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Abstract Quitting smoking significantly reduces the risk of
tobacco-related morbidity and mortality, yet there is a high
rate of relapse amongst smokers who try to quit. Phenotypic
biomarkers have the potential to improve smoking cessation
outcomes by identifying the best available treatment for an
individual smoker. In this review, we introduce the nicotine
metabolite ratio (NMR) as a reliable and stable phenotypic
measure of nicotine metabolism that can guide smoking ces-
sation treatment among smokers who wish to quit. We address
how the NMR accounts for sources of variation in nicotine
metabolism including genotype and other biological and en-
vironmental factors such as estrogen levels, alcohol use, body
mass index, or menthol exposure. Then, we highlight clinical
trials that validate the NMR as a biomarker to predict thera-
peutic response to different pharmacotherapies for smoking
cessation. Current evidence supports the use of nicotine re-
placement therapy for slow metabolizers, and non-nicotine
treatments such as varenicline for normal metabolizers.
Finally, we discuss future research directions to elucidate
mechanisms underlying NMR associations with treatment re-
sponse, and facilitate the implementation of the NMR as bio-
marker in clinical practice to guide smoking cessation.
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Introduction

Tobacco smoking is responsible for over six million deaths
worldwide each year, and the World Health Organization pre-
dicts that this number will rise to eight million per year by
2030 (World Health Organization 2013). Tobacco-related
morbidity and mortality cost the world an estimated US$500
billion per year in terms of direct health care costs and lost
productivity (Shafey et al. 2009; World Health Organization
2008). Quitting smoking significantly reduces the risk of
tobacco-related morbidity and mortality (US Department of
Health and Human Services 1990), yet the addictive proper-
ties of tobacco result in high rates of relapse among smokers
who try to quit (Centers for Disease Control and Prevention
2010).

The primary addictive component in tobacco is nicotine, a
stimulant which exerts its rewarding effects through the re-
lease of dopamine and other neurotransmitters in the brain
(Centers for Disease Control and Prevention 2010). The
DSM-V defines tobacco use disorder as a problematic pattern
of tobacco use leading to clinically significant impairment or
distress, as manifested by at least two of the symptoms listed
in Table 1 occurring within a 12-month period (American
Psychiatric Association 2013). Nicotine addiction is a chronic,
relapsing disorder; many smokers attempt to quit smoking
each year, but of these smokers, only 4–7 % are able to quit
successfully (Fiore et al. 2008).

Currently, there are only three approaches to pharmacolog-
ical treatment approved in the United States and European
Union for smoking cessation: nicotine replacement therapies,
bupropion, and varenicline (Cahill et al. 2013). The success of
these treatments at 1 year range from approximately 7 % to
30% (Bauld et al. 2010; Hughes et al. 2003; National Institute
for Clinical Excellence 2002; Silagy et al. 2004). Varenicline,
an α4β2 nicotinic acetylcholine receptor (nAChR) partial
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agonist, and bupropion, a dopamine and norepinephrine trans-
porter inhibitor, are non-nicotine treatments which are
intended to mitigate cravings and withdrawal symptoms
through direct or indirect actions on dopamine levels in the
brain (Cahill et al. 2013). Varenicline is thought to also act as
an antagonist at α4β2 nAChRs to block the reinforcing
effects of nicotine during a quit attempt (Cahill et al.
2012). A randomized, placebo-controlled trial of varenicline
and bupropion for smoking cessation found that 23 % of
participants treated with varenicline and 14.6 % of those
treated with buproprion were continuously abstinent for one
year following treatment, compared to 10.3 % of those
treated with placebo (Jorenby et al. 2006). Nicotine replace-
ment therapy (NRT) aims to replace nicotine from ciga-
rettes by delivering it slowly via gum, nasal spray, or trans-
dermal patches. A meta-analysis of studies examining NRT
for smoking cessation found higher cessation rates one year
after treatment with active NRT (12.2 %) compared to placebo
(7.0 %) (Etter and Stapleton 2006).

The application of precision medicine, which tailors treat-
ment to an individual based on genetic and lifestyle factors,
has the potential to improve smoking cessation outcomes by
identifying the best available treatment for each smoker who
wants to quit (Bough et al. 2013; Collins and Varmus 2015;
National Research Council 2011). Identifying and understand-
ing factors that contribute to individual variability in treatment
response is a key step to the development of personalized
smoking cessation treatment. In this article, we review the

discovery and validation of a genetically-informed biomarker
of smoking cessation treatment outcomes: the nicotine metab-
olite ratio, or NMR.

