells, and dendritic cells. Much work remains however to be
done and future studies should focus in particular upon:

& The pattern of expression and responsiveness of DR in re-
lation to the functional conditions of the cells. DR exist in
five molecular subtypes which can be divided into twomain
groups (D1-like and D2-like), and it has been shown that for
instance in CD4+ T cells they undergo extensive modifica-
tions upon cell activation (Kustrimovic et al. 2014). It is
conceivable that similar events occur also in innate immune
cells, e.g. in neutrophils during activation, in the differenti-
ation of monocytes towards macrophages, in dendritic cells
during the process of antigen presentation, etc.;

& The specific role of distinct DR in the control of defined
functional responses in the various cells. In general, in hu-
man T cells D1-like DR are inhibitory while D2-like DR
result in the stimulation of various functions (Cosentino
and Marino 2013). What about innate immune cells?

& DA, as well as noradrenaline and adrenaline, can be pro-
duced and used as transmitter by immune cells themselves
(Cosentino and Marino 2013; Marino and Cosentino
2013; Scanzano and Cosentino 2015). Are innate immune
cells able to produce endogenous DA? And is endogenous
DA involved in the autocrine/paracrine regulation of im-
mune cells themselves, like it has been shown in human T
cells (Cosentino et al. 2007), and/or in the interplay be-
tween immune cells and other cells and tissues?

& In addition, it is increasingly clear that innate immune
cells can be divided into distinct subsets with relevant
functional differences, e.g. conventional and nonconven-
tional (proinflammatory) monocytes (Ziegler-Heitbrock
2015), plasmacytoid and myeloid dendritic cells
(Kushwah and Hu 2011). It is likely that DR expression
and function may be different in the various subsets;
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& Last but not least, it is clear that DR expression and re-
sponsiveness as well as DA production in the adaptive
immune system undergo extensive changes during disease
states, a phenomenon which has been extensively charac-
terized in multiple sclerosis (Cosentino and Marino 2013;
Marino and Cosentino 2016), and to some extent also in
rheumatoid arthritis (Capellino et al. 2010; Capellino et al.
2014) and in Parkinson’s disease (Kustrimovic et al.
2016). Investigation of possible changes of dopaminergic
pathways during disease states is mandatory also in the
innate immune system.

From a general point of view, the limited knowledge about
the contribution of innate immunity into several major human
diseases, such as autoimmunity, and neurodegeneration, may
limit the possibility to assess the clinical relevance of available
information concerning dopaminergic modulation of innate im-
mune cells. Nonetheless, the established role of dopaminergic
mechanisms in human disease such as multiple sclerosis
(Cosentino and Marino 2013; Marino and Cosentino 2016),
rheumatoid arthritis (Capellino et al. 2010; Nakano et al.
2011), Parkinson’s disease (González et al. 2013; Kustrimovic
et al. 2016) strongly support the opportunity to better character-
ize dopaminergic modulation of innate immunity as a way to
identify novel therapeutic approaches. The pathogenetic and
therapeutic implications of dopaminergic modulation of HIV
infectivity in human monocytes (Gaskill et al. 2013, 2014;
Williams et al. 2014) is a prominent example in this regard.

Innate immunity is able to influence the activity and re-
sponse of cells of acquired immunity, and some evidence ex-
ists that DAmay act as a transmitter between innate and adap-
tive immune cells, e.g. in particular regarding the Th1/Th2
balance as described by Nakano and colleagues who report
that dopamine present in DCinduces a shift vs Th2 differenti-
ation while on the contrary dopamine depletion induce the
Th1 differentiation (Nakano et al. 2009). Additionally, D1-
like antagonist reduce the Th17-induced response and ovalbu-
min antigen-induced activation of neutrophils in a mouse
model of airway inflammation (Nakagome et al. 2011).

The role of DA in the cross-talk between innate and adap-
tive immunity, including antigen processing and presentation
and the triggering of different immune responses, is another
area of great interest which awaits thorough investigation.

As a final recommendation, future studies should not only
address the direct effects of DA but also of the several dopa-
minergic agonists with peculiar DR selectivity profiles which
are currently used in therapeutics for non-immune indications
(Table 1). Besides providing useful information about the spe-
cific contribution of the various DR in different cells and tis-
sues, such studies could strengthen the rational basis for the
development of clinical trials of these drugs for immune-
mediated disease. Such drugs have usually favorable thera-
peutic index, and also in view of their established use they

might be developed at a relatively low cost, which significant
benefit for patients as well as for the healthcare systems
(Cosentino et al. 2017).
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