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Abstract Infection with HIV-1 frequently affects the brain
and causes NeuroAIDS prior to the development of overt
AIDS. The HIV-1 envelope protein gp120 interacts with
host CD4 and chemokine co-receptors to initiate infection
of macrophages and lymphocytes. In addition, the virus or
fragments of it, such as gp120, cause macrophages to
produce neurotoxins and trigger neuronal injury and
apoptosis. Moreover, the two major HIV co-receptors, the
chemokine receptors CCR5 and CXCR4, serve numerous
physiological functions and are widely expressed beyond
immune cells, including cells in the brain. Therefore, HIV
co-receptors are poised to play a direct and indirect part in
the development of NeuroAIDS. Although rodents are not
permissive to infection with wild type HIV-1, viral co-
receptors - more than CD4 - are highly conserved between

species, suggesting the animals can be suitable models for
mechanistic studies addressing effects of receptor-ligand
interaction other than infection. Of note, transgenic mice
expressing HIV gp120 in the brain share several patholog-
ical hallmarks with NeuroAIDS brains. Against this
background, we will discuss recently completed or initiated,
ongoing studies that utilize HIV co-receptor knockout and
viral gp120-transgenic mice as models for in vitro and in
vivo experimentation in order to address the potential roles
of HIV gp120 and its co-receptors in the development of
NeuroAIDS.

Keywords HIV-1 . Infection . AIDS . NeuroAIDS . HAND .

Chemokine receptor . Neurodegeneration . Transgenic .

Knockout . Animal model

Introduction

Infection with the human immunodeficiency virus-1 (HIV-
1) and acquired immunodeficiency syndrome (AIDS)
remain 30 years into the epidemic a persistent public health
problem worldwide. In addition to a progressive destruction
of the immune system, HIV-1 also initiates a spectrum of
neurological problems and neurocognitive impairments that
historically have been described as NeuroAIDS but are now
also comprehensively categorized under the term HIV-
associated neurocognitive disorders (HAND) (Antinori et
al. 2007). While much information has been gained over
the years regarding HIV-1 infection of the periphery and the
central nervous system (CNS) in general, the pathological,
cellular and molecular mechanisms leading to HAND,
NeuroAIDS and AIDS remain incompletely understood.

An important step in AIDS and NeuroAIDS research
occurred in the mid 1990s, when it was discovered by
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several groups that HIV-1 infection required, in addition to
CD4, one or two chemokine receptors as co-receptors. The
most prominent HIV co-receptors are CCR5 (CD195)
(Alkhatib et al. 1996; Dragic et al. 1996; Choe et al.
1996; Doranz et al. 1996) and CXCR4 (CD184) (Bleul et
al. 1996), and together with CD4 they provide the preferred
binding site for the HIV-1 envelope protein gp120 on the
virus’ target cells.

Furthermore, several lines of evidence based on work of
numerous investigators over many years strongly suggest
that NeuroAIDS, HIV-1 associated neurodegeneration and
consequent HAND may occur via at least two major
mechanisms (reviewed in (Kaul 2008)). The first is
neurotoxicity as a consequence of either direct exposure
to HIV-1 and its fragments or indirect injury through
neurotoxins released by infected or immune-stimulated,
inflammatory microglia and macrophages (MΦ) in the brain
(Giulian et al. 1990; Kaul et al. 2001; Gonzalez-Scarano
and Martin-Garcia 2005; Lindl et al. 2010). The second
assault of HIV on the brain comprises the impairment of
neurogenesis (Krathwohl and Kaiser 2004; Tran et al. 2005;
Poluektova et al. 2005; Okamoto et al. 2007).

Since HIV-1 was discovered and linked to the develop-
ment of AIDS (Barre-Sinoussi et al. 1983; Hahn et al.
1984), multiple approaches have been taken to generate
suitable animal models for studying HIV disease, including
NeuroAIDS (Gardner and Luciw 1989; Klotman and
Notkins 1996; Toggas and Mucke 1996; Ambrose et al.
2007; Nath et al. 2000; Van Duyne et al. 2009).

Animal models in AIDS and neuroAIDS research

The variety of model systems employed in AIDS research
includes chimpanzees and other non-human primates, cats
and rodents (rats and mice) (Nath et al. 2000; Ambrose et
al. 2007; Gardner and Luciw 1989; Reid et al. 2001;
Keppler et al. 2002; Klotman and Notkins 1996; Toggas
and Mucke 1996; Van Duyne et al. 2009). Chimpanzees
can be infected with some HIV-1 groups but rarely develop
AIDS and are primarily employed in vaccine research (Nath
et al. 2000). Other non-human primates, cats and rodents
are not permissive to wild type HIV-1. However, several
non-human primate species are susceptible to Simian
Immunodeficiency virus (SIV) and cats can be infected by
Feline Immunodeficiency virus (FIV) (Ambrose et al. 2007;
Clements et al. 1994; Olmsted et al. 1989). Both viruses
can cause in a species-specific fashion an AIDS-like disease
and neuropathological changes or even encephalitis, and
macaques and cats are therefore used for studies of the
pathogenesis of AIDS and NeuroAIDS (Ambrose et al.
2007; Clements et al. 1994; Olmsted et al. 1989; Meeker et
al. 1997; Jacobson et al. 1997; Clements et al. 2008). While

SIV is considered to be the animal virus most closely
related to HIV-1, significant differences exist between the
viruses. Therefore, several SIV-HIV hybrid viruses have
been generated in order to better adapt the SIV model for
HIV research (Ambrose et al. 2007).