The Nicotine Metabolite Ratio as a Biomarker
of Nicotine Clearance

Nicotine Metabolism and the Reliability of the NMR

Nicotine is metabolized primarily by cytochrome p450 (CYP)
2A6, and weakly by CYP2B6, CYP2D6, and CYP2E1 en-
zymes (Messina et al. 1997; Nakajima et al. 1996; Yamanaka
et al. 2005; Yamazaki et al. 1999). The primary metabolite of
CYP2A6-mediated metabolism of nicotine is cotinine, which is
further metabolized to 3′-hydroxycotinine (3HC). This pathway
accounts for 70–80 % of nicotine metabolism, with cotinine
metabolites comprising most of the urinary metabolites
(Benowitz et al. 1995; Hukkanen et al. 2005). The half-life of
cotinine is approximately 13–19 h, which is much longer than
the half-life of either nicotine (1–2 h) or 3HC (approximately
5 h) (Malaiyandi et al. 2006). Due to its long half-life, cotinine
concentrations in the blood and urine of smokers are relatively
stable throughout the day; however, they are still somewhat
dependent on the time since last cigarette (Benowitz et al.
1999; Benowitz et al. 2003). Because 3HC concentrations are
dependent on CYP2A6-mediated cotinine metabolism
(Benowitz and Jacob 2001; Benowitz et al. 2003), the ratio of
3HC to cotinine is a stable measure of CYP2A6 activity that is
not dependent on the timing of last nicotine intake.

The ratio of 3HC to cotinine, or nicotine metabolite ratio
(NMR), is a validated phenotypic measure of nicotine metab-
olism; larger ratios indicate faster nicotine clearance. The
NMR can be measured reliably in saliva or plasma, has min-
imal diurnal variation and is independent of smoking patterns
or time since last cigarette in smokers who smoke more than 5
cigarettes per day (Dempsey et al. 2004; Lea et al. 2006; Levi
et al. 2007). NMR values obtained from saliva or urine are
highly correlated with plasma NMR measurements (r = .7)
and can be used as proxy measures for plasma NMR (St
Helen et al. 2012; Swan et al. 2005). Test and retest
reliability of the NMR has been demonstrated in studies
with treatment-seeking and non-treatment seeking smokers
(Hamilton et al. 2015; St Helen et al. 2012). In a study of
ad-libitum smokers over a 44 week period, the NMR was reli-
able across repeatedmeasurements (reliability coefficient = .70;
(St Helen et al. 2012). In plasma samples taken 2–3 weeks
apart, short-term reliability was high for NMR quartile assign-
ment (weighted k = .72, 95 % CI = .64 to .83 %). Test/retest
reliability of classification of slow (quartile 1, NMR ≤ 0.24)
versus normal/fast metabolizers (quartiles 2–4, NMR >0.24)
was comparable to that observed for raw NMR values and
NMR quartile assignment (k = .89; 95 % CI = .77–1.00), with

Table 1 Criteria for the diagnosis of nicotine addiction

TheDSM-Vdefines tobacco use disorder as a problematic pattern of tobacco
use leading to clinically significant impairment or distress, as manifested
by at least two of the following occurring within a 12-month period:

• Using tobacco in larger amounts or for a longer period than intended

•A persistent desire or unsuccessful efforts to cut down or control tobacco
use

• A great deal of time is spent in activities necessary to obtain or use
tobacco

• Craving, or a strong desire or urge to use tobacco

• Recurrent tobacco use resulting in a failure to fulfill major role
obligations at work, school, or home

• Continued tobacco use despite having persistent or recurrent social or
interpersonal problems caused or exacerbated by the effects of tobacco

• Important social, occupational, or recreational activities are given up or
reduced because of tobacco use.

• Recurrent tobacco use in situations in which it is physically hazardous

• Tobacco use is continued despite knowledge of having a persistent or
recurrent physical or psychological problem that is likely to have been
caused or exacerbated by tobacco.

• Tolerance

• Withdrawal

Legend: Criteria for the diagnosis of tobacco use disorder according to the
DSM-V (American Psychiatric Association 2013)
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consistent classification as slow versus normal across assess-
ments for 96 % of the sample (Hamilton et al. 2015).

In a study conducted by Tanner et al. (2015), plasma and
urine samples were sent to eight different laboratories that
used different analytical methods to measure NMR.
Measures of plasma NMR were highly correlated between
analytical methods; urine metabolite measurements were
more variable but still in good agreement (Tanner et al.
2015). The NMR is not affected by sampling time of day or
storage temperature; measurements of the NMR in whole
blood are stable at 4 °C over a 72-h period, and in plasma
and saliva at room temperature over 14 days (Lea et al.
2006; St Helen et al. 2012). The NMR is thus robust to differ-
ences in measurement protocols as well as laboratory site.

NMR measurements are consistent within smokers over
time despite different patterns or quantity of smoking (Levi
et al. 2007). Of particular interest are those who are reducing
their nicotine intake over time (St Helen et al. 2013). In a study
conducted in 30 participants who decreased plasma cotinine
levels by 50 % over 24 weeks, NMR assessments were repro-
ducible across 4 separate time points. Plasma NMR showed
an absolute change of 28.5 %, which was not significant with
or without controlling for the effects of age, body mass index,
gender, and race (St Helen et al. 2013). This change in plasma
NMR is comparable to that of variability in ad-libitum
smokers (St Helen et al. 2012). Further evidence for the sta-
bility of NMR during nicotine reduction periods was demon-
strated by measurements of urine NMR during 12 weeks of
nicotine reduction where nicotine replacement therapy was
used as desired (Mooney et al. 2008).

