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Abstract Neuroimaging techniques to measure the function
and biochemistry of the human brain such as positron emis-
sion tomography (PET), proton magnetic resonance spectros-
copy ("H MRS), and functional magnetic resonance imaging
(fMRI), are powerful tools for assessing neurobiological
mechanisms underlying the response to treatments in sub-
stance use disorders. Here, we review the neuroimaging liter-
ature on pharmacological and behavioral treatment in sub-
stance use disorder. We focus on neural effects of medications
that reduce craving (e.g., naltrexone, bupropion hydrochlo-
ride, baclofen, methadone, varenicline) and that improve cog-
nitive control (e.g., modafinil, N-acetylcysteine), of behavior-
al treatments for substance use disorders (e.g., cognitive bias
modification training, virtual reality, motivational interven-
tions) and neuromodulatory interventions such as
neurofeedback and transcranial magnetic stimulation. A con-
sistent finding for the effectiveness of therapeutic interven-
tions identifies the improvement of executive control net-
works and the dampening of limbic activation, highlighting
their values as targets for therapeutic interventions in sub-
stance use disorders.
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Introduction

Addiction is a disease that cycles through steps of intoxica-
tion, craving, bingeing, and withdrawal and is mainly charac-
terized by the continuation of drug taking despite awareness of
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negative consequences (Goldstein and Volkow 2002).
Differing models have been presented to account for the shift
from controlled use to the cycle of addiction, and to investi-
gate why this only happens in certain individuals. That is, it
has been theorized that addiction is a deficit in bottom-up
motivational processes (i.e., increased motivational reactions
to drugs and drug cues) as well as a lack of top-down cognitive
control over prepotent responses, which lead to increasing
drug taking (Bechara 2005; Volkow et al. 2003) At a neural
level, drugs of abuse directly produce rewarding effects
from increased dopamine release in the mesolimbic path-
way (Nestler 2001) and the subsequent stimulation of do-
pamine D1 and D2 receptors in the nucleus accumbens
(NAc) (Volkow and Morales 2015). This pathway includes
dopaminergic neurons from the ventral tegmental area to
the NAc, which is located in the ventral striatum, and
which fire in response to rewarding cues (Koob 1992). In
addition, other neurotransmitters, such as glutamate and
GABA, are indirectly affected by different drugs, further
altering the brain’s reward pathway (Parvaz et al. 2011).
Importantly, prefrontal cortical (PFC) areas are less active
in substance users, a decrease associated with impaired
self-control (Goldstein and Volkow 2011; Volkow et al.
1991, 1992, 1988).

Treatments currently available for addiction include both
pharmacological interventions as well as behavioral methods.
With the variety of brain regions available as targets from
treatment, most of these pharmacological interventions aim
to accomplish three things: reduce drug craving, increase cog-
nitive control and/or decrease the enhanced stress reactivity
and negative moods. Medications that are aimed at attenuating
the drug cravings include naltrexone, methadone, varenicline,
bupropion, baclofen, amisulpride, and aripiprazole (Konova et
al. 2013; Young et al. 2014; Hermann et al. 2006; Myrick et al.
2010). Treatments that aim to increase cognitive control in
order to normalize performance include N-acetylcysteine
and modafinil (Schmaal et al. 2012; Schmaal et al. 2014).
Some of these medications, specifically varenicline and
modafinil, were shown to both attenuate craving and improve
cognitive performance (Wheelock et al. 2014; Goudriaan et al.
2013). Additionally, antidepressants are used to improve neg-
ative moods which are associated with addiction and which
significantly contribute to relapse. Behavioral approaches to
abstinence include motivation enhancement,, cognitive bias
modification and virtual reality trainings(Wiers et al. 2015b;
Son et al. 2015). Another recently investigated treatment in-
cludes the use of real time fMRI neurofeedback where partic-
ipants are shown the activation of certain regions and asked to
manipulate the activation in a certain direction (Li et al. 2013).
The use of neuroimaging techniques in capturing treatment
effects may provide insight into neurobiological mechanisms
of the treatment in the pathology of addiction, which is a
unique benefit over behavioral outcome measures of

treatment. In addition, neuroimaging may be more sensitive
than behavioral measures in detecting effects of treatment
(Linden 2012).

After introducing neuroimaging techniques, we will review
the literature on pharmacological treatments effects, which we
separated for treatments that target the increase of control ver-
sus those that target attenuation of limbic activation to over-
come craving and stress reactivity. We then summarize behav-
ioral interventions including cognitive bias modification train-
ing, virtual reality, cognitive-behavioral therapy, and motiva-
tional interventions. Lastly, we present information on the use
of neuroimaging as a treatment method, covering recent stud-
ies investigating the benefits of neurofeedback and transcrani-
al magnetic stimulation in addiction. For this review, we
searched PubMed for clinical studies done in drug-
dependent populations that investigated treatment efficacy,
with neuroimaging available for the post-treatment condition.
Various studies have investigated neuroimaging mechanisms
as predictors of relapse (e.g., Mann et al. 2014) or used neu-
roimaging methods as the treatment itself assessing its effica-
cy with behavioral measures (e.g., Alba-Ferrara et al. 2014;
Batista et al. 2015; Gorelick et al. 2014). However, this review
only concentrates on studies that used neuroimaging to eval-
uate treatment efficacy in drug addiction.

Neuroimaging Techniques

Over the last two decades neuroimaging techniques have been
used to study neural effects of pharmacological and behavioral
treatment in substance use disorders. We discuss studies using
Positron Emission Tomography (PET), a technique that uti-
lizes positron-emitting compounds, known as radiotracers, to
measure various physiological functions. The radioisotope de-
cays over time releasing positrons that collide with electrons.
These collisions create gamma rays, which are recorded by the
PET scanner, providing information on the uptake of the tracer
by location and over time (Michaelides et al. 2012). The ra-
diotracers that are utilized can include ones that mimic endog-
enous compounds, such as ['*F]-flouro-2-deoxyglucose
(FDG) which allows for the measurement of glucose metabo-
lism, and others that bind to specific receptors in the brain,
such as [''C]raclopride, which binds primarily to the D2 and
D3 receptors and allows for the study of the dopamine path-
way (Thanos et al. 2008). Studies utilizing PET have been
used to study the effects of different substances of abuse
(Heinz et al. 2004; Volkow et al. 2009).

A second technique that has been used for the study of
treatment effects is proton magnetic resonance spectroscopy
("H MRS). MRS allows for the measurement of brain metab-
olites, with the differing levels signaling a variety of potential
changes (Chang et al. 2013). The measurement of endogenous
compounds, such as glutamate, myoinositol and N-acetyl
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aspartate (NAA), allows for clinical applications in investigat-
ing psychiatric disorders, including substance dependence
(Lyoo and Renshaw 2002).

