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Abstract Multiple sclerosis (MS) is the prototypic inflamma-
tory disease of the central nervous system (CNS) character-
ized by multifocal areas of demyelination, axonal damage,
activation of glial cells, and immune cell infiltration. Despite
intensive years of research, the etiology of this neurological
disorder remains elusive. Nevertheless, the abundance of im-
mune cells such as T lymphocytes and their products in CNS
lesions of MS patients supports the notion that MS is an
immune-mediated disorder. An important body of evidence
gathered from MS animal models such as experimental auto-
immune encephalomyelitis (EAE), points to the central con-
tribution of CD4 T lymphocytes in disease pathogenesis. Both
Th1 (producing interferon-γ) and Th17 (producing interleu-
kin 17) CD4 T lymphocytes targeting CNS self-antigens have
been implicated in MS and EAE pathobiology. Moreover,
several publications suggest that CD8 T lymphocytes also
participate in the development of MS lesions. The migration
of activated T lymphocytes from the periphery into the CNS
has been identified as a crucial step in the formation of MS
lesions. Several factors promote such T cell extravasation in-
cluding: molecules (e.g., cell adhesion molecules) implicated
in the T cell-blood brain barrier interaction, and chemokines
produced by neural cells. Finally, once in the CNS, T lympho-
cytes need to be reactivated by local antigen presenting cells
prior to enter the parenchyma where they can initiate damage.
Further investigations will be necessary to elucidate the im-
pact of environmental factors (e.g., gut microbiota) and CNS

intrinsic properties (e.g., microglial activation) on this inflam-
matory neurological disease.
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Introduction

Multiple sclerosis (MS) is considered the prototypic inflam-
matory disease of the central nervous system (CNS). This
neurological disorder affects over 2 million people worldwide
(Multiple Sclerosis International Federation 2013).MS is clin-
ically characterized by recurrent and transient bouts of hand-
icap, including loss of vision, balance and mobility, and by
painful sensory symptoms. An important proportion of pa-
tients with MS will experience a steady progression of hand-
icap over several years, which can lead to extreme fatigue,
cognition impairment, and paralysis. This chronic neurologi-
cal disease has enormous physical, psychosocial and econom-
ic burdens not only to the patients but also to their families, as
MS affects young adults at the peak of their active life. Le-
sions observed in the CNS ofMS patients are characterized by
multifocal areas of myelin sheath destruction, oligodendrocyte
death, axonal and neuronal damage, and activation of glial
cells. Despite decades of intense research, the etiology of this
disabling disease remains unresolved. Nonetheless, the MS
research community largely agrees that complex interactions
between environmental factors and genes lead to the inflam-
matory process in the CNS. Indeed, both environmental fac-
tors and genetics have been shown to influence the suscepti-
bility as well as the development of MS (Koch et al. 2013). A
vast body of evidence gathered from both MS patients and
animal models points to the fundamental role of the immune
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system in disease pathogenesis (Wu and Alvarez 2011). Ge-
netic linkage analyses and more recent genome-wide associa-
tion studies ofMS have uncovered multiple disease associated
variants in genes related to immune functions (Sawcer et al.
2014). In addition, cells of the immune system such as mac-
rophages and T lymphocytes and their products are detected
with abundance in MS lesions and in the cerebrospinal fluid
(CSF) of patients with MS (Wu and Alvarez 2011). Further-
more, immunosuppressive or immunomodulatory therapies
have been shown to ameliorate disease course and clinical
outcomes of MS (Cross and Naismith 2014). Finally, it is well
documented that activation of myelin-specific T lymphocytes
is sufficient to induce experimental autoimmune encephalo-
myelitis (EAE), the most common animal model of MS. This
review summarizes the current knowledge on the involvement
of T lymphocytes in the pathobiology of both MS and its
animal models.

T Lymphocytes: Key Cells of the Adaptive Immune
Responses

Defense against pathogens is provided by the immune system,
which comprises two well integrated and complementary
arms: the innate immunity and the adaptive immunity. While
the innate immune system delivers an early and rapid re-
sponse, the adaptive immune system develops a response that
is highly specific to the encountered infectious agents and
enhanced with subsequent pathogen exposures. B and T lym-
phocytes mediate the adaptive immune responses and provide
long-term protection. Immature T lymphocytes are subjected
to stringent positive and negative selection and maturation in
the thymus prior to exit in the periphery as naïve mature T
cells. The main T cell subsets are: CD4 T lymphocytes, also
called helper T cells (Th), and CD8 T lymphocytes, also
known as cytotoxic T cells (Tc). CD4 T lymphocytes coordi-
nate numerous immune responses and CD8 T lymphocytes
play key roles in controlling intracellular pathogens but also
neoplastic cells. T lymphocytes express on their surface the T
cell receptor (TCR) complex composed of the highly variable
antigen binding TCR and the CD3 signaling proteins. Via this
TCR complex, CD4 T lymphocytes recognize antigens that
are presented by themajor histocompatibility complex (MHC)
class II molecules, whereas CD8 T lymphocytes recognize
antigens presented by MHC class I molecules. The activation
and differentiation of naïve T lymphocytes into activated cells
require at least two signals delivered by professional antigen
presenting cells (APCs): 1- engagement of the TCR recogniz-
ing a peptide-MHC complex; 2- interaction of the co-
activating receptor (e.g., CD28) with a co-activating ligand
(e.g., CD80, CD86). Such efficient APC-T cell interaction
induces a complex cascade of intracellular signaling that trig-
gers the maturation (change in the expression profile of

surface and intracellular molecules), proliferation and produc-
tion of immune mediators (e.g., cytokines) by T lymphocytes.

Specific environmental cues such as cytokines secreted by
APCs shape the differentiation of T lymphocytes into specific
subsets, each characterized by distinct attributes (transcription
factors, cytokines, chemokine receptors, etc.). Based on their
cytokine secretion profile, three main subsets of Th and Tc
lymphocytes have been described: Th1/Tc1 (e.g.,
interferon-γ (IFNγ), tumor necrosis factor (TNF)), Th2/Tc2
(e.g., interleukin (IL)-4, IL-5, IL-13), and Th17/Tc17 (e.g., IL-
17, IL-21, and IL-22) (Mittrucker et al. 2014; Raphael et al.
2014). Th1 and Tc1 lymphocytes are key components of cell-
mediated responses providing immunity to intracellular path-
ogens. While Th1 cells stimulate phagocyte-mediated func-
tions, Tc1 cells can directly lyse infected cells by several
mechanisms including the release of lytic enzymes (perforin,
granzyme). In contrast, Th2 and Tc2 cells play an important
role in humoral-mediated immunity. Cytokines (e.g., IL-4)
produced by these cells promote the differentiation and matu-
ration of B lymphocytes and the production of antibodies.
Finally, Th17/Tc17 cells provide protection against certain
bacterial and fungal infections; they favor the recruitment of
neutrophils and the activation of innate immune cells. Other
effector T cell subpopulations (e.g.,Th9, Th22, etc.) as well as
regulatory CD4 and CD8 T cell subsets have been document-
ed (Mittrucker et al. 2014; Raphael et al. 2014). The diversity
of T lymphocyte subsets and their associated functions illus-
trates the flexibility and competence of the immune system to
efficiently respond to a great variety of pathogens and threats.
Following their activation, T lymphocytes migrate into pe-
ripheral organs to mediate the immunosurveillance. Finally,
a portion of activated T lymphocytes survives and persists as
central or effector memory lymphocytes; these memory cells
confer long-term protection with enhanced responses upon
subsequent challenges. Unfortunately, activated T cells not
only control infections and tumors but they can also contribute
to pathological processes.