Sources of Inter-Individual Variation in Nicotine
Metabolism

Studies have shown the NMR to be highly correlated with
CYP2A6 activity (Dempsey et al. 2004; Hamilton et al.
2015; Johnstone et al. 2006; Malaiyandi et al. 2006). This is
a key advantage of a phenotypic measure such as the NMR
because individual nicotine metabolism rates are influenced
by biological and environmental factors as well as genotype.
Genetic variation in CYP2A6 contributes to differences in
CYP2A6-mediated metabolism; however, there are over 30
known CYP2A6 variations (Nakajima et al. 2002; Oscarson
2001; Xu et al. 2002; http://www.cypalleles.ki.se). Overall,
67 % of the variability of the NMR in plasma is attributable
to genetic effects, and twin studies suggest that there are
additional unknown genetic factors (Swan et al. 2009). A
genome-wide association study conducted by Loukola et al.
(2015) in three large Finnish cohorts (total n = 1518) identified
novel gene variants influencing the NMR, confirming that
genetic effects are a major determinant of inter-individual var-
iance in NMR. This study found the strongest association with
NMR in the CYP2A6 gene region. Three independent novel

signals combined inCYP2A6were found to account for a total
of 31 % of variance in NMR in the study sample. The known
CYP2A6 polymorphisms can be associated with increased,
reduced, or null activity. For example, CYP2A6 *9 and *12
are reduced function variants and CYP2A6 *2 and *4 are loss
of function variants which have been associated with slower
plasma clearance of nicotine and cotinine (Benowitz et al.
2006b). CYP2A6*4 homozygous subjects demonstrate low
plasma cotinine levels and urinary excretion of cotinine and
3HC after smoking or nicotine administration (Kitagawa et al.
1999; Nakajima et al. 2000; Xu et al. 2002; Zhang et al. 2002).
On the other hand, individuals with three functional CYP2A6
genes resulting from gene duplication (CYP2A6*1X2/
CYP2A6*1) have higher metabolic capacity and lower nico-
tine to cotinine ratio (Rao et al. 2000). Plasma NMR correlates
with the predicted activity of CYP2A6 based on genotype
(Malaiyandi et al. 2006); carriers of reduced function or loss
of function such as CYP2A6 alleles *2, *4, *9, or *12 have
lower NMR values than those who are homozygous wild-type
carriers, indicating slower nicotine metabolism (Dempsey et
al. 2004; Johnstone et al. 2006; Malaiyandi et al. 2006).

Observed ethnic differences in nicotine clearance may stem
in part from population variability in CYP2A6 alleles. For
example, African-Americans have higher frequencies of re-
duced function variants and higher cotinine levels for a given
tobacco exposure than Caucasian smokers (50 % versus 20%,
respectively) (Zhu et al. 2013). In Japanese and Korean pop-
ulations, the combined frequencies of null and reduced activ-
ity alleles are 53 % and 40 %, and in Chinese-Americans the
combined frequency of null and reduced activity alleles is
31 % (Ariyoshi et al. 2002; Benowitz et al. 2002; Pitarque et
al. 2001; Yoshida et al. 2003; Yoshida et al. 2002).
Distributions of reduced function/null alleles are listed in
Table 2 with corresponding mean NMR values. Typically,
Caucasians have higher rates of nicotine metabolism than
Black and African-American populations, while Asians have
the slowest rates of metabolism and Hispanics are not signif-
icantly different than whites (Rubinstein et al. 2013b).
Overall, relative NMR distributions parallel distributions of
reduced function and null alleles (Table 2).

Additional Environmental and Biological Factors

Environmental and biological factors such as estrogen levels,
alcohol use, body mass index (BMI), and menthol exposure
may also contribute to individual variations in nicotine metab-
olism. Although men typically have higher plasma cotinine
levels compared with women, nicotine clearance is signifi-
cantly higher in women compared to men [mean NMR of
0.37 (SD 0.20) in women vs 0.41 (SD 0.22) in men]; higher
in women who use oral contraceptives (mean 0.49, SD 0.24)
compared to women who do not (mean 0.41, SD 0.22); and
higher during pregnancy compared to postpartum (Benowitz
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and Dempsey 2004; Benowitz et al. 2006a; Benowitz et al.
1999; Dempsey et al. 2002; Gan et al. 2008; Prather et al.
1993). In pregnant women, NMR was significantly higher at
18–22 weeks (26 % higher, 95 % CI 12 % to 38 %) and 32–
36 weeks (23 % higher, 95 % CI 9 % to 35 %) of pregnancy
compared to NMR at 12 weeks post-partum (Bowker et al.
2015). These findings suggest that estrogen induces CYP2A6
activity. Indeed, other studies have shown a dose-response re-
lationship between estrogen and CYP2A6 activity, with the
highest degree of CYP2A6 induction observed during pregnan-
cy (Benowitz and Dempsey 2004; Benowitz et al. 2006a;
Hukkanen et al. 2005). Nicotine metabolism among oral con-
traceptive users was shown to be higher among users taking
combined and estrogen-only contraceptives but not
progesterone-only contraceptive (Benowitz et al. 2006a).
Body mass index is negatively associated with NMR after con-
trolling for smoking levels, sex, and ethnicity (rho = −.14,
p < .001) (Binnington et al. 2012; Ho et al. 2009a; Mooney et
al. 2008; Swan et al. 2009). It is possible that increased adipose
levels associated with higher BMI may alter the activity of
enzymes that are involved in nicotine metabolism, but this re-
mains to be tested. Menthol inhibits CYP2A6 activity in vitro
by interacting with the heme iron of P450 2 A6 and inhibiting
the microsomal oxidation of nicotine to cotinine (MacDougall
et al. 2003). Benowitz et al. (2004) demonstrated that smoking
menthol cigarettes reduced nicotine clearance by ~11 %. In a
multiethnic sample of young adult daily smokers, the NMR
was found to be significantly lower among menthol compared
with nonmenthol smokers after adjusting for race/ethnicity,
gender, BMI, and cigarettes smoked per day (0.19 vs. 0.24,
p = .03; (Fagan et al. 2015). Alcohol use is positively associated
with NMR (Chenoweth et al. 2014) but the mechanism under-
lying this association is yet to be determined. However, as
predictors in a linear regression model, race (Caucasian vs.