Third, we discuss functional magnetic resonance imaging
(fMRI) in combination with a drug cue reactivity task, the
most frequently used imaging technique to study treatment
effects. Participants are shown drug-related cues (often picto-
rial) that are known to induce craving and reward-related brain
activation patterns inside the fMRI. The fMRI scanner cap-
tures the blood oxygenation level-dependent (BOLD) re-
sponse, a measure of brain activation (e.g., Courtney et al.
2016). Key brain areas that are activated in drug-users in cue
reactivity paradigms are the NAc, medial PFC (mPFC),
basolateral amygdala and other PFC areas (for reviews, see
Courtney et al. 2016; Schacht et al. 2013). The NAc, mPFC
and amygdala have been associated with bottom-up motiva-
tional aspects of cue reactivity (Barros-Loscertales et al.
2011), reward processing (Koob and Volkow 2010), subjec-
tive drug craving and relapse (Beck et al. 2012; Sinha 2012;
Volkow et al. 2004), whereas the dorsolateral PFC (dIPFC) is
involved in top-down control over motivational reactions to
drug cues in addiction (Baler and Volkow 2006; Bechara
2005; Sinha 2012). Since there is evidence that PFC regions
are hypoactive in drug-dependent individuals at baseline when
not intoxicated and when performing cognitive tasks (e.g.,
Volkow et al. 2004; Goldstein and Volkow 2002, 2011), it
has been proposed that drug-cue induced activation measured
with functional MRI may correspond to an immediate effort to
regulate limbic reward responses (Goldstein and Volkow
2011; Hayashi et al. 2013; Lubman et al. 2004).
Interestingly, however, PET studies measuring changes in re-
gional brain glucose metabolism (marker of brain function) to
cues show reductions in frontal brain areas (i.e., PFC and
ACC) in female cocaine abusers following the exposure to
cocaine cues (Volkow et al. 2011). This apparent discrepancy
in results is likely to reflect the different temporal resolution
for PET metabolic measures (30 min) and fMRI (2-5 min)
and are consistent with impairment in control capacity follow-
ing exposure to cues for which females appear to be more
vulnerable than males (Volkow et al. 2011). Various studies
have focused on cue reactivity and relapse (recently reviewed
in Courtney et al. 2016). For example, alcohol cue-induced
activation in the mPFC was elevated in alcoholics versus con-
trols (Beck et al. 2012). A recent meta-analysis by Konova et
al. (2013) on targets for addiction therapies emphasized the
relevance of the ventral striatum (VS), inferior frontal gyrus
(IFG), orbitofrontal cortex (OFC), anterior cingulate cortex
(ACC), middle frontal gyrus, (MFG) and precuneus in phar-
macological and behavioral interventions.

In contrast to task-based fMRI, resting state MRI (rsMRI)
measures the spontaneous activity across different regions
during a resting scan. The common activation of certain re-
gions is referred to as the functional connectivity, providing an
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organizational overview of the connections between different
brain regions (Lu and Stein 2014). Resting state functional
connectivity is altered in numerous psychiatric and neurolog-
ical disorders, including in addiction (Ma et al. 2010; Meunier
etal. 2012; Tomasi et al. 2010). In particular addicted individ-
uals show decreased functional connectivity in executive con-
trol networks, which are responsible for self-regulation and
enhanced connectivity in the default mode network (DMN),
which is responsible for interoceptive awareness (Pariyadath
et al. 2016).

Last, electroencephalography (EEG) is a noninvasive tech-
nique that involves the measurement of electrical signals from
the brain (Stewart and May 2016). Endogenous event-related
potentials (ERPs) are signals that are temporally linked to
specific events. A frequently used component of ERPs is the
P300, which is an ERP deflection seen between 300 and
600 ms after the initiation of an intervention (Fabiani et al.
2000). P300 has been recognized as a phenotypic marker for
drug addiction, as it was altered in individuals with substance
use disorder (SUD) on several tasks including reward process-
ing (Goldstein et al. 2008; Parvaz et al. 2012), and was pre-
dictive of relapse (reviewed in Stewart and May 2016). As
such, the P300 has been used as a potential target for capturing
treatment effects of SUDs (Stotts et al. 2000).

Neural Effects of Pharmacological Interventions

Pharmacological Treatment Studies That aim to Reduce
Drug Craving

Individuals who are addicted to a drug often report strong
cravings in response to drug-related cues or to negative emo-
tions (i.e. stress, boredom, depression). However, self-
reported craving is a subjective measure. Researchers are
using neuroimaging to objectively quantify brain activation
that is the result of drug cues. Neuroimaging can be used to
evaluate the treatment utility of different pharmacological
agents. Several studies involving different drugs of abuse,
including alcohol, nicotine and cocaine, have shown consis-
tent brain areas of increased activation in drug abusers when
they view cues of their drug. In addition, pharmacological
agents that block dopamine release can erase the increased
activation of these cue-craving areas (Courtney et al. 2016).
Naltrexone, an opioid antagonist, is one of the medications
currently approved to treat alcohol as well as opioid use dis-
orders. Naltrexone blocks the NAc-activated release of dopa-
mine in response to alcohol (Gonzales and Weiss 1998) and it
is expected that serotonin 3 antagonists, such as ondansetron,
might have a similar action (Grant 1995; Johnson et al. 2000).
Previous behavioral studies showed that these medications, in
combination with psychotherapy, reduced craving, reduced
number of drinks per drinking day, and increased time to



J Neuroimmune Pharmacol (2016) 11:408-433

411

relapse (Anton et al. 1999; Johnson et al. 2000). A study by
Weerts et al. (2008) utilized PET to study the availability of
two of the opioid receptor (OR) subtypes, - and 6-OR, before
and during a standard naltrexone treatment using
[''C]carfentanil and [''C]methylnaltrindole, respectively.
Alcohol dependent subjects scanned during treatment (after
their fourth dose) showed complete inhibition of the n-OR,
which was hypothesized to be responsible for the craving
reduction seen with the medication. The 8-OR, however,
was only partially inhibited by naltrexone. The degree of in-
hibition was highly variable between subjects and correlated
with blood levels of naltrexone. This variability in -OR inhi-
bition may explain the differences in treatment success with
this medication (Weerts et al. 2008). In an additional study,
Myrick et al. (2008) measured brain activation in craving
areas after alcohol dependent subjects were given two acute
pharmacological treatments: naltrexone and ondansetron hy-
drochloride. Subjects treated with naltrexone showed reduced
VS activation compared to placebo-treated controls. However,
subjects treated with only ondansetron showed a non-
significant reduction in VS activation compared to placebo-
treated controls. The acute combination of naltrexone and
ondansetron not only significantly reduced subjective craving
in alcoholics, but also decreased VS cue-related activation
during fMRI as compared to placebo-treated alcoholics. In
addition, subjective craving significantly correlated with VS
activation (Myrick et al. 2008). These results provide evidence
supporting the effectiveness of an acute combination treat-
ment for reducing alcohol-related cravings in alcohol use dis-
orders (AUD

Studies have also been done with an extended-release naltrex-
one (XRNTX) injection, which improves compliance over that
of oral medication. Drug cue reactivity was evaluated before and
between 10 and 14 days after a single XRNTX injection, in both
heroin and alcohol dependent patients (Langleben et al. 2014;
Lukas et al. 2013). Both of the study populations reported de-
creases in drug craving, In the heroin dependent subjects, the post
treatment scans showed decreased activation in the amygdala,
caudate, precentral gyrus, and cuneus, which are related to drug
conditioning, self-regulation and craving. Increased activation
was seen in MFG and precuneus, which are involved in “self-
referential processes”. These changes suggest that the XRNTX
regulates the drug cue responses by increasing inhibitory control
(Langleben et al. 2014). The alcohol-dependent patients in the
other study were exposed to both visual and olfactory cues. The
XRNTX decreased activation in cue related regions known to be
involved in cognition, reward processing, and memory, altering
the responsiveness to drug cues (Lukas et al. 2013). XRNTX has
been shown to have similar results as oral naltrexone as far as
treatment potential, but with the added advantage of facilitating
treatment compliance.

