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Abstract TWIK-related potassium channel-1 (TREK1,
KCNK2) is the most extensively studied member of the two-
pore domain potassium (K2P) channel family. Recent studies
have already demonstrated a key role in the pathophysiology
of depression, pain and neurodegenerative damage pointing
towards an important role in a broad spectrum of CNS disor-
ders. The mammalian blood–brain barrier (BBB) is a highly
specialized structure and an integral part of the neurovascular
unit, which controls the transition of cells and molecules into
the CNS. While BBB dysregulation is common in neurologic
diseases, the molecular mechanisms involved in this process
remain largely unknown. Recently, we were able to describe a
role of TREK1 in this context. TREK1 was downregulated in
murine and human BBB upon inflammation. Blocking of
TREK1 increased lymphocyte migration, while activation
had the opposite effect. In TREK1-deficient (Trek1−/−) mice,
brain endothelial cells displayed an inflammatory phenotype
and leukocyte trafficking was facilitated, as demonstrated in
experimental autoimmune encephalomyelitis (EAE), an ani-
mal model for multiple sclerosis. Here we summarize these
findings and discuss the implications in diseases related to
BBB dysfunction.
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Introduction

The blood–brain barrier (BBB) constitutes a dynamic inter-
face in the context of the so-called neurovascular unit (NVU)
controlling the transition of fluids and cells between cerebral
blood vessels and the central nervous system (CNS) (Neuwelt
et al. 2011). The NVU comprises endothelial cells intercon-
nected by complex tight junctions resting on a parenchymal
basement membrane ensheathed by pericytes, smooth muscle
cells and enveloping end foot processes of astrocytes. Circu-
lating blood cells, such as leukocytes, complete the dynamic
complex of the NVU. Dysfunction of the BBB, e.g. in auto-
immune inflammatory neurodegeneration, results in increased
vascular permeability or extravasation of blood cells, extra-
cellular fluid and macromolecules into the CNS parenchyma,
leading to edema, inflammation and demyelination (Fig. 1;
(Engelhardt 2006; Bittner and Meuth 2013)).

In general, BBB dysfunction is considered to be a common
feature of several neurologic disorders associated with inflam-
matory responses, e.g. stroke or neurodegenerative diseases.
Accordingly, many therapeutics aim to stabilize the BBB. How-
ever, in most cases, such agents (e.g. corticosteroids, interferon
(IFN)-β) act non-specifically, have limited success
(Kleinschnitz et al. 2011; Dhib-Jalbut and Marks 2010), or
severe side effects (Diotti et al. 2013; Steinman 2005). Molec-
ular mechanisms underlying BBB dysfunction are incompletely
understood, and very few specific targets have been identified at
the brain-vasculature interface (Engelhardt and Sorokin 2009).

Regulated and selective transport of ions mediated by
channels across biological membranes is crucial for numerous
fundamental physiological processes. The physiological im-
portance of ion channels is underlined by their involvement in
a wide range of pathologies spanning all major therapeutic
areas (Clare 2010; Kaczorowski et al. 2008). Ion channels
have gained attention as potential pharmaceutical targets in
several neurologic diseases so far mainly due to their ability to
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electrically modulate neuronal activity or axonal conductance
(Overington et al. 2006). Popular neurological drug targets
involve voltage-gated calcium channels as targets for neuro-
pathic pain (e.g. gabapentin), voltage-gated sodium channels
for epilepsy or bipolar disorder (e.g. carbamazepine,
lamotrigine or topiramate) or Kv7 channels for epilepsy (e.g.
flupirtine). In contrast, a putative therapeutic influence of ion
channels on primarily non-excitable cells within the CNS, e.g.
astrocytes or endothelial cells, remains widely unclear. Ion
channels are nowadays the second largest target class for
approved drugs (Overington et al. 2006). Research efforts in
exploring novel ion channel-modifying drugs for known and
novel indications are still increasing.