African-American), sex, estrogen, alcohol use, and cigarette
consumption contribute less than 8 % to total NMR variation
with each individual factor accounting for less than or equal to
2 % (Chenoweth et al. 2014), suggesting that the NMR also
reflects currently unknown influences on nicotine metabolism
rate. Loukola et al. (2015) found similar results in three Finnish
cohorts, where age, sex, and BMI accounted for up to 8.9 % of
variation in NMR.

Given the diverse genetic, biological and environmental in-
fluences on nicotine metabolism, a genetically informed phe-
notypic measure such as the NMR may be a more useful bio-
marker of CYP2A6-mediated nicotine metabolism than geno-
type alone (Bough et al. 2013). Furthermore, more than 30
CYP2A6 variants have been identified (http://www.cypalleles.
ki.se/), and specific reduced function or null alleles may have a
low frequency (Mwenifumbo and Tyndale 2007; Piliguian et
al. 2014; Wassenaar et al. 2011). Due to the large number of
CYP2A6 alleles, genotyping to characterize inherited differ-
ences in nicotine metabolism can be much more costly than
testing for the NMR, which can be determined from blood or
saliva for approximately US$50 per sample (Lerman et al.
2015). Lastly, primary care physicians may be less inclined to
offer a genetic test compared to a phenotypic biomarker; these
concerns may relate in part to lack of knowledge about genetics
and concerns about the sensitivity of genetic information (Levy
et al. 2007; Shields et al. 2008).

Associations of the NMR with Smoking Behavior

Heaviness of Smoking

The NMR has been associated with smoking quantity and
smoking behavior in a number of studies of adult smokers.

Table 2 Population distribution
of mean NMR and frequency of
reduced function/null CYP2A6
alleles

Population NMRa

Plasmab Salivac Urined Frequency of reduced function/
null alleles (*4, *5, *7, *9, *10)e

White 0.41 (0.20) 0.20 (.10) 5.48 (4.5) 5.2–12.5

Black/African American 0.33 (0.21) 0.14 (.07) 4.18 (3.1) 6.6–10.4*

Asian – 0.11 (.07) 3.29 (3.9) 23.4–60.2**

Hispanic/Latino – 0.19 (.08) 4.87 (2.4) –

a Values shown are mean (SD)
b Chenoweth et al. 2014
c Rubinstein et al. 2013b
d Standard deviations shown here were calculated based on reported sample sizes and confidence intervals
(Kandel et al. 2007)
e Numbers in columns represent allele frequency ranges, as percentage of total alleles, in previously published
studies (Liu et al. 2011)

*Black-African and African-American

**Chinese, Japanese and Korean
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Faster metabolizers, who clear nicotine more quickly, may
need to smoke more frequently to maintain desired nicotine
concentrations (Dempsey et al. 2004; Gambier et al. 2005).
Indeed, in a cohort of 545 continuing smokers who were
contacted eight years after participating in a placebo-
controlled smoking cessation program using NRT, the NMR
was positively associated with cigarette consumption
(Johnstone et al. 2006). Although the difference is modest, it
is consistent: a systematic review (West et al. 2011) found that
9 out of 15 studies observed a positive association between
number of cigarettes smoked per day (CPD) and NMR. In a
study of 1030 participants of European ancestry, normal
metabolizers (NMR ≥ 0.27) smoked about one additional cig-
arette per day than slow metabolizers (NMR < 0.27) (Falcone
et al. 2011). This is similar to results found in a recent study of
834 normal metabolizers (NMR >0.35) and 838 slow
metabolizers (NMR ≤ 0.35); slow metabolizers smoked on
average 17.9 (SD 6.8) and normal metabolizers smoked on
average 19.5 (SD 8.1) cigarettes per day (p < .001). Genetic
studies demonstrate similar results; for example, one study
found that CYP2A6 variants associated with reduced protein
function smoked fewer cigarettes per day (20 CPD, compared
to 24 CPD in those without these variants) (Malaiyandi et al.
2006), and another study found that two single nucleotide
polymorphisms (rs4803381 and rs1137115) associated with
reduced CYP2A6 protein levels and activity were associated
with reduced cigarette consumption (0.99 and 0.88 fewer cig-
arettes per day, respectively) (Bergen et al. 2015). Although
some studies have not found associations between the
NMR and CPD, this may be due to differences in sample
size and methods of NMR determination. A few of these
studies utilized smaller sample sizes, which may have been
underpowered to detect a modest effect (Tang et al. 2012,
n = 31; Lea et al. 2006, n = 6; Malaiyandi et al. 2006,
n = 152). Other studies measure NMR in urine rather than
blood or saliva, which may be less predictive (Kandel et al.
2007; St Helen et al. 2012).