Two antipsychotics, amisulpride and aripiprazole, have
been considered for addiction treatment due to their

dopamine-D2/D3 receptor blocking effects. The utility of
these treatments has also been studied through the imaging
of cue-induced craving. An fMRI study by Hermann et al.
(2006) looked at amisulpride, a dopamine D2/D3 receptor
antagonist, and reported reduced activation in the right
thalamus during alcohol cues compared to placebo. Further,
Myrick et al. (2010) found that in alcoholics, aripiprazole
reduced activation in VS compared to placebo. For the alco-
holics given aripiprazole, right VS activity and heavy drinking
during the 14-day medication period significantly decreased
compared to alcoholics given placebo. However, there were
no significant differences in subjective cravings between
aripiprazole and placebo (Myrick et al. 2010). In another
study, the combination of aripiprazole and escitalopram given
to alcoholics with co-morbid major depressive disorder in-
creases activation of the left ACC on a cue reactivity task
compared to escitalopram alone (Han et al. 2013). Increases
in left ACC activation were negatively associated with sub-
jective craving. Because the ACC is a mediator of depressive
symptoms, the authors suggest that the negative association
may be due to the co-morbidity of depression in these
subjects.

Baclofen has also been proposed as a treatment for addic-
tion. One study reported that cocaine-dependent individuals
given baclofen had reduced activation of VS, ventral
pallidum, amygdala, midbrain, and OFC in response to co-
caine cues compared to cocaine-dependent individuals given
a placebo (Young et al. 2014). This study used subliminal
cues—the cocaine stimuli were presented for 33 ms only
and were followed by longer masking stimuli to prevent visual
processing of the cocaine cues. The brain areas where activa-
tion decreased after treatment (i.e., ventral pallidum, amygda-
la, and OFC), were previously reported to be activated during
subliminal cue tasks in drug abusers at baseline before treat-
ment (Childress et al. 2008). This study reveals a potential
target for evaluating pharmacotherapies by utilizing sublimi-
nal cues to test unconscious drug cue processing.

Varenicline is a partial agonist to nicotinic acetylcholine
receptors that is used as a smoking cessation medication. It
has an indirect action on mesolimbic dopamine (DA) release,
reducing the rewarding effects of nicotine. Functional neuro-
imaging studies in smokers revealed reduced activation of the
VS and medial OFC, and increased activation of the ACC,
lateral OFC, posterior cingulate cortex (PCC), superior frontal
gyrus (SFG), and dorsolateral PFC (dIPFC) (Franklin et al.
2011). The combination of varenicline and naltrexone reduced
activation in bilateral ACC compared to a placebo in heavy
drinking smokers (Ray et al. 2015). Varenicline also reduced
cue-induced OFC activation bilaterally in alcohol-dependent
individuals, although it had no effect on reducing drinking
behavior (Schacht et al. 2014). A preliminary study by
Wheelock et al. (2014) utilized both "H-MRS and fMRI with
the Stroop task, a color-naming paradigm that can be used to
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measure cognitive control, on smokers before and after treat-
ment with varenicline. MRS showed a reduction in glutamine
and glutamate levels in the ACC after treatment, with the
baseline levels associated with craving and nicotine depen-
dence. Decreases in BOLD signal in fMRI occurred in the
rostral ACC, medial OFC, and precuneus/PCC. Functional
connectivity analysis revealed changes between the dorsal
ACC and the DMN, specifically in the rostral ACC and
PCC (Wheelock et al. 2014) suggesting that varenicline exerts
its actions through changes in glutamine/glutamate decrease
and alterations of the functional connectivity of the dorsal
ACC and the DMN.

Another smoking cessation medication, bupropion hydro-
chloride modulates DA and norepinephrine levels by blocking
reuptake transporters. This action may reduce nicotine reward
and withdrawal (Foley et al. 2006). A study using PET-FDG
in the presence of cigarette-related cues showed decreased
glucose metabolism in the perigenual and ventral ACC in
bupropion-treated smokers compared to non-treated smokers
(Brody et al. 2004). An fMRI study by Culbertson etal. (2011)
reported reduced self-reported craving and cue-activation in
limbic and PFC areas in bupropion-treated smokers. Reduced
activation in bilateral medial OFC and left ACC correlated
with self-reported craving (Culbertson et al. 2011). There
was also decreased cue-induced activation in left VS in
bupropion-treated subjects, consistent with the studies of other
craving-reducing medications (e.g., Courtney et al. 2016).

Methadone, an opioid receptor agonist, is effective in the
treatment of opioid use disorder and is the most widely used
pharmacological treatment for heroin addiction (Wang et al.
2014). Methadone prevents withdrawal symptoms and re-
duces craving upon cessation of heroin use (Shi et al. 2008).
Multiple studies have utilized fMRI and a heroin-related cue
paradigm to investigate the effects of methadone maintenance
treatment (MMT). A study by Wang et al. (2014) investigated
differences in brain activations in heroin users with different
treatment durations of MMT (less than a year vs treatment for
at least 2 years) and also compared them with healthy controls.
MMT patients, regardless of treatment length, had increased
activity in both the mesolimbic reward and the visuospatial
attention circuits compared to controls, consistent with results
from a previous study (Wang et al. 2011). The MMT patients
with longer treatments exhibited a reduction in activity com-
pared to patients with shorter treatment lengths in the bilateral
caudate, supporting the idea that long term MMT decreases
the risk of relapse in heroin dependent patients by reducing the
activation in reward-related regions (Wang et al. 2014).
Further, Tabatabaei-Jafari et al. (2014) studied heroin users
undergoing MMT, heroin users undergoing opiate abstinence,
and healthy volunteers. Their results suggest that while both
opiate abstinence and MMT both decrease craving, the crav-
ing reductions seemed to be caused by different patterns of
activations. Although a number of regions were activated in
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both conditions, opiate abstinence led to an additional increase
in activation in ACC and IFG, suggesting that these regions
are involved in drug processing and aversion. MMT patients
had higher activation in cerebellum and right lingual gyrus,
implicating this enhanced activation as a medication effects
(Tabatabaei-Jafari et al. 2014). In a study by Langleben et al.
(2008), heroin dependent patients on MMT were scanned be-
fore and after their daily methadone dose. At the post-dose
scanning sessions, MMT patients had increased activation to
drug-related cues in OFC, insula, and left hippocampal com-
plex. Pre-dose scans showed similar significant responses in
these same regions, to an even greater degree, as well as in-
creased response in ACC and the amygdala. This difference
between the pre-dose and post-dose conditions suggests that
MMT patients are most vulnerable in the time just before their
dose (Langleben et al. 2008). These increases in activation
persist even though the self-reported craving scores are not
significantly different between any of the groups, a result also
replicated by other studies (Tabatabaei-Jafari et al. 2014;
Wang et al. 2011; Wang et al. 2014).