Auto-Reactive T Lymphocytes Recognizing CNS
Antigens

Despite thymic negative selection, the mature T cell repertoire
of healthy humans includes T lymphocytes recognizing self-
antigens (Walker and Abbas 2002). CD4 and CD8 T lympho-
cytes reactive to myelin antigens [e.g., myelin basic protein
(MBP), proteolipid protein (PLP), and myelin oligodendro-
cyte glycoprotein (MOG)], or neuronal antigens (e.g., neuro-
filament light protein), were found in similar or elevated pro-
portion in the blood and the CSF of patients with MS as
compared to healthy controls (Ota et al. 1990; Liblau et al.
1991; Sun et al. 1991; Chou et al. 1992; Zhang et al. 1994;
Crawford et al. 2004; Berthelot et al. 2008; Huizinga et al.
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2009; Elong Ngono et al. 2012). Nonetheless, a notable num-
ber of publications advocate that myelin specific T cells ob-
tained from MS patients display altered characteristics com-
pared to those detected in healthy donors: an enhanced fre-
quency of high-avidity T cells, an activated phenotype
(Allegretta et al. 1990; Chou et al. 1992; Zhang et al. 1994;
Vandevyver et al. 1995; Bielekova et al. 2004), and an in-
creased production of pro-inflammatory cytokines (IL-2,
IFN-γ, and TNF) (Sharief and Thompson 1993; Strunk et al.
2000; Zang et al. 2004). Injection of altered myelin peptides,
which can compete with native myelin peptides and conse-
quently alter the activation of myelin-reactive T cells, was
shown to protect from EAE development (Nicholson et al.
1995; Gaur et al. 1997; Anderton et al. 1999; Genain and
Zamvil 2000). Subsequently, scientists rationalized that such
antigen specific immunotherapy could potentially be benefi-
cial toMS patients (Genain and Zamvil 2000). In an attempt to
decrease pro-inflammatory MBP-specific T cells, MS patients
were injected with an altered MBP peptide. Regrettably, in a
subgroup of patients, such treatment enhanced MBP reactive
Th1 responses, triggered the development of new CNS in-
flammatory lesions [as detected by magnetic resonance imag-
ing (MRI)], and caused clinical relapses (Bielekova et al.
2000). The dramatic outcome of this clinical trial provided
the direct in vivo evidence that activation of human myelin
reactive T lymphocytes in the periphery can lead to CNS
damage in patients with MS.

Multiple lines of evidence collected from EAE models
established that myelin-specific T lymphocytes that have been
activated in the periphery can induce a CNS demyelinating
disease. Indeed, active immunization with myelin or immuno-
dominant myelin peptides emulsified in complete Freund’s
adjuvant can trigger the development of EAE in various ani-
mal species (Rivers et al. 1933; Kabat et al. 1951; Stromnes
and Goverman 2006b). Similarly, the adoptive transfer via
peripheral routes (intraperitoneal or intravenous) of activated
myelin specific CD4 or CD8 T lymphocytes is sufficient to
induce EAE in naïve recipients (Stromnes and Goverman
2006a; Fletcher et al. 2010; Mars et al. 2011). Furthermore,
activation of T lymphocytes recognizing myelin epitopes that
are distinct from the first targeted antigen, a phenomenon
coined as epitope spreading, has been shown to trigger EAE
relapses (McRae et al. 1995; McMahon et al. 2005; Baxter
2007). Accordingly, different groups have elegantly demon-
strated that induction of immune tolerance to myelin peptides
can prevent the emergence of relapses in EAE models (Yu
et al. 1996; Vanderlugt et al. 2000; Baxter 2007). Collectively,
these results support the notion that myelin specific T cells are
implicated not only in disease initiation but also in disease
progression. Clinical trials in MS patients are currently ongo-
ing in an attempt to induce tolerance to several myelin epi-
topes; whether such approaches will lead to clinical benefits
has yet to be demonstrated (Lutterotti and Martin 2014).

The detection of CNS-specific T lymphocytes exhibiting
an activated phenotype, especially in patients with MS, sug-
gests that these T lymphocytes had previous interactions with
professional APC efficiently presenting CNS-derived anti-
gens. In contrast to most organs, the brain and spinal cord
do not contain defined lymphatic channels; nevertheless, lym-
phatic drainage for the CSF and the interstitial fluid of the
brain parenchyma to the cervical lymph nodes does take place
(Laman andWeller 2013). Professional APCs such as dendrit-
ic cells have been shown to travel from the CNS via the rostral
migratory stream to the cervical lymph nodes where peripher-
al T cells could encounter CNS antigens (Mohammad et al.
2014). Mature APCs that have engulfed myelin or neuronal
antigens were detected in cervical lymph nodes obtained from
MS patients and animals (marmosets and mice) affected with
EAE, implying that these APCs are positioned to efficiently
activate T lymphocytes (Fig. 1) (de Vos et al. 2002; van Zwam
et al. 2009b). Moreover, extracellular myelin particles were
preferentially detected in the meninges and perivascular
spaces of MS patients compared to controls (Kooi et al.
2009); whether these soluble antigens are eventually phago-
cytized and presented to myelin specific T cells is still un-
known. It has been shown that transgenic mice expressing a
myelin specific TCR can spontaneously develop EAE symp-
toms and that these self-reactive T cells were first activated in
the cervical lymph nodes where some CNS antigens are con-
tinuously presented (Goverman 2009). Recently published
data support the notion that under normal physiological con-
ditions, oligodendrocyte specific antigens are presented to T
cells in secondary lymphoid organs (Harris et al. 2014). More-
over, CD8 T lymphocytes that were activated within cervical
lymph nodes by APCs presenting CNS antigens were shown
to acquire specific integrin (e.g., CD103) that guided them
back preferentially to the brain where the antigens were orig-
inally collected (Calzascia et al. 2005; Masson et al. 2007).
Results obtained using intravital two-photon imaging elegant-
ly demonstrated that activated T cells migrated from blood
vessels to the CNS under inflamed conditions regardless of
their antigen specificity. In contrast, T cells were licensed to
enter the parenchyma only following their reactivation by lo-
cal APCs presenting their cognate antigen (Bartholomaus
et al. 2009). Notably, an important proportion of T cells de-
tected in MS lesions (Kivisakk et al. 2004), or CD8 T cells
observed in CSF from MS patients (Jilek et al. 2007; Ifergan
et al. 2011) lacks CCR7. As loss of this chemokine receptor
(CCR7) on T cells is associated with an effector memory phe-
notype (Sallusto et al. 2004), these observations suggest that
such effector T cells are enriched in the inflamed CNS of MS
patients. It is well established that several APCs present in
human and mouse lesions can locally reactivate T cells
(Fig. 1) including macrophages, microglia, and dendritic cells
(Greter et al. 2005; Frohman et al. 2006); more recently, B
cells were shown to contribute to such T cell reactivation in

530 J Neuroimmune Pharmacol (2015) 10:528–546



EAE mice (Pierson et al. 2014) (Fig. 1). Moreover, the acti-
vation of subsequent waves of CNS-reactive T lymphocytes
involved in disease relapse and perpetuation could take place
either in lymph nodes and/or within the inflamed CNS. In a
chronic EAE model, the relapse severity was reduced follow-
ing the removal of CNS draining lymph nodes (van Zwam
et al. 2009a). In addition, a subpopulation of dendritic cells
detected within the inflamed brain of EAE mice efficiently
activated naïve myelin-specific CD8 T lymphocytes (Ji et al.
2013). Collectively, these results indicate that CNS specific T
cells can be activated either locally in the CNS or in lymphoid
organs.