In addition to smoking more cigarettes throughout the
day, normal metabolizers may also smoke more intensely
than slow metabolizers. In a laboratory topography study,
faster metabolizers (those in the third and fourth quartiles
of NMR) took larger puff volumes while smoking their
preferred brand than those in the first quartile (the slowest
metabolizers). Puff volume increased by approximately
23 % and 28 % with each increasing quartile and the
NMR explained 51 % of the variance in total puff volume
(Strasser et al. 2011). This is consistent with findings
showing that smokers carrying CYP2A6 variants associated
with reduced or null function took smaller puffs than
those without these variants (Strasser et al. 2007). This
suggests that faster metabolizers may inhale more deeply
to increase nicotine exposure per cigarette while slow
metabolizers reduce their inhalation volume. An important

consequence of the association between nicotine metabo-
lism and smoking behavior is carcinogen exposure. The
increased total puff volume exhibited by smokers who
are faster metabolizers is associated with increased total levels
of the nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-
butanol (NNAL), a biomarker of carcinogen exposure
(Strasser et al. 2011), which could result in increased cancer
risk among normal metabolizers.

Nicotine Dependence and Withdrawal Symptoms

In contrast to other aspects of smoking behavior, the NMR is
not consistently associated with degree of nicotine depen-
dence. Those studies which have found associations indicate
that nicotine metabolism rate may influence the physiological
aspects of dependence primarily through effects on smoking
quantity. Schnoll et al. (2014) found that NMR was most
predictive of the Heaviness of Smoking Index (HSI), which
includes the two items from the Fagerström Test for Nicotine
Dependence (FTND; Heatherton et al. 1991) regarding time to
first cigarette after waking and smoking quantity. These two
itemsmeasure the physiological elements of dependencemore
than the behavioral elements. The study also found that the
NMR was predictive of FTND score among men, but not
women, which is consistent with prior studies demonstrating
that smoking behavior in men is more responsive to physio-
logical dependence, whereas women are more likely to smoke
for other reasons (e.g. affect regulation and conditioned re-
sponses to non-nicotine cues) (Field and Duka 2004; Perkins
et al. 2006; Perkins et al. 2001). However, the majority of
studies have not found associations between nicotine metab-
olism rate and nicotine dependence (Benowitz et al. 2003; Ho
et al. 2009b; Johnstone et al. 2006; Kandel et al. 2007; Lerman
et al. 2006; Patterson et al. 2008; Schnoll et al. 2009; Strasser
et al. 2011). Similarly, associations between the NMR and
withdrawal symptoms are inconsistent. Although some
studies found modest associations between nicotine metab-
olism rate and withdrawal symptoms in adolescents
(Rubinstein et al. 2008) and more severe cravings during
abstinence in adults (Lerman et al. 2006), others found no
association between the NMR and withdrawal symptoms
during abstinence (Schnoll et al. 2009) or a slower in-
crease in craving during abstinence among faster metabolizers
(Hendricks et al. 2014).

The NMR as a Biomarker of Treatment Response

The association between individual nicotine metabolism rate
and response to pharmacological treatment for smoking ces-
sation was first noted in an open-label trial of nicotine patch
versus nicotine nasal spray in 480 treatment-seeking smokers
(Lerman et al. 2006). In the nicotine patch group, there was an
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almost 30 % reduction in the odds of quitting with each in-
creasing quartile of NMR. However, there was no association
between the NMR and quitting success for participants who
received nicotine nasal spray (Lerman et al. 2006). This may
be attributable to titration of self-administration of nasal spray
based on nicotine metabolism rate; slow metabolizers used
nasal spray less frequently than normal metabolizers in this
study.