Resting state functional connectivity (RFC) has also been
used to study MMT’s effects. Ma et al. (2010) used fMRI to
investigate RFC changes in chronic heroin users (majority
undergoing treatment with methadone) compared to healthy
controls. The heroin users had increased connectivity in re-
gions related to reward and craving including between NAcc
and ACC, NAcc and OFC, and amygdala and OFC. Reduced
connectivity between the PFC and both the ACC and OFC
suggests impaired cognitive control (Ma et al. 2010). The
combination of increased activation in reward and craving
related regions with decreased cognitive restraint provides ev-
idence of the shifts in functional connectivity that occur in
chronic heroin users, even when undergoing methadone treat-
ment or controlled heroin-maintenance.

Studies have also utilized PET and MRS to learn more
about other aspects of MMT. It was proposed that chronic
opiates disrupt dopamine transporters (DAT) in brain and that
methadone counteracts this, accounting for the anti-craving
effects. To test this hypothesis, a study used PET and [''C]-
2B-carbomethoxy-3 B-aryltropane ([''C]CFT), a DAT
radioligand, to compare DAT between abstinent heroin
abusers on methadone treatment, heroin abusers in prolonged
abstinence (no methadone), and controls (Shi et al. 2008). The
results revealed that subjects on MMT had lower than normal
DAT in caudate and putamen. Abstinent (with or without
methadone) heroin users had even lower DAT in caudate
when compared to controls. The lower DAT in the caudate
was associated with subjective anxiety only in MMT subjects.
Further, MMT subjects had lower DAT levels in the putamen
compared to the prolonged abstinence subjects, illustrating a
restoration of DAT levels for the subjects who were cleared
from all types of opioids, both heroin and methadone. This
study concluded that long-term heroin use (presumably also
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methadone) can reduce DAT in striatum. Although methadone
does reduce craving for heroin, sustained abstinence from the
opioids in general can facilitate DAT restoration to a greater
extent (Shi et al. 2008). In another PET study using FDG,
Galynker et al. (2007) studied three similar groups: opiate-
abstinent former opiate-dependent patients, MMT patients,
and controls. While both experimental groups showed atypi-
cal relative activity patterns in similar regions, the opiate ab-
stinent group showed decreased activity in a greater number of
regions including the bilateral perigenual ACC, left mid-cin-
gulate, left insula, and right SFG. Some of these regions, spe-
cifically the left perigenual ACC and mid-cingulate cortex,
play an important role in mood processing. These findings
suggest that MMT may normalize activity in mood processing
regions, even in non-depressed patients, decreasing the prob-
ability of relapse (Galynker et al. 2007). A '"H MRS study
measured glutamate levels in the ACC in heroin-dependent
subjects, at both high (100 mg/day) and low (10-25 mg/day)
dose MMT. Subjects first received a high dose and where then
tapered off to a lower dose. The shift from high to low MMT
led to an increase in ACC glutamate in the heroin-dependent
subjects. This shift in glutamate levels, which approached
control levels, suggests that the lower dose MMT might help
normalize glutamate levels in ACC (Greenwald et al. 2015).

A study in patients undergoing protracted heroin-
maintenance also showed increased RFC of the putamen,
which was associated with the reported effects of the drug
(Schmidt et al. 2015a). Another study by the same group
investigated changes in connectivity with fMRI in re-
sponse to fearful faces to test differences in stress reactiv-
ity. Heroin-maintained participants increased amygdala
connectivity in response to the task after placebo admin-
istration, whereas the connectivity after heroin administra-
tion was similar to that of controls (Schmidt et al. 2015b).
The combination of increased activation in reward and
craving related regions with decreased cognitive restraint
provides evidence of the shifts in functional connectivity
that occur in chronic heroin users, even during MMT or
controlled heroin-maintenance. A structural imaging study
also on patients undergoing heroin-maintenance treatment
revealed decreased gray matter volume in frontal areas.
Decreased gray matter volume was associated with lower
perfusion, an index of cerebral blood flow (CBF), which
serves as marker of brain function. Reduced frontal CBF
is consistent with impaired executive function in heroin
addicted subjects (Denier et al. 2013).

Pharmacological Treatment Studies That aim to Increase
Cognitive Control

Modafinil, N-acetylcysteine, methylphenidate and amphet-
amine and others are cognition enhancing drugs that aim to
boost control processes in SUD. Modafinil is a mild stimulant

that is marketed for the treatment of narcolepsy, to inhibit
bouts of daytime drowsiness. Modafinil modulates DA signal-
ing in the human brain (Volkow et al. 2009). In a study by
Ghahremani et al. (2011), a learning task performed in the
fMRI was used to evaluate the effect of modafinil in metham-
phetamine (METH) dependent patients. METH dependent pa-
tients and healthy controls underwent two scanning sessions,
with modafinil or placebo in random order. Modafinil in-
creased performance during the task in METH group,
reaching levels similar to those seen in controls. Activation
in ACC and bilateral insula/ventrolateral PFC also in-
creased after modafinil administration, possibly reflecting
the increased activation of these regions in the learning
and cognitive processes activated during the MRI task
(Ghahremani et al. 2011). The normalization of perfor-
mance after one dose of modafinil supports its use as a
therapy for METH dependence.

In AUD, modafinil improves impulsive decision making
on a delay discounting task measured using an fMRI paradigm
(Schmaal et al. 2014). Alcohol dependent (AD) patients and
healthy controls underwent two fMRI sessions, either with a
placebo or modafinil administration. For the AD patients, ac-
tivation in frontoparietal regions was enhanced whereas ven-
tromedial PFC activation was reduced after modafinil admin-
istration. Modafinil also enhanced functional connectivity be-
tween the SFG and VS and this was associated with behav-
ioral improvement in task performance (Schmaal et al. 2014).
This study supports the suggestion that modafinil enhances
coupling of PFC control regions and reward areas thereby
decreasing impulsive decision-making.

In another publication, Schmaal et al. (2013b) explored
whether modafinil could play a role in enhancing response
inhibition, which is typically compromised in AUD. Similar
to their previous study, AD patients and healthy controls com-
pleted two fMRI sessions with either a placebo or modafinil.
Response inhibition performance was measured from stop
signal reaction times during a stop signal task performed dur-
ing the scans. For AD subjects, modafinil enhanced response
inhibition only for those subjects whose inhibition was al-
ready significantly compromised at baseline. In contrast,
modafinil actually worsened performance for those AD pa-
tients with more regular response inhibition at baseline. For
healthy controls with adept baseline response inhibition abil-
ities, the drug caused no significant modulation in the task
across the two conditions. Modafinil did, however, improve
response inhibition for healthy controls with a more deficient
baseline measurements. For the AD patients who improved
their response inhibition as a result of modafinil, a larger ac-
tivation of the thalamus and supplementary motor area was
observed in parallel with diminished communication between
the thalamus and the primary motor cortex (Schmaal et al.
2013a). This indicates that modafinil can improve response
inhibition for AD patients, although baseline measurements
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of'the ability should be taken into consideration before relying
on modafinil as a means of treatment. A follow up study
investigated the effect the dose of modafinil had on functional
connectivity in the DMN in AD patients and controls as they
completed the Stroop task. Modafinil increased functional
coupling between DMN and both the salience network and
the central executive network in AD patients. These two net-
works are involved in cognitive tasks, with the increased as-
sociation providing a potential mechanism by which
modafinil improved cognitive performance (Schmaal et al.
2013a).