In this perspective, we discuss recent findings about the
two-pore domain (K2P) potassium channel TREK1 on brain
endothelial cells modulating the function of the BBB and
introduce this channel as a potentially new therapeutic target
in several neurological disorders.

Two-Pore Domain Potassium Channels

Ion channels form pores across biological membranes that
facilitate the passive diffusion of different ions alongside their
electrochemical gradient, leading to changes in the plasma
membrane potential. They exert many different functions in
a diversity of cell types such as generation of action potentials,
cell proliferation, cell differentiation, immune responses, pH
regulation, insulin secretion or apoptosis (Hille et al. 1999).
More than 140 genes encode for human ion channels, of
which 92 are K+ channels.

While K+-selective leak currents were described around
60 years ago (Goldman 1943; Hodgkin and Huxley 1952;

Hodgkin and Katz 1949), the first example of a two-pore
domain potassium channel (K2P) was found in Saccharomy-
ces cerevisae (TOK1) (Ketchum et al. 1995) in 1995. K2P
channels are potassium selective ion channels that are consti-
tutively open at rest and share the same 4TM/2P (transmem-
brane domain, TM; pore domain, P) structure as well as a long
extracellular loop between TM1 and TM2. They can be ar-
ranged as either homo- or heterodimers forming the final
configuration of a tetrameric channel.

K2P channels are highly expressed in the CNS as well as in
other tissues (Honore 2007; Kim et al. 2010) nowadays, there
is an increasing knowledge pointing towards an essential role,
not only in setting the resting membrane potential, but also in
regulating numerous physiological and pathophysiological
processes (Patel and Honore 2001). 15 different K2P family
(KCNK) members are subgrouped into six subfamilies based
on sequence homology and similar functional properties that
include chemical, thermal, and mechanical modalities. The
subfamilies are called TWIK, TASK, TREK, THIK, TALK
and TRESK. The grade of sequence homology between the
subfamilies is very low, indicating their functional diversity
apart from setting the resting membrane potential.

K2P channels have been shown to play fundamental roles
in physiological and pathophysiological conditions, becoming
important targets in a range of neuronal and cardiovascular
diseases, pain and cancer (Alloui et al. 2006; Barel et al. 2008;
Heurteaux et al. 2006b; Williams et al. 2013). Although
functional expression of these channels has been described
in various tissues, their role within the immune system has
only recently begun to be understood (Bittner et al. 2010).

Involvement of TREK1 in Disease Pathologies

TWIK-related potassium channel-1 (TREK1, also known as
KCNK2, K2P.2.1) is the most extensively studied K2P chan-
nel. It is predominantly expressed in the brain (GABA-
containing neurons) and spinal cord, as well as in the
prefrontral cortex, foetal brain, amygdala and thalamus
(Hervieu et al. 2001), but also in peripheral tissues
(Medhurst et al. 2001). Moreover, TREK1 was also found in
prostate cancer (Voloshyna et al. 2008) and recently, a role in
the progression of ovarian cancer (Innamaa et al. 2013) has
been shown.

TREK1 activity is modulated by various stimuli including
physical (membrane stretch, temperature) and chemical (ara-
chidonic acid (AA), phospholipids or polyunsaturated fatty
acids (PUFAs)) stimuli (Honore 2007). A proposed vasoactive
role of TREK1 channels in skin microvessels, and cerebral
basilar and mesenteric arteries remains controversial (Garry
et al. 2007). In these vessels, deletion of the TREK-1 channel
was shown to be associated with impairment of the nitrogen
oxide (NO)-producing cascade, leading to endothelial

Fig. 1 The pathophysiology of multiple sclerosis. Autoreactive T cells
are able to cross the activated blood–brain barrier. Grey: oligodendro-
cytes; yellow: neurons; green: T cells; blue: macrophages; orange: astro-
cytes; red: endothelial cells; purple: antigen-presenting cells, turquoise: B
cells/plasma cells. Modified from (Bittner and Meuth 2013)
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dysfunction. TREK1 also participates in the beneficial effects
of PUFAs on cerebral blood flow (Blondeau et al. 2007).
Recent evidences suggest that neuronal TREK1 may have a
role in depression (Heurteaux et al. 2006b), chronic pain
(Alloui et al. 2006), or ischemic brain injury (Heurteaux
et al. 2006a), rendering TREK1 as an attractive target for the
development of new therapeutic agents.