To validate these findings in an independent sample,
Schnoll and colleagues analyzed NMR data from a clinical
trial involving 568 treatment-seeking smokers all treated with
the nicotine patch (Schnoll et al. 2009). This study found
significantly higher quit rates at end of treatment for partici-
pants in the first quartile of NMR (the slowest metabolizers)
compared to all other quartiles (Schnoll et al. 2009). Similar
results were observed among African-American light smokers
(<10 CPD) who were randomly assigned to receive either
nicotine or placebo gum and counseling (Ho et al. 2009b).
There was a trend toward greater quitting success among the
slowest metabolizers at the end of treatment, compared to
normal or fast metabolizers. However, these differences were
observed in both the placebo and active nicotine gum groups
suggesting that the NMR did not predict the efficacy of nico-
tine gum (vs. placebo) in this study (Ho et al. 2009b). In an-
other trial, extended treatment with the nicotine patch (i.e. six
months of treatment, compared to standard therapy of 8 weeks)
was found to improve quit rates among slow metabolizers but
not normal metabolizers (Lerman et al. 2010). Based on these
data, one might expect that higher dose nicotine patch would
be more effective than standard dose nicotine patch in normal
metabolizers. However, data from a proof of concept clinical
trial of high dose patch for fast metabolizers do not support this
hypothesis (Schnoll et al. 2013).

An alternative strategy for treating normal metabolizers
would be use of non-nicotine medications. Thus, the
NMR was examined at pre-treatment in another clinical
trial involving 414 treatment-seeking smokers randomized
smokers to receive 10 weeks of treatment with bupropion
or placebo (with counseling). Among those receiving pla-
cebo, faster metabolizers displayed lower quit rates at end
of treatment compared to slower metabolizers. Quit outcomes
for the slowest metabolizers (those in the first quartile) were
approximately the same (~32 %) in both treatment groups.
However, the fastest metabolizers (those in the fourth quartile)
significantly benefited from bupropion treatment: end of
treatment quit rates on bupropion were approximately
34 %, compared to 10 % among fast metabolizers who
received placebo (Patterson et al. 2008). These data suggest
that non-nicotine therapies may be efficacious alternative
treatments for normal metabolizers who do not respond
well with nicotine replacement.

Building on these prior retrospective studies in which the
NMRwas assessed following study completion, a large multi-

site, placebo-controlled clinical trial using prospective NMR
stratification was conducted (Lerman et al. 2015). Treatment-
seeking smokers (n = 1246) were tested for the NMR and
randomly assigned by NMR group to one of three treatment
groups: placebo (placebo patch and placebo pill), nicotine
patch (active nicotine patch plus placebo pill), or varenicline
(placebo patch plus active varenicline pill). Stratification by
NMR was based on classification as either slow (plasma
NMR < 0.31, approximately first quartile based on one of
the prior clinical trials; (Schnoll et al. 2009) versus normal
(plasma NMR ≥ 0.31, all other quartiles). Slow metabolizers
were oversampled in order to provide approximately equal
numbers of slow versus normal metabolizers. Results revealed
a significant NMR by treatment arm interaction: among nor-
mal metabolizers, varenicline improved quit rates significant-
ly compared to the nicotine patch. However, among slow
metabolizers, varenicline was not more efficacious than nico-
tine patch at promoting cessation (Fig. 1). The relative effica-
cy of varenicline versus nicotine patch in slow and normal
metabolizers can be illustrated by the Bnumber needed to
treat^ (NNT), a standardized measure indicating the average
number of patients that must be treated in order to benefit one
(Cook and Sackett 1995). Among normal metabolizers, the
NNT was 26.0 for nicotine patch and 4.9 for varenicline;
among slow metabolizers, the NNT was 10.3 for nicotine
patch and 8.1 for varenicline. Importantly, there was also a
significant NMR by treatment interaction observed in reported
side effects of varenicline (versus placebo): slow metabolizers
reported a significant increase in side effects on active pill
versus placebo, but there was no increase in side effects for
normal metabolizers receiving active varenicline. There was
no NMR by treatment interaction effect for side effects of
nicotine patch. These results suggest that treating normal
metabolizers with varenicline and slow metabolizers with nic-
otine patch for smoking cessationmay optimize quit outcomes
while minimizing the risk of side effects. Thus, the NMR
could provide a useful biomarker for personalized smoking
cessation treatment.

Mechanisms

The mechanisms underlying the associations between the
NMR and treatment response are not fully understood.
Associations between the NMR and treatment response are
not likely to be mediated by nicotine dependence or heaviness
of smoking, because these associations remain unaltered after
controlling for nicotine dependence, subjective craving, or
heaviness of smoking in linear regression models (Benowitz
et al. 2003; Ho et al. 2009b; Johnstone et al. 2006; Kandel et
al. 2007; Lerman et al. 2006; Patterson et al. 2008; Schnoll et
al. 2009; Strasser et al. 2011). Studies have also found no
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association between the NMR and withdrawal symptoms
during abstinence (Schnoll et al. 2009).

Potential mechanisms underlying the association between
the NMR and treatment response include differences in
nicotinic receptor availability, subjective measures of nicotine
reward and physiological effects of nicotine, or conditioned
responses to smoking cues. Because nicotine exerts its effects
by binding to nicotinic acetylcholine receptors, Dubroff et al.
(2015) assessed the relationship between the NMR andα4β2*
nAChR availability using PET imaging with 2-(18)F-fluoro-
3-(2(S)-azetidinylmethoxy)pyridine (2-(18)F-FA). Results
showed a reduction of thalamic α4β2* nAChR avail-
ability and a greater reduction of craving in slow nico-
tine metabolizers compared to normal metabolizers after
18 h of abstinence.