Modafinil is also used for reducing craving in cocaine ad-
dicts upon exposure to drug-related cues. A study by
Goudriaan et al. (2013) sought to investigate the modulations
in cerebral activity, if any, that are present in response to
substance-related cues under the influence of modafinil.
Cocaine-dependent patients and healthy controls participated
in two fMRI scans separated by 1 week, receiving either a
placebo or modafinil. While in the scanner observing
cocaine-related cues, the cocaine-dependent individuals ex-
hibited large activations of the “MFG, ACC, angular gyrus,
left OFC, and ventral tegmental area” during the baseline
condition compared to controls. There were no activation dif-
ferences for these reward and motivation centers between
groups with treated with modafinil. In addition, in cocaine-
dependent subjects, there was less activation in the ventral
tegmental area and more activation in the right ACC and pu-
tamen with modafinil than with placebo. This variation did not
occur in healthy controls. The overall findings indicate that
modafinil plays a role in dampening the activity of motiva-
tional and subjective craving centers of the brain for cocaine-
dependent individuals upon exposure to cocaine-related stim-
uli (Goudriaan et al. 2013)

In a placebo-controlled trial by Volkow et al. (2009), Fig. 1,
the effects of oral modafinil on DA release and DAT occupan-
cy were measured in healthy subjects using PET with
["'Clraclopride and [''C]cocaine, respectively. PET results
revealed that DA was significantly increased in the VS after
modafinil administration due to the ability of modafinil to
block DAT. Moreover modafinil decreases the binding of
["'C]cocaine which is evidence that both modafinil and co-
caine bind to the same site. The results of this study suggest
that modafinil might hold some abuse potential due to the DA
increases in VS following the blockade of DAT, similar to
other drugs of abuse such as cocaine (Volkow et al. 2009).
However modafinil is much less potent than cocaine in its
ability to block DAT, which is likely to explain its low abuse
potential. A recent study with [''C]-N-(3-iodopro-2E-enyl)-
2beta-carbomethoxy-3beta-(4'-methylphenyl) nortropane
(["'C]-PE2I), a DAT radiotracer, measured DAT availability
in cocaine-dependent subjects administered either modafinil
or placebo who underwent two PET scans during a 17-day
period. While the modafinil treated patients showed a
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Fig 1 Adapted from Volkow et al. (2009). Modafinil blocks DAT ([C-
11]cocaine) and increases dopamine release ([C-11]raclopride)

significant decrease in binding of the tracer, the medication
failed to show greater abstinence levels than the placebo. This
argues against the use of modafinil to treat cocaine abuse
(Karila et al. 2016).

Addictive disorders have been associated with disruptions
in the homeostasis of glutamate, an excitatory neurotransmit-
ter in the brain, which may underlie vulnerability to drug-
seeking behavior, such as craving and impulsivity (see
Reissner and Kalivas (2010) for a review). For example, stud-
ies using "H MRS found decreased levels of glutamate in the
rostral ACC in patients with cocaine dependence (Yang et al.
2009), whereas increased levels of glutamate were found in
the putamen of monkeys on long-term cocaine treatment (Liu
et al. 2011). The administration of the drug N-acetylcysteine
normalized glutamate levels in cocaine-treated rats (Baker
et al. 2003). Whether this result is consistent in drug depen-
dent humans was the focus of a study by Schmaal et al. (2012)
that recruited cocaine dependent individuals as well as healthy
controls to undergo two "H MRS scans, with each individual
receiving either no drug or N-acetylcysteine 1 h before the
scan. Study results confirmed that baseline glutamate levels
in the dorsal ACC of cocaine dependent individuals are sig-
nificantly higher than in healthy controls. Following
N-acetylcysteine, however, a significant reduction of dorsal
ACC glutamate was observed in cocaine dependent subjects
while no change was seen in the brains of healthy controls.
These results imply that N-acetylcysteine is responsible for the
normalization of abnormal glutamate levels seen in cocaine
dependent individuals (Schmaal et al. 2012) and suggests an
alternative treatment method for cocaine dependent individ-
uals. Whether N-acetylcysteine is effective for reducing im-
pulsivity and craving for cocaine-dependent individuals, as
well as potentially benefiting abusers of other drugs, requires
additional investigation.
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Neural Effects of Behavioral Interventions
Cognitive Behavioral Therapy

Cognitive Behavioral Therapy (CBT) aims to change unhelp-
ful thinking and behavior, and has been shown to decrease
drug consumption in various SUD (Dutra et al. 2008).
However, surprisingly few studies have investigated the ef-
fects of CBT with neuroimaging. A preliminary study by
DeVito et al. (2012) evaluated the effect of CBT using an
fMRI Stroop task (task that measures cognitive control) and
compared BOLD response before and after treatment for sub-
jects with SUD. After treatment, the patients exhibited de-
creased activation of ACC, IFG, dIPFC, and midbrain during
the Stroop task. Compared to healthy controls who also
underwent two scans, patients had a greater signal change in
the subthalamic nucleus and midbrain after the second scan.
These regions are involved in cognitive processes and impulse
control, providing a mechanism by which this intervention
method may help treat SUD (DeVito et al. 2012). A second
study in heavy smokers compared the effects of CBT vs pla-
cebo on glucose metabolism using FDG PET. CBT, but not
placebo, reduced FDG uptake in the posterior cingulate cortex
(PCC), an area involved in value-based decision making
(Costello et al. 2010).

Motivational Interventions

Motivational intervention is another treatment option avail-
able for SUD. Through a variety of techniques, including pub-
lic service announcements (PSAs), personally tailored mes-
sages, or motivational interviewing, motivational interven-
tions can increase the chances of drug use cessation
(Zilverstand et al. 2016). An fMRI study by Feldstein Ewing
etal. (2011) in AUD subjects investigated two different types
of client speech during motivational interviewing and their
effectiveness at altering neural activation following alcohol
cue presentation.. Change talk (CT), where the participant
addresses the need for modified behavior, was compared with
counterchange talk (CCT), where participants believed they
did not have to alter their behavior regarding drinking. After
CCT and alcohol cue presentation, activation was seen in
OFC, insula, NAcc, caudate, and putamen. However, there
were no significant increases in activation following CT
supporting the importance of CT during motivational
interviewing as well as other behavioral interventions
(Feldstein Ewing et al. 2011). Another study by Wilson et al.
(2013) investigated differences in coping strategies during cue
exposure in smokers: self-focused (with the focus being on
personal benefit) versus other-focused (benefits presented in
terms of another individual). Self-focused strategies, in con-
trast to other-focused strategies, produced an increase in acti-
vation in medial PFC, precuneus, and insula, all regions

involved in self-referential processes (Wilson et al. 2013).
These studies support the careful selection of specific strate-
gies for therapies, with the best results seen with strategies that
are more self-focused.