A vast body of evidence demonstrated that infectious
agents can trigger, in both humans and mice, the activa-
tion of T lymphocytes that recognize both a self-antigen
such as myelin peptide and a microbial peptide, a phe-
nomenon referred as molecular mimicry (Fujinami and
Oldstone 1985; Wucherpfennig and Strominger 1995; Tal-
bot et al. 1996; Hemmer et al. 1997; Olson et al. 2001;
Chastain and Miller 2012). Moreover, self-molecular
mimicry can also participate in CNS autoimmunity. In-
deed, multiple clones of CD4 T lymphocytes expanded
from MOG35–55 immunized mice and carrying a single
TCR have been shown to recognize both the myelin
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a n t i g e n (MOG3 5 – 5 5 ) a n d a n a x o n a l a n t i g e n
(neurofilament) (Krishnamoorthy et al. 2009; Lucca
et al. 2014). Moreover, both self-antigen recognitions con-
tributed to the observed CNS damage (Krishnamoorthy
et al. 2009). Finally, the capacity of T cells to recognize
multiple epitopes could also arise from dual T cells, which
express two TCRs. Goverman and colleagues have dem-
onstrated that a viral infection activated dual CD8 T cells
recognizing both a viral antigen and a myelin antigen and
consequently triggered CNS autoimmunity (Ji et al.
2010). A better understanding of the mechanisms impli-
cated in the activation of myelin or neuronal reactive T
lymphocytes in the context of MS will be essential to
design therapies specifically targeting these detrimental
cells.

Extravasation of T Lymphocytes to the CNS

The blood brain barrier (BBB) restricts the migration of cells
and soluble molecules from the periphery to the CNS and
consequently preserves local homeostasis and an optimal en-
vironment for neuronal functions (Larochelle et al. 2011). Un-
der normal physiological conditions, few leukocytes, includ-
ing Tcells, cross the BBB to perform the immune surveillance
of the CNS. In contrast, the massive infiltration of pro-
inflammatory leukocytes into the CNS represents an early
event in the development of MS and EAE lesions
(Larochelle et al. 2011) (Fig. 1). The different steps of immune
cell extravasation include: capture/rolling, activation, firm ad-
hesion, crawling and diapedesis/transmigration (Engelhardt
and Ransohoff 2012). While resting T lymphocytes have a
limited capacity to invade the brain or spinal cord, activated
T lymphocytes express numerous molecules including che-
mokine receptors, adhesion molecules, integrins, cytokines,
matrix metalloproteinases, and reactive oxygen species that
promote their extravasation into the CNS (Larochelle et al.
2011). An important number of studies using EAE models
established that myelin-specific T lymphocytes activated in
the periphery acquire these molecules and do enter the CNS
(Goverman 2009).

The interaction between cell adhesion molecules (CAMs)
expressed by endothelial cells of the BBB (EC-BBB) and their
cognate ligands (integrins, CAMs) present on activated leuko-
cytes plays a central role in the transmigration of immune cells
into the CNS (Larochelle et al. 2011). Several inflammatory
stimuli (e.g., cytokines) can induce or enhance the expression
of CAMs by the EC-BBB including: intracellular cell adhe-
sion molecule 1 (ICAM-1), vascular cell adhesion molecule 1
(VCAM-1), activated leukocyte cell adhesion molecule
(ALCAM), and melanoma cell adhesion molecule (MCAM)
(Wong and Dorovini-Zis 1992, 1995; Cayrol et al. 2008;
Larochelle et al. 2012). The efficacy of an antibody
(Natalizumab) targeting α4 integrin, which is part of the
VCAM-1 cognate ligand, as a treatment for patients with
MS underlines the crucial impact of the BBB-leukocyte inter-
action in the formation of MS lesions (Polman et al. 2006).
Unfortunately, patients treated with biological agents widely
hampering immune cell extravasation such as Natalizumab,
but also Efalizumab, which targets a subunit of ICAM-1 li-
gand (αL integrin), have an increased risk of severe infections
(e .g . , JC v i rus induced progress ive mul t i foca l
leukoencephalopathy) (Major 2010). These clinical outcomes
emphasize the necessity to develop tools blocking the migra-
tion of specific lymphocyte subsets. In EAEmodels, blockade
of either ALCAM or MCAM, which are both up-regulated in
MS and EAE lesions, reduced the transmigration of CD4 T
lymphocytes and decreased disease severity (Cayrol et al.
2008; Larochelle et al. 2012). Mice deficient for MCAM spe-
cifically on endothelial cells developed less severe EAE

�Fig. 1 Activation and roles of T lymphocytes in the pathogenesis of MS
and EAE 1. In contrast to most organs, the brain and spinal cord do not
contain defined lymphatic channels; nevertheless, lymphatic drainage for
the CSF and the interstitial fluid of the brain parenchyma to the cervical
lymph nodes does take place (Laman and Weller 2013). Soluble CNS
antigens and professional APCs, such as dendritic cells, that have
engulfed myelin or neuronal antigens can travel from the CNS to the
cervical lymph nodes (CLN) (Mohammad et al. 2014). 2. Mature APCs
that have engulfed myelin or neuronal antigens are detected in cervical
lymph nodes obtained from MS patients and EAE animals (Laman and
Weller 2013). These APCs can efficiently activate CNS-reactive CD4 and
CD8 T lymphocytes. Different regulatory T lymphocyte subsets have
been shown to reduce the development and severity of EAE
(Kleinewietfeld and Hafler 2014; Sinha et al. 2014). Several groups
reported that regulatory T cell subsets from MS patients have impaired
regulatory functions compared to healthy donors (Kleinewietfeld and
Hafler 2014; Sinha et al. 2014). 3. Activated myelin or neuronal-
specific T lymphocytes exit into the peripheral blood to perform
immunosurveillance. CNS reactive CD4 and CD8 T lymphocytes
obtained from the peripheral blood of MS patients exhibit enhanced
activation properties compared to those from health donors. 4.
Activated autoreactive T lymphocytes have an enhanced capacity to
cross the BBB given their elevated expression of mediators such as
chemokine receptors, adhesion molecules, integrins, and cytokines
(Goverman 2009; Larochelle et al. 2011). 5. Once in the CNS, T
lymphocytes can be reactivated by local APCs (macrophages, microglia
and dendritic cells, or B lymphocytes), which are present in human and
mouse CNS lesions (Greter et al. 2005; Frohman et al. 2006; Pierson et al.
2014). This antigen-specific reactivation has been shown to be essential
to license activated autoreactive T lymphocytes to enter the CNS
parenchyma (Bartholomaus et al. 2009). 6. CNS infiltrating Th1, Th17,
and CD8 T lymphocytes, and macrophages as well as inflamed microglia
secrete soluble mediators (e.g., inflammatory cytokines, free radical, etc.).
Moreover, cross-talk between T cells and microglia/macrophages
contribute to perpetuate the inflammatory milieu within the CNS. 7.
These soluble mediators can injure oligodendrocyte/myelin and
axon/neuron structures. Moreover, activated microglia/macrophages can
directly phagocyte oligodendrocytes. Similarly, CD8 T lymphocytes have
been detected in close proximity to oligodendrocytes and demyelinated
axons with polarization of their cytolytic granules (Neumann et al. 2002;
Wulff et al. 2003; Lassmann 2004; Saikali et al. 2007). Activated T cells
have the capacity to kill oligodendrocytes or neurons (Jurewicz et al.
1998; Sauer et al. 2013; Zaguia et al. 2013). Finally, such damage
causes the release of additional CNS antigens that can be further
phagocytosed and presented to new waves of CNS-specific T
lymphocytes
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accompanied by reduced CNS T cell infiltration (Duan et al.
2013). Moreover, MCAM expression was detected on a sub-
population of activated CD4 T cells producing augmented
levels of inflammatory molecules (e.g., IL-17, GM-CSF)
(Larochelle et al. 2012) and preferentially migrating across
the BBB compared to cells devoid of this molecule
(Larochelle et al. 2012; Schneider-Hohendorf et al. 2014).
Overall, these publications suggest that molecules present on
subsets of inflammatory T cells rather than the widely
expressed integrins (e.g., αL integrin, α4 integrin) could rep-
resent valid therapeutic targets.