The NMR has also been associated with subjective mea-
sures of nicotine reward and physiological effects of nicotine.
In one study (Sofuoglu et al. 2012), smokers received nicotine
intravenously at escalating quantities over 30 min following
overnight abstinence. Higher NMR (i.e. faster metabolism)
was associated with greater self-reported craving following
overnight abstinence, and higher ratings of nicotine-induced
good drug effects, drug liking, and wanting more drug com-
pared to slow metabolizers. Faster metabolizers also had a
greater heart rate increase in response to nicotine. This en-
hanced reward response may explain why faster metabolizers
also display greater cue reactivity (a conditioned response to
stimuli associated with smoking, such as a lit cigarette, lighter,
or ashtray).

Neuroimaging studies have demonstrated that smokers dis-
play greater brain activation in areas related to reward, visual

attention, and habitual learning, such as the insula, anterior
cingulate cortex (ACC), posterior cingulate cortex (PCC),
and midtemporal gyrus, when viewing smoking cues com-
pared to neutral cues (Brody et al. 2002; David et al. 2005;
Engelmann et al. 2012; McClernon et al. 2005). A recent
functional magnetic resonance imaging (fMRI) study com-
pared cue reactivity in the fastest and slowest nicotine
metabolizers (first versus fourth quartile of NMR) (Tang
et al. 2012). Participants in this study watched video clips
displaying smoking-related and neutral scenes during fMRI
scanning. Compared to slow metabolizers, fast
metabolizers displayed greater activation in response to
smoking cues (versus neutral cues) in the ACC, PCC,
and insula when smokers were not deprived of cigarettes.
These results were consistent whether fast metabolizers
were classified by the NMR or by CYP2A6 genotype.
Another recent neuroimaging study found that slow
metabolizers showed a significant decrease in brain re-
sponse to smoking cues in several regions (the inferior
frontal gyrus, frontal pole, and caudate) following 24 h
of abstinence (compared to when they were smoking as
usual), whereas normal metabolizers showed an increase in
cue reactivity during abstinence (Falcone et al. 2015). Cue
reactivity is important because it has been linked to re-
lapse (Janes et al. 2010); thus, fast metabolizers who show
greater neural responses to smoking cues may experience
greater difficulty quitting. Future research examining asso-
ciations between NMR and cue reactivity in treatment-
seeking smokers may offer additional insight into a possi-
ble mechanism for associations between nicotine metabo-
lism rates and smoking behavior.
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Future Directions

To maximize the utility of the NMR for improving public
health, there are important lines of research that remain to be
conducted. For example, the predictive validity of the NMR
for treatment response has largely been examined in otherwise

healthy adult populations. Future studies are needed to evalu-
ate associations between NMR and smoking cessation in psy-
chiatric populations, as many psychiatric disorders have a
high comorbidity with smoking dependence. Between
21.1 % and 31.7 % of nicotine dependent individuals have a
current alcohol use, mood, or anxiety disorder, and this

Table 3 Clinical trials of the NMR as a predictor of treatment response

Study Population NMR classification Results

Lerman et al. 2006 480 treatment seeking
smokers

Slower metabolizers (NMR <0.23)
versus normal/faster metabolizers
(NMR ≥ 0.23)

Quitting success with nicotine patch decreased significantly
as the NMR increased. The NMR did not predict cessation
in smokers using nicotine nasal spray.

Schnoll et al. 2009 568 treatment seeking
smokers

Slowest metabolizers (NMR < 0.26)
versus normal/faster metabolizers
(NMR ≥ 0.26)

Normal/faster metabolizers were significantly less likely to
quit with nicotine patch compared to slow metabolizers.

Ho et al. 2009b 646 treatment seeking
African-American
Smokers

Slowest quartile versus all other
quartiles

Individuals in the slowest quartile had higher quitting rates
with both placebo and nicotine gum treatments compared
to normal/faster metabolizers.

Lerman et al. 2010 470 treatment seeking
Caucasian smokers

Slowest metabolizers (NMR <0.26)
versus normal metabolizers
(NMR ≥0.26)

Extended duration therapy was superior to standard therapy
in genotypic or phenotypic slower metabolizers of
nicotine, but not in normal metabolizers.

Schnoll et al. 2013 87 treatment seeking
fast metabolizers
of nicotine

Faster metabolizers (NMR >0.18) There were no differences in quit rates at the end of treatment
in fast metabolizers treated with high dose vs. standard
dose patch

Patterson et al. 2008 414 treatment seeking
smokers

Slowest metabolizers (NMR <0.26)
versus fastest metabolizers
(NMR >0.54)

Slow metabolizers had equivalent quit rates with placebo or
bupropion after 10 weeks of treatment (32 %), whereas the
fastest metabolizers had low quit rates with placebo (10 %)
which were significantly increased by bupropion (34 %).