Two studies investigated the use of PSAs, frequently
viewed on television, as a form of motivational intervention.
Langleben et al. (2009) studied the brain responses of regular
smokers to two types of anti-tobacco PSAs, those with high
message sensation value (MSV) compared to those with low
MSYV, as well as neutral cues. MSV is a measure of intensity of
the response to the different features of the video, such as
visual and audio components. Frames from the PSAs, both
high and low MSYV, were more accurately identified during a
“Frame Recognition Test” compared to those from the neutral
videos, with the low MSV frames being those most accurately
recognized. The activation elicited by the low MSV PSAs in
the PFC and temporal cortex was greater than that of the high
MSV PSAs, suggesting that higher intensity videos may not
directly lead to greater retention (Langleben et al. 2009). A
second study by Wang et al. (2013), investigated anti-smoking
PSAs using fMRI in smokers while in the scanner. Smokers
viewed PSAs with either high or low “argument strength
(AS)”, i.e., the strength of the content and its persuasiveness
with the audience. Smokers’ brain responses to AS and MSV
strength interacted in the inferior parietal lobule, left IFG, left
fusiform gyrus, right dorsomedial PFC (dmPFC), and
precuneus. These results show the importance of processing
the PSAs in these regions, with activation in the dmPFC also
correlating to nicotine metabolite levels after a 1 month
follow-up (Wang et al. 2013). These studies show the differ-
ences in brain activation by the varying types of PSAs, help-
ing elucidate which types may be more beneficial for anti-
tobacco PSAs.

Three studies by the same group investigated the use of
tailored messages as a motivational intervention for smoking,
by measuring brain responses to high-tailored, low-tailored,
and generic smoking cessation messages. High-tailored mes-
sages produced greater activation of rostral mPFC and
precuneus/PCC compared to low-tailored response, while
the two tailored conditions produced greater activation in
these regions compared to the generic messages (Chua et al.
2009a). A second study investigated the difference between
neutral messages and three types of tailored messages: person-
alization/feedback, motivational, and instructional. The 3
types of messages each activated different areas: instructional
messages activated the dIPFC, the personalized/feedback
messages activated the mPFC and precuneus/PCC, and the
motivational messages activated the ventral mPFC. The areas
activated are involved in instructional processing, self-
referential processes, and reward expectation, providing op-
tions for targets for the messages (Chua et al. 2009b). A more
recent study investigated the neural changes seen with the
tailored messages and its association with continued smoking
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cessation (Chua et al. 2011). After viewing tailored messages,
participants showed increased activation in dmPFC,
precuneus, and angular gyrus. The activations of dmPFC
and precuneus were correlated with smoking cessation after
a 4 month follow-up visit (Chua et al. 2011). The increased
activation in mPFC and precuneus in the 3 studies in response
to the tailored messages and its association with smoking ces-
sation provides support for the use of tailored messages for
smoking cessation treatments.

Cue-Exposure Treatment

Cue-exposure treatment (CET) aims at reducing conditioned
responses towards drugs in individuals with SUD, which may
reduce their risk of relapse (Drummond et al. 1990). A meta-
analysis by Conklin and Tiffany (2002) showed no evidence
for efficacy of CET for SUD, whereas Loeber et al. (2006)
showed that CET decreased craving in AUD. Vollstadt-Klein
et al. (2011) investigated the effects of CET on alcohol cue
reactivity using fMRI in abstinent AUD patients. After treat-
ment, the CET group exhibited stronger cue-reactivity reduc-
tions in VS, dorsal striatum, ACC, precentral gyrus, and insula
compared to controls, which correlated with subjective
craving.

Cognitive Bias Modification Training

Automatic processes may play a large role in drug addiction,
and drug users have shown behavioral cognitive biases for
drug cues, i.e., selective attention (attentional bias) and the
tendency to approach drug cues faster than to avoid them
(drug approach bias). The attentional bias can be measured
with the addiction Stroop task (Cox et al. 2006), in which
individuals with a SUD respond slower to drug-related words
compared to neutral words, suggesting distraction by drug
cues and the visual probe task; SUD participants generally
fixate longer on a drug picture than a neutral picture (Field
et al. 2013). The drug approach bias can be assessed with the
Stimulus—Response Compatibility (SRC) task and a joystick
Approach Avoidance Task (AAT). In the SRC, drug users
moved a manikin faster towards drug cues than towards neu-
tral cues (Bradley et al. 2008). In the AAT, participants push
and pull pictorial cues that appear on a computer screen (drug-
related/neutral) with a joystick in response to the format of the
cue. The behavioral approach bias is calculated as the reaction
time of pushing — pulling cues, with higher approach bias
scores corresponding to stronger tendencies to pull than push
certain cues. Patients with AUD (Wiers et al. 2014), cannabis
use disorders (Cousijn et al. 2011), opiate use disorder (Zhou
et al. 2012) and tobacco smokers (Wiers et al. 2013), have an
approach bias for drug cues compared to control groups on the
AAT; i.e., faster approach than avoidance. Attentional and
approach biases for drugs correlated positively with explicit
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craving scores (Mogg et al. 2003; Mogg et al. 2005; Watson et
al. 2013), and predicted relapse (Janes et al. 2010) and drug
consumption (Volkow et al. 2005). These studies highlight the
clinical importance of automatic biases in drug addiction.

Automatic biases can be “re-trained” by means of cogni-
tive bias modification (CBM) training. The first study inves-
tigating CBM adapted a visual probe task for anxiety
(MacLeod et al. 2002), in which probes follow neutral cues
in the majority of cases, therefore disengaging attention from
anxious cues and reducing attentional bias. CBM also de-
creased attentional biases for drug cues compared to neutral
cues in heavy drinkers (Fadardi and Cox 2009), alcohol-
dependent patients (Schoenmakers et al. 2010) and smokers
(Field et al. 2009). Some of these studies found generalization
to new stimuli, i.e., attention was not only disengaged from
the drug cues that were used for CBM training, but reduced
attentional biases also occurred for drug cues that participants
hadn’t seen before (Fadardi and Cox 2009). This suggests that
CBM may affect attentional biases for drug-related cues in
general, which may influence other behavioral processes such
as drug craving and drug seeking behavior.

In the AAT-based version of CBM participants systemati-
cally but implicitly push away drug cues with a joystick to
decrease the drug approach bias. Typically a CBM group
pushes away drug cues in 90 % of trials and pulls 10 % of
alcohol cues towards them. Some study designs use a sham
training group that pushes and pulls alcohol in 50 %/50 % of
the cases. In two recent randomized-controlled trials, CBM
reduces relapse rates up to 13 % in patients with AUD, com-
pared with a placebo-training group (Wiers et al. 2011) and
compared with a non-training group (Eberl et al. 2013), show-
ing its clinical potential in alcohol addiction.

Two studies have investigated the neural effects of CBM in
addicted populations. First, Wiers et al. (2015b) investigated
recently detoxified patients with AUD on a blocked design
alcohol cue reactivity task (Fig. 2). After the task, patients
were randomly assigned to either a CBM group or a placebo
group, and performed six sessions of CBM/sham training for
3 weeks. Before training, alcohol cue-evoked activation was
observed in bilateral amygdala and right NAc, which correlat-
ed with craving and arousal ratings of alcohol stimuli. After
training, the CBM group showed greater reductions in cue-
evoked activation in amygdala and in behavioral arousal rat-
ings of alcohol pictures, compared with the placebo training
group. Decreases in right amygdala activity correlated with
decreases in craving in the CBM but not the placebo training
group.