Do You Want to Join Me?—Interaction Partners
of TREK1

Like other K+ channels, TREK1 channels possess a special-
ized C-terminus, which is involved in the regulation by
PUFAs, phospholipids, stretch and intracellular acidification.
Moreover the C-Terminus is also critical in the interaction
with other proteins such as A-kinase-anchoring protein
(AKAP150) and microtubule-associated protein 2 (Mtap2),
which promote the number of active TREK channels in the
plasma membrane (Sandoz et al. 2006, 2008). Indeed, it has
been demonstrated that the carboxy terminus of TREK1 is
responsible for the voltage- and time- dependent gating
(Maingret et al. 2002). Additionally, a Coat Protein Complex
I (COPI) binding site was found at the N-terminus playing a
role in the anterograde transport of TREK1 to the plasma
membrane, evidencing the dual roles (anterograde and retro-
grade transport) of COPI in the trafficking of ion channels
(Kim et al. 2010). Additionally, some residues have been
shown to play an important role in TREK1 gating, e.g. residue
E306 and S333, which is critical for the phosphorylation by
protein kinase A (PKA) (Patel et al. 1998). It has also been
shown, that these two sites participate in the interaction of
TREK1 and the actin cytoskeleton. Mutations of these sites
lead to an increased channel activity resulting in changes of
cell shape (Lauritzen et al. 2005).

The identification of different proteins interacting with and
regulating TREK1 channels opens up the possibility to find
further, yet unidentified protein partners and to understand the
involvement of TREK1 in pathological conditions.

A Novel Role of TREK1 Channels at the BBB

In a recent study, we characterized a novel and unexpected
role for TREK1 in leukocyte trafficking across the BBB into
the CNS (Bittner et al. 2013) (Fig. 2). Expression studies
revealed that TREK1, but not other K2P channels are
expressed on human and mouse brain endothelial cells. In
addition, no significant upregulation of the closely related ion
channels TREK2 or TRAAK were detected on endothelial
cells isolated from TREK1−/−mice. On the other hand, TREK1
was not expressed in different human and murine immune cell
subtypes. Electrophysiological measurements were performed

using different blockers and activators of TREK1 currents. The
recently described TREK1-blocking peptide spadin (Mazella
et al. 2010; Moha Ou Maati et al. 2012) was used, revealing a
spadin-sensitive current which disappeared in TREK1−/− mice
underlining its specificity. As expected, TREK1 was not the
only ion channel present on brain endothelial cells as seen in
TREK1−/−mice. The current profile is for example compatible
with TRP channels, while this aspect has formally not been
investigated in the present study.

Different in vitro assays were performed to gain insight into
the functional role of TREK1 channels on endothelial cells.
TREK1 deletion or pharmacological blockade resulted in a
reduced migration of leukocytes across endothelial cell layers.
The genotype of the endothelial cells but not of the immune
cells was responsible for the observed effects. No preferential
effect of a specific immune cell subset was observed. An
elevated migration might be due to an involvement of a
number of different pathways. No changes of endothelial layer
integrity were observed as expression levels of tight junction
proteins, transendothelial resistance and the application of
tracer molecules in vitro and in vivo yielded comparable
results. Secretion of chemokines such as MCP-1 showed no
differences as well. In contrast, an upregulation of adhesion
molecules (ICAM1, VCAM1, PECAM1) was registered in
TREK1−/− endothelial cells under inflammatory (i.e. treatment
with IFNγ and TNFα) but not under basal conditions.