Lerman et al. 2015 1246 treatment seeking
smokers

Slow metabolizers (NMR <0.31) versus
normal metabolizers (NMR ≥0.31)

Varenicline was more efficacious than nicotine patch in
normal metabolizers but not in slow metabolizers. Slow
metabolizers reported greater overall side-effect severity
with varenicline versus placebo, whereas there were no
differences in side effects by treatment group among nor-
mal metabolizers.

Patient requests 
smoking cessation aid

Physician orders 
laboratory test 

(blood or saliva) 
to determine NMR

Treatment prescribed

Nicotine replacement 
therapy (NRT)

Non-nicotine treatment
(varenicline/bupropion)

Additional considerations 
• Cost effectiveness of testing
• Ease of incorporation into healthcare record
• Efficacy of pre-treatment screening in a 

healthcare setting
• Comorbid physical/psychological 

conditions that may affect treatment choice

Fig. 2 Incorporating the NMR to aid in smoking cessation treatment selection. Legend. A proposed model for incorporating the NMR into smoking
cessation treatment decision-making

478 J Neuroimmune Pharmacol (2016) 11:471–483



population consumes 34.2 % of all cigarettes smoked in the
United States (Grant et al. 2004). In a study of the prevalence
of smoking among individuals with schizophrenia or bipolar
disorder, 64 % of individuals with schizophrenia and 44 % of
individuals with bipolar disorder reported smoking compared
to 19% of individuals without a psychiatric illness (Dickerson
et al. 2013).

Associations between nicotine metabolism rates and
smoking behavior have been shown to differ for adolescents
compared to adults, and it is possible that adolescents may
also differ in response to smoking cessation treatment as a
function of the NMR (Berlin et al. 2007; Rubinstein et al.
2013a). Additionally, the NMR may be less predictive of
smoking behavior in lighter smokers; Ho et al. (2009a) found
no predictive value of NMR for smoking quantity in light
smokers, and relationships with treatment outcomes were less
robust. Additional research is necessary to evaluate the utility
of the NMR in light and non-daily smokers.

The feasibility of the NMR as a biomarker in clinical prac-
tice must also be assessed. Individual NMR values may be
obtained from blood or saliva samples collected at a primary
care facility and sent to a laboratory for analysis of cotinine
and 3HC concentrations using liquid chromatography-tandem
mass spectrometry (Jacob et al. 2011). One challenge that
must be addressed prior to implementation is determining a
precise cut-point to classify slow versus normal metabolizers.
Although there is typically consensus on defining slow
metabolizers as those in the lowest quartile of NMR (see
Table 3), the majority of studies have defined quartiles within
each sample, leading to variation in specific cut-points used to
define slow versus normal metabolizers. This approach is im-
practical from a clinical standpoint. After reviewing cut-points
used in prior studies and examining the distribution of NMR
values within the population screened for their clinical trial,
Lerman et al. (2015) selected a plasma cut-point of 0.31 to
classify slow versus normal metabolizers, and demonstrated
significant differences in treatment response using this classi-
fication scheme. Based on published correlations between
plasma and saliva NMR values, a plasma cut-point of 0.31
corresponds to a saliva cut-point of 0.22. (Chenoweth et al.
2014). For these reasons, we recommend that slowmetabolizers
be classified as those with a plasma NMR value <0.31 or saliva
NMR value <0.22.

Cost-effectiveness data from prospective clinical trials
using the NMR will be critical for future implementation of
this biomarker (Schnoll and Leone 2011). To illustrate, an
analysis of cost-effectiveness of genetic testing to predict
treatment outcomes on varenicline compared to bupropion
suggested that prior genetic testing may be justified only if
the genotype is neither too rare nor common (Heitjan et al.
2008). Because of the population distribution of nicotine me-
tabolism groups, and the low cost of testing, the NMRmay be
cost effective; however, this is yet to be analyzed formally.

Other factors to consider include ease of implementation in a
healthcare setting, and whether primary care physicians would
be willing to incorporate biomarker assessment into standard
treatment (Cummings et al. 1989; Emmons and Goldstein
1992; Heitjan et al. 2008; Shields et al. 2008). Future studies
are necessary to evaluate cost effectiveness, optimal imple-
mentation in the electronic health record, and potential effica-
cy in the healthcare settings. This research will give valuable
insight into implementing the NMR as a biomarker to maxi-
mize successful response to current treatments.

Conclusions

The NMR is a reliable measure of inherited individual differ-
ences in nicotine metabolism rate, and a validated biomarker
of pharmacological treatment response among smokers who
wish to quit. Existing evidence supports recommendation of
nicotine replacement therapy for slow metabolizers, and non-
nicotine treatments such as varenicline for normal
metabolizers (Fig. 2). Because it is easy to assess (in saliva
as well as blood), stable over time, and not dependent on time
of day or time since last cigarette, the NMR is a practical
clinical biomarker and could provide useful information to
help clinicians guide treatment approach. Although further
research is necessary to develop a simple and cost-effective
point-of-care assessment to facilitate clinical applications, the
NMR may provide a worthwhile approach to personalized
medicine for smoking cessation.
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