The patients also performed the AAT in a3 T fMRI scanner
pre and post training (Wiers et al. 2015a). The relevant neu-
roimaging contrast for the alcohol approach bias was the dif-
ference between approaching versus avoiding alcohol cues
relative to soft drink cues: [(alcohol pull>alcohol
push) >(soft drink pull>soft drink push)]. Before training,
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Fig 2 Adapted from Wiers et al.
(2015b). Cue-induced amygdala
reactivity reduced after 3 weeks
of CBM training compared to the
placebo training group (p <0.05
family-wise error corrected).
Decreases in amygdala cue
reactivity covaried with decreases
in craving in the CBM group, but
not in the placebo group

both groups showed significant alcohol approach bias-related
activation in mPFC (Wiers et al. 2014). After training, patients
in the CBM group showed stronger reductions in mPFC acti-
vation compared with the placebo group. Moreover, these
reductions correlated with reductions in approach bias scores
(but not with craving) in the CBM group only. Together, these
findings provide evidence that CBM affects alcohol cue-
induced mesolimbic brain activity and neural mechanisms in-
volved in the automatic alcohol approach bias. This may be an
important underlying mechanism of the therapeutic effective-
ness of this training. Interestingly, two studies investigating
the effects of CBM in anxious individuals also found effects
ofthe amygdala for fear processing (Britton et al. 2015; Taylor
et al. 2014). Since protocols for the neural effects of CBM
have already been published (Attwood et al. 2014), more stud-
ies on the neural effects of CBM in the drug-dependent pop-
ulations are to be expected.

Virtual Reality

Virtual reality (VR) therapy allows for the immersion into a
three dimensional world, which can be altered to show any
type of environment. When compared to the previous tech-
niques, using videos or pictures, VR provides a different ap-
proach to cue exposure treatment (CET) for addiction. As it
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aims at cue extinction, the VR system can produce environ-
ments containing alcoholic drinks, drugs, advertisements, and
even other people consuming drugs (Moon and Lee 2009). In
recent years, this technology has been most effectively used to
treat patients suffering from anxiety disorders including a
range of phobias and PTSD (Bohil et al. 2011).

Recent studies utilized VR technology as a therapy for
SUD in conjunction with fMRI. Using a VR approach that
was previously shown to produce greater levels of craving
than still photographs (Lee et al. 2003), VR was paired with
6 sessions of CET for smoking with MRI scanning before and
after treatment completion. The combined treatment method,
while not impacting craving, did result in a decrease in the
urge to smoke. Craving reductions were also associated with a
decreased activation of regions in PFC, specifically IFG and
SFG (Moon and Lee 2009). In a recent preliminary study by
Son et al. (2015), AUD subjects received 5 weeks of VR
therapy, undergoing FDG-PET before and after treatment. At
baseline prior to starting VR treatment, AUD subjects exhib-
ited elevated metabolism in basal ganglia compared to con-
trols. This finding is consistent with previous studies suggest-
ing that elevated limbic activation in AUD subjects is associ-
ated with increased sensitivity to drug cues (Lee et al. 2013).
After VR treatment completion, the metabolism in basal gan-
glia decreased suggesting a stabilization of the cue responses.
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This study was preliminary, however, since a small number of
subjects was used (N=12 AUD patients) and the control
group did not undergo treatment, only a baseline scan (Son
et al. 2015). Future expansion of this VR therapy into a larger
number of subjects as well as inclusion of a healthy control
group in the VR treatment would provide further evidence
into its potential for AUD treatment. Nevertheless, the study
stresses the potential of VR for addiction therapy. Since VR is
a computer-based intervention, it also has strong potential for
combination with neuroimaging techniques since VR can be
done within the fMRI environment, whereas other behavioral
treatments such as CBT cannot.

Neuromodulatory Techniques for Treatment
Neurofeedback

Neurofeedback through the use of fMRI has been investigated
in nicotine-dependent smokers. In a study by Li et al. (2013),
real time fMRI (rtfMRI) neurofeedback was tested on a
nicotine-dependent population. Utilizing changes in BOLD
response during rtfMRI in specific regions, the ACC and
PFC, participants were trained to attempt to regulate the re-
sponse during two separate states: a “reduce craving” state
and an “increase resistance” state, respectively. Participants
were shown a bar referred to as a “thermometer”, which mon-
itored BOLD responses in either the ACC or the PFC, whose
level they had to decrease or increase respectively, during
separate sessions. The results suggest that the participants
were able to possess control over the ACC and reduce its
activation, a reduction that was also correlated with decreased
craving. Canterberry et al. (2013) also investigated
neurofeedback in nicotine-dependent cigarette smokers, in
the ACC. A study by Hanlon et al. (2013), used a similar
approach, except they merged the two instructions of reducing
craving and increasing resistance into the same neurofeedback
session, utilizing 2 thermometers with opposing instructions.
Both the Canterberry et al. (2013) and the Hanlon et al. (2013)
studies had similar findings as the Li etal. (2013). In a recently
published study, Hartwell et al. (2016) further studied the
aforementioned rtfMRI neurofeedback paradigm. A matched
sample of smokers that did not receive neurofeedback but
underwent scanning allowed for direct interpretation of the
results of the treatment. Personalized ROI neurofeedback for
each participant increased the potential benefit. After complet-
ing the 3 treatment visits, the rtfMRI neurofeedback group
exhibited both lower craving scores and ROI activation, as
observed in the previous studies (Li et al. 2013; Hanlon
et al. 2013). The decrease in ACC activity found in all three
rtfMRI studies discussed above is similar to those observed
with nicotine-dependent patients receiving bupropion. This
provides further validation for these findings and its treatment
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potential (Brody et al. 2004; Culbertson et al. 2011). The
question of whether this approach would apply to normal,
daily life has to still be answered before the true potential of
this treatment for nicotine-dependent smokers or other SUD
populations can be assessed.

Neurofeedback has recently been used in conjunction with
rtfMRI to investigate its potential as a treatment for AUD. In a
study by Kirsch et al. (2015), neurofeedback was used in
heavy social drinkers to investigate its potential in reducing
the response to alcohol stimuli. Compared to both no feedback
and sham feedback control groups, the real feedback group
had reduced activation of VS after treatment. These results
were similar to those reported by Karch et al. (2015), who
utilized two different control groups, one with false feedback
and another with no feedback. The real feedback group exhib-
ited lower activation in ACC, dIPFC, inferior temporal gyrus,
MFG, and insula. The decrease in ACC activation in heavy
drinkers is similar to that seen in the studies involving
nicotine-dependent smokers (Hanlon et al. 2013; Hartwell et
al. 2016; Lietal. 2013). Although both studies are preliminary
and questions remain on the right type of control groups to be
used, regarding if no feedback or false feedback are adequate
control conditions, the results suggest a potential benefit in
using neurofeedback treatment for AUD.