Several groups have investigated the impact of chemokines
and their receptors on the capacity of Tcells to invade the CNS
in the context of MS and its animal models (Cheng and Chen
2014). It is well established that activated T lymphocytes up-
regulate specific chemokine receptors that will influence their
migratory patterns (Griffith et al. 2014). Both human and
mouse Th17 cells have been shown to preferentially express
CCR6, a chemokine receptor for CCL20, a chemokine present
in abundance in the choroid plexus under normal physiologi-
cal and MS inflamed conditions (Reboldi et al. 2009). But the
role of CCR6 in CNS inflammation is still unresolved; con-
flicting results indicated that CCR6 deficient mice were either
resistant to EAE (Reboldi et al. 2009) or exhibited more se-
vere EAE (Elhofy et al. 2009; Villares et al. 2009). A recent
publication suggests that the regional chemokine profile influ-
ences the infiltration of leukocytes within specific CNS areas
and consequently shapes the clinical EAE symptoms
(Stoolman et al. 2014). In EAEmice exhibiting clinical symp-
toms related to brainstem or cerebellar lesions, CXCL2 was
indeed elevated in the brainstem. In contrast, CCL2 was in-
creased in the spinal cord of EAEmice having typical ascend-
ing paralysis symptoms associated with spinal cord immune
cell infiltration (Stoolman et al. 2014). Moreover, another
group showed that following EAE induction in the absence
of astrocyte-derived CCL2, the total number of CD4 T lym-
phocytes in the inflamed CNS was similar to controls, how-
ever, these T cells did not enter the parenchymal space and
were confined to the spinal cord perivascular area (Moreno
et al. 2014). These results support the notion that CNS-cell
derived chemokines can shape the migratory pattern of leuko-
cytes including activated T cells. Additional investigations
will be necessary to elucidate the contribution of specific
chemokines and their receptors especially given their impact
on multiple cell types and their various functions.

Th1 vs. Th17 Lymphocytes in MS and EAE

Numerous groups documented that activated myelin specific
CD4 T cells secreting IFNγ are sufficient to transfer disease
into naïve mice (Fletcher et al. 2010; Lovett-Racke et al.
2011). Similarly, injection of IFNγ to patients withMS caused

aggravated symptoms (Panitch et al. 1987a, b). These key
observations were the impetus for the concept that myelin
specific IFNγ-producing Th1 cells induce the demyelinating
disease in both humanMS patients and its animal models. But
publications in the 1990s refuted the key role of IFNγ-
producing cells in disease pathogenesis. Injection of antibod-
ies blocking IFNγ augmented EAE disease severity (Lublin
et al. 1993). Moreover, EAE induction into IFNγ or IFNγ
receptor deficient mice caused a more severe disease course
than in wild type controls (Ferber et al. 1996;Willenborg et al.
1996). A new subset of CD4 T lymphocytes was subsequently
identified and named Th17 cells as these lymphocytes pro-
duce IL-17A and IL-17 F amongst many other cytokines
(e.g., IL-21, IL-22). As demonstrated for Th1 cells, the adop-
tive transfer of activated myelin-specific Th17 lymphocytes
can induce EAE in naïve recipient mice (Langrish et al. 2005;
Kroenke et al. 2008; Stromnes et al. 2008). However, the
signature cytokines secreted by Th17 cells are dispensable
for EAE induction; indeed, mice deficient for IL-17, IL-21
or IL-22 were still susceptible to disease (Kreymborg et al.
2007; Sonderegger et al. 2008; Haak et al. 2009; Codarri et al.
2013). The more recent studies pinpoint the crucial role of
granulocyte-macrophage colony-stimulating factor (GM-
CSF) in T cell-mediated autoimmune CNS inflammation
(Codarri et al. 2013). This cytokine can be secreted by both
myelin specific activated Th1 and Th17 lymphocytes; GM-
CSF deficient mice were resistant to the induction of EAE;
injection of this cytokine exacerbated disease symptoms
whereas administration of blocking antibodies even after dis-
ease onset diminished disease severity (McQualter et al. 2001;
Codarri et al. 2011; El-Behi et al. 2011). Notably, the adoptive
transfer of not only Th1 or Th17 encephalitogenic CD4 Tcells
can induce EAE but Th9 myelin specific CD4 T cells, which
are characterized by the secretion of IL-9 and IL-10, can also
transfer disease in naïve recipients (Jager et al. 2009).

Pro-inflammatory Th1 and Th17 cytokines are present in
elevated amounts in MS patients compared to controls. In-
deed, IFNγ, IL-17, IL-22, and GM-CSF were detected in the
CSF and CNS lesions of MS patients, especially during the
active phase of the disease (Carrieri et al. 1998; Monteyne
et al. 1999; Kebir et al. 2009; Mellergard et al. 2010). In fact,
most T lymphocytes in acute and chronic MS lesions express
IL-17 (Kebir et al. 2007; Tzartos et al. 2008). Activated CD4
T cells simultaneously producing IL-17 and IFNγ were pref-
erentially expanded from blood samples obtained from MS
patients during a relapse; these double producing cells had a
greater capacity to cross the human BBB and were detectable
in post-mortem MS brain tissues (Kebir et al. 2009). More-
over, IL-12 and IL-23, which are key cytokines involved in
the differentiation of Th1 and/or Th17 cell subsets, are more
abundant in the CSF and/or CNS of MS patients compared to
controls (Link 1998; Li et al. 2007). Although the injection of
an antibody targeting the shared p40 subunit of IL-12 and IL-
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23 provided significant benefits to patients affected with au-
toimmune diseases (e.g., psoriasis) (Kumar et al. 2013), such
strategy was not successful in MS patients (Segal et al. 2008;
Vollmer et al. 2011). Recently, a phase Ib/IIa clinical trial
evaluating the impact of an antibody targeting GM-CSF in
patients with rheumatoid arthritis patients has shown some
efficacy (Behrens et al. 2014). Whether any therapies specif-
ically blocking cytokines such as GM-CSF, could be benefi-
cial in MS patients warrant further investigations.