As a murine model of inflammation-induced BBB dys-
function, experimental autoimmune encephalomyelitis
(EAE), an animal model for multiple sclerosis, was chosen.
TREK1−/− mice showed a worsened clinical phenotype ac-
companied by an elevated infiltration of immune cells into the
CNS while the peripheral immune response was comparable.

Fig. 2 TREK1 on endothelial cells. Activated T lymphocytes (green)
bind to endothelial cells via interaction of ICAM1 and LFA-1 or VCAM1
and VLA-4. Endothelial cells express TREK1 (dark blue) besides other
ion channels (light blue). Cells are connected by tight junctions that are
build up e.g. by occludin (purple) or cadherins (yellow) interconnected by
cytoskeleton elements
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Bone-marrow chimeras and adaptive transfer EAE experi-
ments underlined a specific effect of TREK1 on endothelial
cells. Further analysis showed again a stronger upregulation of
ICAM1/VCAM1 in TREK1−/− on endothelial cells and ex-
periments using blocking antibodies confirmed a functional
involvement of this pathway in TREK1−/− mice. Pharmaco-
logical modulation of the EAE phenotype was performed both
by TREK1 blockade using spadin and by TREK1 activation
using alpha-linolenic acid or riluzole. Finally, brain sections
from human MS patients corroborated our results underlining
a potential role of TREK1 as a novel target structure for
therapeutic interventions.

Role of Blood–Brain Barrier Dysfunction in Neurological
Disorders

Multifocal perivascular infiltrates, predominantly of lympho-
cytes and macrophages, are found in brains of patients with
MS. Dysregulation of the BBB and transendothelial migration
of activated leukocytes are among the earliest abnormalities
seen inMS brains and are therefore considered to be one of the
hallmarks in its pathological cascade (Larochelle et al. 2011;
Correale and Villa 2007). During the last years, several crucial
components involved in leukocyte migration could be re-
vealed. These observations were translated into the develop-
ment of the humanized anti-α4 integrin antibody natalizumab,
the first drug specifically targeting processes at the BBB
(Steinman 2014). Natalizumab blocks the binding of lympho-
cytes to VCAMand osteopontin on inflamed brain endothelial
cells resulting in a markedly reduced immune cell infiltration
into the CNS. While natalizumab has a clear clinical benefit
for MS patients and can be considered as highly effective, it is
crucial to pay particular attention to the risk of developing
progressive multifocal leukencephalopathy (PML) as a rare
yet severe side effect (Sorensen et al. 2012; Fox 2011). These
experiences encourage future research efforts directed at mod-
ulating the BBB.

It has long been known that dysfunction of the BBB is not a
specific feature of neuroinflammatory disorders such as MS,
but that it has been associated with the pathophysiology of
numerous neurologic disorders, e.g. epilepsia, cerebral ische-
mia or even neurodegenerative diseases.

While clinical experience with clot-lysing drugs has con-
firmed expectations that early reperfusion improves clinical
outcome in stroke patients, a large number of putative neuro-
protective agents have failed in clinical trials (Cheng et al.
2004; Lo et al. 2003; Drummond et al. 2000). The reasons for
these disappointments are a matter of ongoing debates and
both the shortcomings of clinical trials themselves and possi-
ble reasons for the discrepancy between preclinical mouse
studies and human trials are discussed intensively. Addition-
ally, the research focus has been shifted to novel aspects of

stroke pathophysiology, such as potential BBB-based treat-
ments for cerebral ischemia. BBB changes during cerebral
ischemia and reperfusion are complex involving e.g. interac-
tions between platelets, neutrophils, the endothelium, matrix
metalloproteinases and infiltration of immune cells that am-
plify brain tissue injury.