Neurofeedback as a treatment for SUD has also been in-
vestigated through EEG. Neurofeedback using EEG was uti-
lized as treatment for AUD by Peniston and Kulkosky (1989).
The AUD participants in the experimental group were able to
increase their alpha and theta brain rhythms after treatment
completion. In addition, depression scores and relapse per-
centage were lower in the biofeedback group compared to
the control groups. Lastly, the biofeedback group failed to
show the elevated beta-endorphin serum levels, which are
related to stress, that was seen in AUD patients undergoing
traditional treatment (Peniston and Kulkosky 1989). A study
by Horrell et al. (2010) investigated a combined intervention
of neurofeedback with motivational interviewing in cocaine
abusers. The neurofeedback training aimed to increase senso-
rimotor thythm (SMR) amplitude and/or decrease theta band
frequency. Following treatment completion, the participants
showed increased SMR amplitude while managing to main-
tain the theta band levels at a stable level. In a cue reactivity
task after neurofeedback, participants decreased EEG gamma
activation (Horrell et al. 2010). In a second study also using a
combination of EEG neurofeedback and motivational
interviewing in cocaine abusers, the treatment group showed
the typical P300 amplitude decrease seen in retest (Stotts
et al. 2006). Since the healthy controls had higher P300
in the baseline condition, this stabilization of the P300
indicates a difference in engagement during the visual
task. The combined beneficial effects of neurofeedback
and motivational interviewing provide support for a com-
bination of treatments.
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In a study combining two different approaches previously
described, Sokunbi et al. (2014) present a “motivational
neurofeedback” approach with an approach/avoidance visual
feedback system. Using food to study the motivational
neurofeedback paradigm, subjects were instructed to decrease
the size of the image presented by decreasing the activation in
an individualized target brain area using a localizer (e.g.,
amygdala, putamen and caudate), measured through fMRI.
When compared to a passive session, the neurofeedback ses-
sion lowered the region activation, providing evidence to the
usefulness of this approach. This motivational neurofeedback
approach can be further developed into one similar to the AAT
where images increase or decrease in size as they are pulled
towards or pushed away, respectively. This approach may be
beneficial in the addiction field, as it adds a sense of direct
involvement in the treatment. However, whether the approach
works for addiction has not yet been explored.

Transcranial Magnetic Stimulation

Transcranial magnetic stimulation (TMS) is another
neuromodulatory technique that stimulates the brain.. TMS
is noninvasive technique using a high intensity magnetic pulse
to alter the excitability of a specific brain area. Repetitive TMS
(rTMS), which utilizes multiple currents, can provide a more
lasting modulation (Bellamoli et al. 2014). While a number of
studies have investigated TMS and shown its treatment poten-
tial for SUD, the majority had non-imaging outcome mea-
sures, such as craving scores or urine drug screen results
(Amiaz et al. 2009; Mishra et al. 2010; Terraneo et al. 2016;
Trojak et al. 2015). A recent study investigated differences in
RFC in control and motivational networks after rTMS in AUD
patients and controls. Participants received rTMS to the right
dIPFC or sham stimulation. Overall, AUD patients showed
greater functional connectivity within the left fronto-parietal
cognitive control network, a change which was further in-
creased after receiving rTMS. AUD patients also exhibited
higher connectivity within the fronto-striatal motivational net-
work and between the left and right fronto-parietal networks
compared to controls. These findings suggest that rTMS may
help increase connectivity in control-related regions, which
can help in the cognitive processes needed to resist relapse
(Jansen et al. 2015). Herremans et al. (2016) investigated ac-
celerated high-frequency rTMS (HF-rTMS) in AUD patients
using an fMRI cue-exposure paradigm. Patients received a
total of 15 sessions of HF-rTMS over a 5 day period. While
the majority of AUD patients relapsed, those who abstained
had greater dACC activation during the cue-exposure para-
digm. Those who abstained at the end of the treatment period
showed decreased dACC activation after HF-rTMS while
those who relapsed had an inverse relationship (Herremans
etal. 2016). A preliminary study on one AUD patient utilized
rTMS on the dACC to attempt to reduce severe cravings.

Following the TMS, craving-related increases in EEG ACC
and PCC connectivity in both beta and gamma bands as well
as fMRI activation of the NAc, ACC, mPFC, and PCC were
normalized. At a follow-up visit after the patient relapsed, the
fMRI again showed increases in NAc, ACC, and PCC. The
EEG increases in ACC and PCC connectivity also returned,
but only in the gamma bands (De Ridder et al. 2011). While
this provides evidence for the treatment potential of TMS in
some patients, it suggests the need for continued study. A
study by Pripfl et al. (2014) compared HF-rTMS using EEG
on the left dIPFC with a sham condition in smokers. After the
treatment sessions, both craving and resting state EEG delta
power, which is related to the activity of the reward system,
decreased (Pripfl et al. 2014). This reduction in a short term
condition provides evidence supporting the use of HF-rTMS
for treatment of cigarette smoking.

Transcranial Direct Current Stimulation

Transcranial direct current stimulation (tDCS) utilizes currents
to alter the resting membrane potential of specific brain areas.
This alteration effects neuronal excitability (da Silva et al.
2013). For addiction, it has been shown that stimulation of
the dIPFC with tDCS decreased craving in heavy drinkers
(den Uyl et al. 2015) and patients with AUD (Boggio et al.
2008) who were exposed to alcohol cues. Den Uyl, however,
did not find evidence for changes in cognitive biases for alco-
hol. Another study by Conti et al. (2014) utilized this method
in crack-cocaine dependent individuals. Patients either re-
ceived 5 sessions of bilateral tCDS over the dIPFC or sham
tDCS, with brain activity measured through P3 event related
potentials (ERP) collected through EEG and low-resolution
brain electromagnetic tomography (LORETA). Following
one session, the P3 activity was already altered differently
compared to those in the sham group. After the 5 treatment
sessions, the subjects in the tDCS group showed increased
intensity during drug-cue presentation in a variety of PFC
areas, which included dIPFC, OFC, ACC, and frontopolar
cortex. These results indicate that changes in neural activity
are already present after a single session, expanding as the
number of tCDS applications is increased (Conti et al.
2014). Another study by Conti and Nakamura-Palacios
(2014) also studied tDCS on cocaine-addicted individuals.
Increased activity in ACC was seen in the sham group while
the tDCS group showed a decrease in activity. These results
show that tDCS can alter activity in the ACC, an area impor-
tant in drug-cue processing, suggesting its potential applica-
tion in treatment (Conti and Nakamura-Palacios 2014). A
study by da Silva et al. (2013) also investigated the effects
of tDCS using ERPs in AUD patients, randomized into either
a real tDCS group or a sham group. The sham group showed
increased activation in response to alcohol-cues, a change not
seen in the tCDS group. While the tDCS group also exhibited
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reduced craving and depression symptoms compared to the
sham group, the tDCS group had a greater number of relapsers
(da Silva et al. 2013). Nevertheless, tDCS has shown potential
as being a valuable treatment strategy for drug dependence.

Summary and Conclusions

In summary, neuroimaging techniques have advanced our un-
derstanding of neural processes involved in the treatment of
SUD as seen in Table 1. Some techniques, such as the virtual
reality and neurofeedback, are still in early stages of clinical
treatment investigations and further studies are needed. The
expansion of the studies mentioned above to incorporate the
follow-up of some of the populations studied at later time
points is needed to determine whether some of the treatments,
such as the neurofeedback training (Hanlon et al. 2013; Li et
al. 2013), retain their effect following the initial study visits. In
addition, pharmacological treatments, as the recent XRNTX,
have been studied with neuroimaging only after a single in-
jection (Langleben et al. 2014; Lukas et al. 2013). There re-
mains a need to investigate its potential in the long term for
both alcohol and heroin dependence. Other drugs such as
bupropion hydrochloride, have been established as treatments
for certain SUD, i.e., tobacco smoking.

In addition, there are other potential treatments for SUD
that can be explored further. The brain can be stimulated using
and deep brain stimulation (DBS), which also has potential in
the treatment of SUDs (reviewed by Kravitz et al. 2015).
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