Observations in EAE models indicate that the relative pre-
dominance of Th1 vs. Th17 immune responses influences the
CNS localization of the induced inflammation (Pierson et al.
2012). Robust Th1 responses producing elevated levels of
IFNγ induced an important immune cell infiltration in the
spinal cord and the classical EAE symptoms (e.g., flaccid tail,
hindlimb paralysis) (Stromnes et al. 2008). In contrast, en-
cephalitogenic T cells secreting high IL-17 levels but low
IFNγ levels, infiltrated preferentially the brain parenchyma
and induced the atypical EAE symptoms (e.g., head tilt, spin-
ning and axial rotation) (Stromnes et al. 2008). These distinct
lesion patterns were confirmed in a different mouse strain;
indeed the adoptive transfer of Th1, Th17 or Th9 encephali-
togenic cells also induced CNS lesions with distinct patterns
(Jager et al. 2009). Numerous factors can prompt encephali-
togenic T lymphocytes to preferentially infiltrate one particu-
lar CNS area including genetic background, myelin epitope
targeted, cytokines provided by professional APCs, local CNS
chemokine production and cytokine receptor expression
(Pierson et al. 2012). Importantly, the predominance of either
Th1 or Th17 responses in MS patients has been implicated in
disease heterogeneity with variations in clinical course, re-
sponse to immunomodulators and localization of CNS lesions
(Axtell et al. 2010, 2013; Pierson et al. 2012). Finally, an
increasing body of evidence gathered from mouse models
and human studies demonstrates the plasticity of activated
and memory T cell subsets; the commitment of activated T
cells to specific functions and characteristics (cytokines, tran-
scription factors, etc.) associated with a particular Tcell subset
has been shown to be not irreversible (Geginat et al. 2014).
For example, one group used a fate tracking system to reveal
that during EAE, a subgroup of Th17 cells stopped producing
IL-17 and secreted instead IFNγ (Hirota et al. 2011). Al-
though the key roles of Th1 and Th17 CD4 lymphocytes in
the initiation of MS and EAE are well established (Cua et al.
2003; Chen et al. 2006; Kebir et al. 2007, 2009; Stromnes
et al. 2008), the mechanisms whereby these cells contribute
to the pathogenesis of these demyelinating diseases are not
completely resolved. Finally, other CD4 T cell subsets dem-
onstrating cytotoxic properties can also contribute to the tissue
damage. We demonstrated that the proportion of CD4 T lym-
phocytes expressing NKG2C as well as other markers (e.g.,
CD56, NKG2D, granzyme B) was elevated in the peripheral
blood of MS patients compared to controls (Zaguia et al.

2013). Moreover, these NKG2C-expressing CD4 Tcells were
present in MS lesions and could kill human oligodendrocytes,
which express HLA-E the cognate ligand of NKG2C (Zaguia
et al. 2013). Additional investigations are deemed essential to
elucidate the contribution of the numerous immune molecules
and mechanisms used by CD4 T lymphocytes to injure neural
cells (Pierson et al. 2012).

Despite the imposing body of evidence gathered from EAE
models supporting the essential role of CD4 T lymphocytes in
the development of MS (Fletcher et al. 2010), results from
clinical trials demonstrated that the picture is far more com-
plex. While an anti-CD4 depleting antibody therapy did not
produce any clinical benefits to patients with MS (Lindsey
et al. 1994; Llewellyn-Smith et al. 1997; Rep et al. 1997;
van Oosten et al. 1997), a more global immunosuppressive
approach such as an anti-CD52 antibody (Alemtuzumab),
which dramatically reduces the number of most lymphocytes,
successfully decreased the number of relapses and disease
progression of MS patients (Jones et al. 2010). The emerging
appreciation of the contribution of other lymphocyte subsets
in MS pathogenesis warrants further investigations and will
most likely provide a more accurate understanding of this
multifaceted disease.

CD8 T Lymphocytes in MS and its Animal Models

An increasing body of evidence substantiates the notion that
CD8 T lymphocytes actively partake in the CNS injury ob-
served in patients with MS (Mars et al. 2011). Several groups
have documented the presence of activated CD8 T lympho-
cytes in perivascular and parenchymal MS lesions (Fig. 1);
their number reaches or surpasses that of CD4 T cells (Hauser
et al. 1986; Gay et al. 1997; Babbe et al. 2000; Neumann et al.
2002; Lassmann 2004; Junker et al. 2007; Frischer et al.
2009). CD8 T lymphocytes were even detected in early stages
of cortical demyelinating MS lesions (Lucchinetti et al. 2011).
IL-17 producing CD8 T lymphocytes (i.e., Tc17) have been
shown to be enriched especially in active MS lesions (Kebir
et al. 2007; Tzartos et al. 2008). Moreover, we have recently
reported that the frequency of MCAM expressing CD8 Tcells
is elevated in MS patients during relapses and that the propor-
tion of MCAM+ CD8 T cells producing IL-17, IFNγ, GM-
CSF and TNF is significantly greater than of their MCAM-
negative counterparts (Larochelle et al. 2015).

The clonal diversity of T lymphocytes present in a specific
compartment can be assessed by spectratyping analysis of the
complementarity determining region 3 of the TCR, as each
clone expresses a distinct sequence. When the number of dis-
tinct T cell clones detected in a specific organ is limited, it
implies that these T cells did not inadvertently move into this
compartment but rather antigen-specific T lymphocytes pref-
erentially infiltrated and locally expanded. Several groups
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analyzed the TCR repertoire of CD8 T lymphocytes obtained
from the blood, CSF and/or the brain of MS patients. These
studies found that the majority of CD8 T lymphocytes recov-
ered from MS lesions belonged to a few clones (Babbe et al.
2000; Junker et al. 2007). Furthermore, using samples obtain-
ed from patients studied longitudinally, it has been possible to
establish that some CD8 T cell clones detected in MS patients
persisted over years in their CNS (CSF and/or tissue)
(Jacobsen et al. 2002; Skulina et al. 2004). In sharp contrast,
the repertoire of CD4 T cells recovered from the CNS of MS
patients has been shown to be heterogeneous (Babbe et al.
2000; Jacobsen et al. 2002; Skulina et al. 2004; Junker et al.
2007). Overall, these reports reinforce the idea that CD8 T
lymphocytes present in the CNS of MS patients are not by-
stander cells but rather have been engaged in active immune
responses (Mars et al. 2011). However, the antigens that have
been recognized by such infiltrating CD8 T cells and poten-
tially leading to their activation and expansion in the CNS
have not been identified.

CD8 T lymphocytes recognize antigens presented byMHC
class I molecules. Genetic studies indicated that specificMHC
class I alleles either increase (e.g., HLA-A*0301) or reduce
(HLA-A*0201) the risk of developing MS (Fogdell-Hahn
et al. 2000; Harbo et al. 2004; Brynedal et al. 2007; Rubio
et al. 2007) suggesting that MHC class I alleles could influ-
ence the activation of self-reactive CD8 T lymphocytes
(Fugger et al. 2009; Mars et al. 2011). Under normal physio-
logical conditions, MHC class I molecules are either undetect-
able on most CNS cells or expressed at low levels on microg-
lia and endothelial cells. In sharp contrast, inflammatory con-
ditions such as those observed in the CNS of MS patients, can
up-regulate these molecules on neurons, oligodendrocytes and
astrocytes even in the early phases of the disease (Ransohoff
and Estes 1991; Gobin et al. 2001; Hoftberger et al. 2004).
Therefore, we can speculate that activated CD8 T cells can
directly target these resident CNS cells. Indeed, several groups
identified in MS lesions CD8 T cells in close proximity to
oligodendrocytes and demyelinated axons with polarization
of their cytolytic granules (Neumann et al. 2002; Wulff et al.
2003; Lassmann 2004; Saikali et al. 2007); such CD8 T cell
detection positively correlated with the extent of axonal dam-
age (Bitsch et al. 2000; Kuhlmann et al. 2002). Moreover, in
primary culture systems, activated CD8 T cells were able to
injure neuronal axons (Sauer et al. 2013) as well as oligoden-
drocytes (Jurewicz et al. 1998) in an antigen-MHC class I
specific manner. Furthermore, myelin-specific CD8 T cells
can induce in mice demyelinating diseases with pathological
features reminiscent of the human MS disease (Huseby et al.
2001; Sun et al. 2001; Friese and Fugger 2005). As well,
murine virus-induced models of demyelinating diseases
(e.g., Theiler’s virus, mouse hepatitis virus) support the in-
volvement of CD8 T cells in demyelination and axonal injury
(Murray et al. 1998; Wu et al. 2000; Howe et al. 2007).