Alzheimer’s disease (AD) is a progressive, neurodegener-
ative disorder characterized by a decline in cognitive function.
Despite thorough research, the etiology and pathogenesis are
still not fully understood. A cascade of molecular events
results in neurodegeneration initiated by deposition of
amyloid-β proteins. Dysfunction of the BBB has been repeat-
edly proposed to contribute to AD through a number of
different mechanisms, among others BBB disruption, impair-
ment of transporters and pathological influences of inflamma-
tion and oxidative stress (Kelleher and Soiza 2013; Erickson
and Banks 2013). Our current knowledge, however, is still
insufficient to decide whether neuroinflammation and BBB
disturbance is an underlying cause, a promoting factor or just
an epiphenomenon (Enciu and Popescu 2013).

Progressive degeneration of nigrostriatal dopaminergic
neurons is a hallmark of Parkinson’s disease (PD), another
common neurodegenerative disease.Microglial activation and
infiltration of immune cells over the BBB contributing to
neuronal degeneration has been found in both murine and
human studies (Chung et al. 2010). Increased BBB perme-
ability was observed in independent mouse models for PD.
Moreover, CD4 and CD8 T lymphocytes can be detected in
brain sections from PD patients.

In summary, CNS inflammation determines the severity
and disease course of numerous neurologic disorders and
can both cause and result from BBB dysfunction. Loss of
BBB integrity can allow cytokines and immune cells to enter
the CNS, which results in activation of glial cells and alter-
ations in the extracellular milieu. On the other hand, an in-
flammatory response in the brain might lead to endothelial cell
damage and increased BBB permeability (Kim et al. 2012).
Therapeutic interventions aiming at disturbances of BBB
function might therefore have a promising effect in a broad
spectrum of neurological disorders.

What is Known About Channels at the BBB?

Until now, a comprehensive overview about ion channel
expression on brain endothelial cells is missing and the role
of ion channels in BBB inflammation and dysfunction are
poorly understood. During the last years, aquaporin-4 (AQP4)
has certainly received a great interest from both basic re-
searchers and clinicians due to its involvement in the patho-
physiology of neuromyelitis optica (NMO; (Nagelhus and
Ottersen 2013)). AQP4 tetramers form a pore that is highly
selective for water molecules and is assumed to be
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constitutively open. While the closely related AQP1 molecule
has also been implicated in ion transport under certain condi-
tions, the same has not yet been investigated for AQP4
(Anthony et al. 2000; Boassa et al. 2006). It is strongly
expressed in astrocytic membranes at the blood–brain and
brain-liquor interfaces. In NMO, which is an inflammatory
demyelinating disorder of the CNS, serum autoantibodies
specifically target external epitopes of AQP4 (Papadopoulos
and Verkman 2012). These autoantibodies are considered to
be pathogenic as they cause astrocyte damage by complement
activation followed by an inflammatory cascade involving
granulocyte and macrophage infiltration resulting in oligoden-
drocyte and neuronal cell death. New emerging treatments for
NMO target specific components of disease pathogenesis; for
example aquaporumab is a non-pathogenic, high-affinity
monoclonal antibody preventing the binding of pathogenic
AQP4-antibodies (Tradtrantip et al. 2012). However, the small
number of patients and heterogenic disease courses will prob-
ably remain major challenges for future clinical trials.

Apart from that, a wide variety of ion channels has been
described on different endothelial cells in various target or-
gans (Nilius and Droogmans 2001). A functional role has
been described for cell growth, calcium signaling, secretion
of vasoactive molecules, regulation of vessel permeability and
cell migration. However, the ion channel repertoire of endo-
thelial cells shows huge differences depending on the target
organ. Although endothelial cell lines may serve as a valuable
tool for investigating various functional properties in vitro,
their differing ion channel expression pattern is also a critical
issue. When comparing different findings throughout the lit-
erature, the comparability is therefore often limited and data
on a functional role of ion channels on primary human and
mouse endothelial cells is limited.