Collectively, these results emphasize the contribution of
CD8 T lymphocytes to the CNS injury observed in MS pa-
tients; however, these cytotoxic T lymphocytes most likely do
not act alone. Indeed, experimental data illustrated that both
CD4 and CD8 T lymphocytes can work in concert to mediate
the autoimmune attack observed in EAE (Huber et al. 2013).
Therefore, it is deemed essential to investigate the interplay
between CD4 and CD8 T lymphocytes during different stages
of MS and its animal models. Such studies will most likely
shed light on the complexity and heterogeneity of the immune
mechanisms involved in MS pathobiology.

Regulatory CD4 and CD8 T Lymphocytes in MS
and EAE

Regulatory T lymphocytes are crucial to maintain peripheral
tolerance and consequently to prevent autoimmune diseases.
These T cells can curtail functions of multiple immune cell
subsets including CD4 and CD8 T lymphocytes, natural killer
cells (NK) and APCs (e.g., monocytes, macrophages, dendrit-
ic cells) via direct contact and secreted molecules (Lowther
and Hafler 2012) (Fig. 1). Both CD4 and CD8 T lymphocyte
subsets with regulatory properties have been identified
(Jadidi-Niaragh and Mirshafiey 2011). The most studied reg-
ulatory CD4 Tcell subsets in the context of MS and its animal
models are i) the naturally occurring regulatory T cells ex-
pressing the transcription factor FoxP3 (Treg) and ii) the reg-
ulatory T cells secreting IL-10 (Tr1) (Kleinewietfeld and
Hafler 2014). Several investigations performed in the EAE
models established that regulatory T lymphocytes can influ-
ence the development and severity of this disease and also
favor the recovery phase (Olivares-Villagomez et al. 1998;
Kohm et al. 2002; McGeachy et al. 2005). Indeed, the adop-
tive transfer of FoxP3-expressing Treg into mice conferred
protection from EAE induction while depletion of these cells
led to a more severe disease course (Kohm et al. 2002; Reddy
et al. 2004). Others reported that depletion of T regs did not
influence the first EAE remission phase in EAE mice but
rather reduced the development of subsequent relapses
(Gartner et al. 2006; Jadidi-Niaragh and Mirshafiey 2011).
Similarly, injection of mice with IL-10 producing Tr1-like
cells activated via different protocols prevented EAE induc-
tion (Barrat et al. 2002; Ding et al. 2006). Numerous groups
investigated T regs or Tr1 cells in peripheral blood obtained
from MS patients and found that these regulatory cells have
impaired regulatory functions and migratory properties, but
not necessarily altered frequencies compared to samples taken
from healthy donors (Viglietta et al. 2004; Astier et al. 2006;
Martinez-Forero et al. 2008; Venken et al. 2008; Schneider-
Hohendorf et al. 2010). However, when activated CD4 Tcells
expressing high levels of both CD25 and CD127 (IL7Rα)
(Liu et al. 2006; Seddiki et al. 2006) were subtracted and that
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T regs defined as CD4+CD25highCD127low were analyzed the
suppressive capacity of Tregs from MS patients was found to
be either similar to healthy individuals (Michel et al. 2008;
Venken et al. 2008; Baecher-Allan et al. 2011) or reduced only
in earlyMS patients (disease duration less than 10 years) com-
pared to healthy controls (Venken et al. 2008). The potential
use of anti-CD127 antibodies, to remove activated T cells but
not T regs, is currently under investigation in MS patients
(www.clinicaltrails.gov). Finally, an increasing number of
publications indicates that human FOXP3 expressing T regs
do not represent an homogenous population; expression of
additional transcription factor (e.g., Helios) and surface
markers (e.g., TIGIT, FCRL3) has been associated with
suppressive capacity (Shevach and Thornton 2014; Bin
Dhuban et al. 2015). Further investigations will be necessary
to determine whether specific T reg subsets in MS patients are
altered compared to healthy controls.

Interestingly, immunomodulatory treatments for MS pa-
tients have been shown to mediate, at least in part, their pos-
itive impact by reversing the altered properties of regulatory
CD4 T cells in patients (de Andres et al. 2007; Korporal et al.
2008; Haas et al. 2009; Chiarini et al. 2012); these observa-
tions suggest that restoring functions of regulatory T cells in
patients represents a promising therapeutic option
(Kleinewietfeld and Hafler 2014). For example, interferon-β
(IFNβ), the first broadly used immunomodulatory therapy to
treat MS patients, has been shown to favor the secretion of IL-
27 by dendritic cells (Sweeney et al. 2011). Remarkably,
monocyte-derived dendritic cells obtained from MS patients
that were characterized as IFNβ responders produced signif-
icantly more IL-27 than those obtained from IFNβ non-
responders (Sweeney et al. 2011). Similarly, the beneficial
immunoregulatory impact of IFNβ on EAE has been shown
to rely on the induced production of IL-27 (Guo et al. 2008;
Shinohara et al. 2008). Notably, IL-27 can reduce EAE se-
verity via several mechanisms including the differentiation
of IL-10-producing Tr1 cells (Awasthi et al. 2007; Fitzger-
ald et al. 2007; Stumhofer et al. 2007; Vasanthakumar and
Kallies 2013).

Subpopulations of CD8 T cells exhibiting regulatory prop-
erties have been reported in both humans and animal models
although knowledge about these cells is not as extensive as for
their CD4 counterparts. Unfortunately, the markers (e.g.,
CD25, CD122, CD56) or cytokines (IL-10 or TGFβ) that
have been linked to regulatory CD8 T lymphocytes are not
specific to cells with suppressive capacity (Jiang and Chess
2004; Willing and Friese 2012; Hu et al. 2013). Almost thirty
years ago, impaired CD8 T cell suppressor functions were
reported in MS patients compared to healthy controls (Antel
et al. 1986, 1988). More recently, CD8 T lymphocytes bearing
the capacity to kill myelin specific CD4 T lymphocytes in a
HLA-E restricted fashion were described (Correale and Villa
2008) especially in MS patients treated with glatiramer

acetate, a synthetic copolymer of four amino acids
(Tennakoon et al. 2006). Similarly to the human data, the
capacity of regulatory CD8 T cells to suppress auto-reactive
CD4 T cells via a mechanism involving the Qa-1 molecule,
which is the mouse equivalent to the human HLA-E, has been
shown in EAE (Jiang et al. 1995; Lu et al. 2008). Karantikar
and colleagues described CNS antigen specific CD8 T cells
able to suppress the proliferation of effector CD4 T cells; this
CD8 T cell-mediated suppression was reduced in samples
from MS patients obtained during acute disease exacerbation
compared to healthy controls or non-active MS patients
(Baughman et al. 2011). Both CD28negative and CD122-
expressing CD8 T cell subpopulations have been identified
as regulatory cell subsets having the capacity to protect from
EAE (Najafian et al. 2003; Lee et al. 2008; Yu et al. 2014).
Overall, these studies indicate that both regulatory CD4 and
CD8 T cell subsets can potentially regulate detrimental auto-
immune responses observed in active MS patients or in its
animal models. However, the mechanismswhereby these cells
accomplish such beneficial impact need to be further
investigated.