Changes in intracellular calcium levels play a central role in
the regulation of endothelial cell functions (Tiruppathi et al.
2006). A rise in intracellular calcium can activate signaling
pathways resulting for example in the rearrangement of the
cytoskeleton or the regulation of tight junction molecules. An
expression of a diverse spectrum of non-selective cation chan-
nels of the transient receptor potential (TRP) family has been
frequently described (Brown et al. 2008; Yamazaki et al.
2006; Balbuena et al. 2012; Csanady and Adam-Vizi 2003).
Specific members have been associated with BBB changes
e.g. TRPV1 during focal ischemia (Hu et al. 2005), TRPP2
and TRPC1 upon mechanical stress (Berrout et al. 2012) or
TRPC during hypoxic stress (Hicks et al. 2010). Calcium
release-activated calcium (CRAC) channels consisting of Orai
and STIM molecules have been suggested as an alternative
calcium entry route in endothelial cells (Li et al. 2011;
Abdullaev et al. 2008) while it is currently unclear whether
this might also be true for endothelial cells of the BBB.

Potassium channels have also been described on brain
endothelial cells. It has been shown that the potassium

channels SK and Kir2.1 are expressed in the cell line t-
BBEC117 influencing cell proliferation. Moreover, cell stress
can upregulate Kir2.1 facilitating cell death (Kito et al. 2011;
Yamazaki et al. 2006). Another study has described various
voltage-gated and inward-rectifying potassium channels on rat
brain endothelial cells (Millar et al. 2008).

It can certainly be seen that ion channels are functionally
expressed on brain endothelial cells and are involved in the
regulation of BBB integrity. However, an overview about the
ion channel repertoire and its functional role on the BBB
under physiological conditions as well as its implications in
autoimmune inflammation and other pathological conditions
will be a task for future research efforts.

Regulation of Endothelial Cell Function by TREK1:
The Known and the Unknown

How do TREK1 channels exert their biological effects on a
molecular level? The regulation of signaling pathways by
TREK1 within endothelial cells is still largely unresolved
while a number of ideas may be derived from existing studies
(Nilius and Droogmans 2001). Most often, an increase in
endothelial calcium levels, e.g. by thrombin or by cytokines,
has been proposed to increase BBB permeability. Myosin
light-chain phosphorylation is thought to be a main target
mediating changes in the cytoskeleton and cellular contraction
(Dejana et al. 1995). A calcium/calmodulin-dependent activa-
tion of an endothelial cell-specific myosin light chain kinase
(MLCK) has been described to regulate vascular permeability
and neutrophil leukocyte migration (Garcia et al. 1988; Verin
et al. 1998). An inhibition of MLCK after traumatic brain
injury was shown to reduce brain edema formation in different
mouse models (Luh et al. 2010; Rossi et al. 2013). In another
study, treatment of MOG peptide-induced EAE with ML-7, a
specific inhibitor of MLCK, resulted in a reduction of CNS-
invading leukocytes ad clinical disease symptoms (Huppert
et al. 2010). This effect has been associated with a reduction of
IL17-mediated BBB disruption (Huppert et al. 2010; Kebir
et al. 2007), as Th17 cells have been associated with the
downregulation of tight junction molecules. However, a
calcium-independent pathway has been suggested in this con-
text as binding of IL17A to its receptor on endothelial cells is
followed by increased oxidative stress mediated by ROS
(reactive oxygen species) production by NADPH oxidases.
ROS production leads to MLCK inactivation independently
of calcium/calmodulin. Alternatively, TRPC channels might
also influence MLCK in hypoxic conditions (Hicks et al.
2010).

While these findings are of great interest as they describe a
novel cytokine-induced pathway at the BBB, an involvement
of TREK1 in these pathways seems unlikely. We were recent-
ly able to show that TREK1 modulation has no significant
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effect neither on expression levels of tight junction molecules
nor on TEER and permeability for tracer molecules in vitro
and in vivo nor on ROS production.