Gut Microbiota and the Susceptibility to MS
and EAE

Microbiota refers to the ensemble of microorganisms that re-
sides in a given anatomical location in the body (Bhargava and
Mowry 2014). Seminal publications have documented the im-
pact of specific gut bacterial communities on the immune
system including T lymphocytes. Indeed, commensal micro-
organisms can promote either inflammatory (Th1 or Th17) or
regulatory T cell responses (Atarashi et al. 2011, 2013;
Kawamoto et al. 2014). In addition to the direct impact of
the gut microbiota on bowel-related disorders, a growing body
of evidence suggests that these microorganisms can modulate
autoimmune disorders in remote organs such as the CNS
(Berer and Krishnamoorthy 2014; Bhargava and Mowry
2014). Epidemiological, genetics and biological studies have
revealed that the susceptibility to MS disease is dictated by an
intricate interplay between genes and environmental factors.
Recently, the research community has turned the spotlight on
the gut commensal microbiota as a potential environmental
risk factor for MS (Berer and Krishnamoorthy 2014;
Bhargava and Mowry 2014).

Modulation of the gut microbiota in mice has been shown
to influence the susceptibility to EAE. Following an oral an-
tibiotic regimen, which dramatically reduced gastro-intestinal
bacterial populations, mice were found to be significantly less
susceptible to EAE induction with delayed onset and attenu-
ated disease severity compared to controls (Ochoa-Reparaz
et al. 2009; Lee et al. 2011). Similarly, an oral antibiotic treat-
ment given to mice that generally spontaneously develop
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EAE, due to the transgenic expression of a TCR recognizing a
myelin epitope, abolished the development of the CNS dis-
ease (Berer et al. 2011). The protection induced by eradicating
the gut microbiota has been linked to mechanisms such as:
increased number of FoxP3 regulatory T cells, reduced popu-
lations of Th1 (IFNγ- producing) and Th17 (IL-17-produc-
ing) cells, and impaired ability of dendritic cells to activate
Th1 and Th17 responses (Ochoa-Reparaz et al. 2009; Berer
et al. 2011; Lee et al. 2011).Moreover, the adoptive transfer of
CD25+ CD4 T lymphocytes from antibiotic-treated mice to
naïve recipients before EAE induction decreased disease se-
verity while CD25+CD4 T cells from non-treated donors did
not alter EAE susceptibility (Ochoa-Reparaz et al. 2009). The
re-colonisation of germ-free mice with segmented filamentous
bacteria, that have been shown to promote Th17 cell activa-
tion, was sufficient to restore their susceptibility to EAE in-
duction (Lee et al. 2011). In contrast, oral administration of
capsular polysaccharide A of bacteroides fragilis or
Pediococcus acidilactici (strain R037), both known to reduce
intestinal inflammation by inducing IL-10-producing CD4 T
cells, reduced EAE disease severity (Ochoa-Reparaz et al.
2010; Takata et al. 2011). Overall, these reports indicate that,
at least in rodent models, specific gut bacteria or bacterial
products can skewTcell responses and thus influence whether
or not a detrimental autoimmune response targeting the distant
CNS will take place.

Few studies investigated the impact of gut microorganisms
on MS pathobiology. Correale and Farez showed that MS
patients infected with intestinal parasites, which alter the gut
microbiota but also induce a robust Th2 response, had a sig-
nificantly reduced number of relapses compared to uninfected
MS patients (Correale and Farez 2007, 2011). Clostridium
perfringens type B, usually associated with gastro-intestinal
diseases in ruminants, was isolated from a patient with MS at
her first clinical presentation (Rumah et al. 2013). Interesting-
ly, these bacteria produce the epsilon toxin, which is neuro-
toxic in animals (Bokori-Brown et al. 2011). Antibodies
targeting this toxin were more prevalent in sera from MS
patients than in those from healthy controls (Rumah et al.
2013); whether bacteria of the Clostridium genus can modu-
late immune responses in MS patients is still unknown. It has
been recently uncovered that diet patterns such as high salt
diet can increase EAE severity (Kleinewietfeld et al. 2013).
Moreover, long-term as well as short-term changes in the hu-
man diet have been shown to modify the human gut microbi-
ota (David et al. 2014). As diets shape the gut microbiota,
which can influence immune cell responses, we can speculate
that some diet patterns favoring specific microbial populations
could lead to dampened Th1 and/or Th17 responses while
other diets could support the growth of microbial populations
promoting such inflammatory responses.

The commensal gut flora has been shown to be essential for
the expansion of Mucosal-associated invariant T cells

(MAITs) (Treiner et al. 2003). These innate-like cells express
an invariant TCRα chain (Vα7.2 Jα33 in humans) and are
found in mucosal tissues but also in other organs (e.g., liver)
and in peripheral blood (Treiner et al. 2003; Dusseaux et al.
2011; Le Bourhis et al. 2011; Gapin 2014). Human MAITs
express high levels of CD161, CCR6 and cytokine receptors
(IL-12, IL-18 and IL-23) and can produce inflammatory cyto-
kines including IFN-γ and IL-17 (Gapin 2014). Annibali and
colleagues observed an elevated proportion of CD161hi CD8
T cells in the peripheral blood of MS patients compared to
controls (Annibali et al. 2011). In contrast, other groups de-
tected significantly reduced frequency of CD161hi Vα7.2 ex-
pressing T cells (Miyazaki et al. 2011) or CD161hi Vα7.2
CD8 T cells (Willing et al. 2014) in the blood of MS patients
compared to healthy controls. Willing and colleagues sug-
gested that such inconsistencies between studies could be
due to variation in donors’ age as they observed a diminished
proportion ofMAITs with age in healthy donors (Willing et al.
2014). Notably, the frequency of MAITs was significantly
reduced in MS patients following immunosuppressive thera-
pies (Abrahamsson et al. 2013). Moreover, CD8 T cells ex-
pressing CD161 and producing IFNγ (Annibali et al. 2011) or
expressing the TCRVα7.2 chain (Abrahamsson et al. 2013;
Willing et al. 2014) were detected in post-mortem CNS tissues
from MS patients. Whether MAITs contribute to pathological
processes observed in MS patients is still unresolved. Finally,
whether the impact of the gut microbiota on this specific im-
mune cell subset or other immune cell subsets modulates the
development of MS is unknown. Further investigations are
deemed essential to determine whether the gut microbiota is
indeed a key factor in MS pathogenesis and could be modu-
lated to alter disease (Berer and Krishnamoorthy 2014;
Bhargava and Mowry 2014).