Interaction of leukocytes with endothelial cells induces the
formation of microvilli-like membrane protrusions that are
known as endothelial docking structures or transmigratory
cups (Barreiro et al. 2002; Carman et al. 2003). These struc-
tures contain accumulated ICAM1, VCAM1, as well as cyto-
skeletal and adaptor molecules. Moreover, these protein com-
plexes induce endothelial signaling important for leukocyte
migration (Kanters et al. 2008). The cytoplasmic domain of
ICAM1 itself participates actively in signaling pathways reg-
ulating transendothelial migration (Lyck et al. 2003) including
protein tyrosine phosphorylation, rho protein activation and
modulation of the cytoskeleton. It is commonly assumed, that
all these processes work bidirectional and also signal towards
ICAM1 clustering. The actin cross-linkingmolecule filamin B
(Kanters et al. 2008) as well as cortactin (Kelley et al. 2011)
are two exemplary proteins that regulate ICAM1 mobility and
clustering, while other known binding partners include
nonmuscular α-actinin, ezrin, radixin, moesin (ERM) pro-
teins, β-tubulin, GAPDH or PIP2 (Celli et al. 2006). Interest-
ingly, TREK1 has been shown to influence cytoskeleton re-
modeling independently of channel permeation (Lauritzen
et al. 2005), possibly via direct interaction with ERM proteins.

Furthermore, an elevation of intracellular calcium levels
associated with a calcium-dependent activation of protein
kinase C and Src tyrosine kinases/cortactin has also been
proposed as intracellular ICAM1-signaling pathway
(Etienne-Manneville et al. 2000; Fernandez-Borja et al.
2010; van Buul et al. 2007). Both potential pathways open
up a link between ICAM1-enriched docking structures and
TREK1 channels either by influencing calcium signals or by
direct protein interaction and await further experimental
clarification.

TREK1 Channels as a Potential Drug Target

Our study identified for the first time a distinct ion channel
that regulates the barrier function in the CNS. Furthermore, it
suggests modulation of TREK1 as a novel strategy to treat
diseases related to BBB dysfunction.

A major challenge for translational ion channel research is
the development of suitable, clinically applicable, highly spe-
cific drugs. A complex and species- or even cell-specific
physiology and a broad expression in different target organs
with a risk of off-target effects are just two major challenges in
the validation of new ion channel drug targets.

The modulation of ion channels is frequently poorly toler-
ated in cell lines, e.g. an over-expression can lead to increased
cytotoxicity by effects on calcium homeostasis or apoptosis
signaling pathways (Clare 2010). Recently, a human TREK-1/

HEK cell line with stable overexpression and preserved sen-
sitivity to known blockers and activators was developed
(Moha ou Maati et al. 2011). This cell line might represent a
valuable tool for large-scale screenings of novel compounds.

So far, the pharmacology of K2P channels has been largely
unexplored due to several reasons: Firstly, this channel group is
the youngest potassium channel family discovered nearly
20 years ago. The pharmacology of K2P channels differs from
other potassium channel families, as they are insensitive towards
“classical” potassium channel blocking substances such as TEA
(Tetraetyhlammonium; (Goldstein et al. 2001)). Furthermore,
the electrophysiological characteristics of K2P channels, which
display voltage-independent currents, are difficult to assess by
automated electrophysiological screening assays. Recently, an
elegant approach was chosen in order to overcome these prob-
lems (Bagriantsev et al. 2013) using a yeast-based screen in
combination with electrophysiological analysis. Therein, the
survival of a potassium-uptake-deficient yeast strain expressing
TREK1 was assessed by fluorescence signals of the vital dye
resazurin which only viable cells convert to a fluorescent form.
After screening a library of >100,000 substances, a novel selec-
tive activator (ML67-33) was identified while its biological
activity in vivo has not yet been investigated. These recent
developments might yield in further insights into regulation
and (patho)physiological roles of TREK1 possibly resulting in
novel therapeutic strategies for neurological diseases.
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