Crosstalk Between T Lymphocytes and Glial Cells

Glial cells, which include astrocytes, oligodendrocytes and
microglia, perform highly complex and complementary func-
tions with the ultimate goal of providing support, protection
and optimal conditions for neurons. Microglia are the resident
innate immune cells of the CNS and consequently provide the
first line of defense against both endogenous and exogenous
insults (Giunti et al. 2014). Under normal physiological con-
ditions, resting microglia constantly scrutinize their surround-
ings, remove cell debris, and sense potential threats via a
plethora of receptors such as toll-like receptors and scavenger
receptors (Goldmann and Prinz 2013; Giunti et al. 2014;
Strachan-Whaley et al. 2014). A growing body of evidence
suggests that the activation of microglia is one of the earliest
stages in the development of MS lesions even prior the infil-
tration of monocytes/macrophages and T lymphocytes (van
Noort et al. 2011; Strachan-Whaley et al. 2014). Using a
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biomarker of activated microglia, investigators performed
PET imaging on MS patients as well as on clinically isolated
syndrome patients, whom had a first episode of CNS demye-
lination. They observed increased microglial activation not
only in lesions but also in normal appearing white matter in
these patients compared to healthy subjects (Politis et al. 2012;
Giannetti et al. 2015). Similarly, using multiple techniques
(immunohistochemistry, flow cytometry and two-photon mi-
croscopy), several groups reported that the activation of mi-
croglia precedes the infiltration of macrophages and T cells in
EAE models (Ponomarev et al. 2005; Davalos et al. 2012;
Giunti et al. 2014). Given their immune properties, such as
expression of MHC class I and class II molecules and produc-
tion of cytokines, as well as their distribution throughout the
CNS, microglia are uniquely positioned to influence and mod-
ulate the responses of CNS infiltrating immune cells, especial-
ly T lymphocytes (Almolda et al. 2011; Strachan-Whaley
et al. 2014). In the inflamed CNS, activated microglia and
infiltrating macrophages exhibit very similar properties and
functions, and are thus often undistinguishable by techniques
such as immunohistochemical analysis. Other authors
reviewed the numerous protective and beneficial effects of
microglia in MS and its animal models (Goldmann and Prinz
2013; Giunti et al. 2014; Strachan-Whaley et al. 2014). Below,
we will briefly discuss the cross-talk between T lymphocytes
and microglia/infiltrating macrophages in the context of these
demyelinating diseases.

Microglia and macrophages are abundantly present in
white matter and cortical demyelinating lesions of MS and
EAE; these cells are often detected in close proximity to T
lymphocytes (Lucchinetti et al. 2011; Hucke et al. 2012;
Lassmann 2014) supporting the likelihood of active interac-
tions between these cell subsets. An important number of
studies documented that both human and rodent activated mi-
croglia are immune competent cells and can efficiently present
antigens to both CD4 and CD8 T lymphocytes (Aloisi et al.
1999; Carson et al. 1999; Almolda et al. 2011; Jarry et al.
2013; Strachan-Whaley et al. 2014; Wlodarczyk et al. 2014).
Therefore, microglia can contribute to the initial activation of
naïve T cells but also the local re-stimulation of infiltrating
activated T cells. Activated microglia express elevated levels
of MHC class I and class II molecules and several co-
stimulatory molecules including CD80, CD86, CD40 and
OX40 (Williams et al. 1994; Raivich and Banati 2004;
Almolda et al. 2010; Goldmann and Prinz 2013; Giunti et al.
2014; Strachan-Whaley et al. 2014; Wlodarczyk et al. 2014).
These molecules are engaged in the physical contact between
Tcells and microglia and can trigger activating signaling path-
ways in T cells. Moreover, specific subsets of activated mi-
croglia have been shown to secrete cytokines that favor either
Th1 or Th17 cell subsets (e.g., IL-6, IL-12, IL-23, TNF) (Jack
et al. 2005; Strachan-Whaley et al. 2014); although the cyto-
kine levels produced by activated microglia can be lower than

those produced by macrophages (Wlodarczyk et al. 2014). In
contrast, specific in vitro culture conditions of microglia pro-
moted the development of regulatory T lymphocytes express-
ing FoxP3, which had the capacity to protect from EAE upon
adoptive transfer in mice (Ebner et al. 2013). Finally, microg-
lia can acquire the same pro-inflammatory M1 phenotype
(producing IL-1, IL-12, TNF) or anti-inflammatory M2 phe-
notype (producing IL-10 and showing enhanced myelin
phagocytosis capacity) that have been originally described
for macrophages (Durafourt et al. 2012; Nakagawa and Chiba
2014). Published reports suggest that M2 microglia or macro-
phages can favor repair and recovery in EAE models (Mikita
et al. 2011; Strachan-Whaley et al. 2014). Overall, these re-
sults suggest that activated microglia can locally either estab-
lish a local inflammatory milieu sustaining the activation of
inflammatory T lymphocytes (Matyszak et al. 1999; Giunti
et al. 2014), or favor regulatory and anti-inflammatory T lym-
phocytes (Strachan-Whaley et al. 2014).

The cross-talk betweenmicroglia and Tcells can also shape
microglial properties (Strachan-Whaley et al. 2014). Whereas
murine myelin auto-reactive Th1 cells triggered the secretion
of proinflammatory molecules such as TNF, IL-1β and nitrite
by microglia, myelin auto-reactive Th2 cells induced the ex-
pression of neurotrophic factors such as brain-derived neuro-
trophic factor and neurotrophin-3 by the same cells (Roy et al.
2007). Moreover, infiltration of IFNγ and IL-17 producing
CD4 T cells during EAE concurred with elevated production
of inflammatory cytokines (IL-1β, IL-6 and TNF) most likely
by microglia. Furthermore, Th1 or Th17 cells caused elevated
MHC class I and II expression by microglia in vitro (Murphy
et al. 2010). Collectively, these results illustrate that the cross-
talk between T lymphocytes and microglia can lead to both
detrimental and beneficial effects and contribute to the patho-
biology of MS and its animal models. Further studies are
deemed essential to understand this intricate T cell-microglia
dialogue, especially since several activated T cell subsets
(Th1, Th2, Th17, T regs) have the capacity to migrate into
the CNS.

An increasing number of publications have underlined the
roles of astrocytes in modulating Tcell responses especially in
the context ofMS and its animal models (Mayo et al. 2012). A
detailed description of this literature is beyond the scope of the
current review. However, we should at least mention that as-
trocytes can produce cytokines and chemokines, or express
molecules that alter T cell responses (Mayo et al. 2012). For
example, we have shown that astrocytes in MS lesions
expressed elevated levels of PD-L1 and IL-15 and that
these mediators can either inhibit or enhance CD8 T cell
responses using in vitro assays (Saikali et al. 2010; Pittet
et al. 2011). Although, there is no convincing data demon-
strating that astrocytes can efficiently present antigen to T
cells, these very abundant glial cells can significantly alter
CNS inflammation.
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Conclusions

In the last decades, the progress achieved by the scientific
community to elucidate the complex immune mechanisms
involved in the pathobiology of MS is remarkable. Major
advances include the identification and characterization of T
cell subsets (e.g., Th1, Th17, CD8, regulatory T cells), mole-
cules (e.g., cytokines, chemokines, cell adhesion molecules),
and interactions with CNS cells (e.g., BBB-EC, microglia,
astrocytes), that contribute to the prototypic inflammatory dis-
ease of the CNS and potentially to some extent to other neu-
rological diseases. Moreover, the development of additional
rodent models to mirror the intricacies of the multifaceted
human disease have provided and will continue to provide
invaluable insights to examine the causes underlying disease
heterogeneity in patients. This review presented an overview
of the impressive body of evidence advocating that both CD4
and CD8 T lymphocytes participate in the development ofMS
and its animal models. We should highlight that an increasing
number of publications have substantiated the contribution of
other immune factors such as B lymphocytes and antibodies to
the development of these demyelinating diseases (Krumbholz
et al. 2012). In spite of the great number of milestones reached
in elucidating MS immunopathobiology, the exact etiology of
MS has yet to be defined. Moreover, despite an increasing
number of available immunomodulatory or immunosuppres-
sive therapies altering MS progression, there is still no cure
available. Therefore, the scientific community should contin-
ue hunting for potential immune mechanisms that can be
targeted to prevent but also eradicate MS.
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