Among the various model systems, rodents have turned
out to be useful in spite of the fact that they cannot be
productively infected with wild type HIV-1. Interestingly
however, two recently generated chimeric HIV mutants in
which the envelope protein gp120 was replaced by the
gp80 of ecotropic murine leukemia virus (EcoHIV) allowed
for the first time to establish in mice a lasting lentiviral
infection that also triggered an immune response (Potash et
al. 2005). Furthermore, one of the chimeric viruses was
shown to be neuroinvasive, suggesting its potential suit-
ability for NeuroAIDS research.

Other approaches to generate small animal models for
AIDS and NeuroAIDS research took advantage of the fact
that certain mouse strains can be reconstituted with a
human hematopoietic system which is permissive to HIV
infection (Van Duyne et al. 2009; Dash et al. 2011).
Numerous other studies have employed the intracranial
injection of HIV-infected human monocyte-derived macro-
phages into the brains of mice with severe combined
immunodeficiency (SCID). This model demonstrated that
HIV-infected macrophages can cause a neuropathology that
shares key features with post mortem brains from Neuro-
AIDS patients (Persidsky et al. 1996; Limoges et al. 2000;
Poluektova et al. 2002; Sas et al. 2007). Furthermore, these
studies indicated that HIV-infected cells in the brain can
trigger a peripheral immune response.

Another important advantage of rodents, both mice and
rats, is that they can be genetically modified (Klotman and
Notkins 1996; Toggas and Mucke 1996; Van Duyne et al.
2009; Reid et al. 2001). Several transgenic mice and a rat
have been generated that express an entire HIV genome and
develop AIDS-like diseases (Leonard et al. 1988; Iwakura
et al. 1992; Hanna et al. 1998a; Hanna et al. 1998b; Reid et
al. 2001). Furthermore, transgenic mouse microglia carry-
ing the provirus of a macrophage-tropic HIV-1 were shown
to release infectious virus (Wang et al. 2003). Transgenic
mice expressing the entire HIV genome or distinct
components of the virus, such as gp120, Tat or Vpr, in
the brain show various degrees of neuropathology, includ-
ing pruning of neuronal dendrites, loss of synapses and
neurons as well as glial activation, and also behavioral
alterations that recapitulate several features observed in
NeuroAIDS patients (Thomas et al. 1994; Toggas et al.
1994; Berrada et al. 1995; Toneatto et al. 1999; Kim et al.
2003; Bruce-Keller et al. 2008; Jones et al. 2007; D’hooge
et al. 1999). Overall, the exact spectrum of pathological
features with resemblance to AIDS and NeuroAIDS
depends on the specific animal model and ranges from
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depletion of CD4+ T-cells to immunodeficiency to wasting
disease to failure-to-thrive to neuronal injury and loss to
behavioral impairment to shortened life span. Of note,
studies employing injection of HIV-infected macrophages
in the brain or HIV-infected humanized mice or transgenic
expression of entire viral genomes are useful to investigate
the sum of the pathological effects of all viral components,
but do not allow to discern the potential contribution of a
single viral factor. Therefore, approaches that use injection
or transgenic expression of one viral component at a time
appear very useful as well. A number of such studies have
addressed the pathological potential of HIV-1 gp120, Tat
and Vpr, and indeed suggested that isolated viral factors can
produce some of the pathological characteristics of HIV
disease and NeuroAIDS (Toggas et al. 1994; Berrada et al.
1995; Toneatto et al. 1999; Kim et al. 2003; Bruce-Keller et
al. 2008; Jones et al. 2007; Bachis et al. 2006; Hauser et al.
2009). Mice have in comparison to all other animal models
one additional advantage, the availability of many specific
genetic knockout mutants. Thus, transgenic and genetic
knockout mice allow studying the effect of viral and host
factors in a way that is not possible in any other model.

The remainder of this article will discuss recent studies
in the field of NeuroAIDS research that employed trans-
genic mice expressing HIV-1 gp120 in the brain and mouse
strains deficient in the major HIV coreceptors CCR5 and
CXCR4. As such this review will primarily focus on a
selection from a variety of model systems that are available
to investigate aspects of NeuroAIDS and in particular the
potential role of viral gp120. Several other animal models
for NeuroAIDS research will be presented in more detail
elsewhere in this journal, and we encourage the reader to
consider the here discussed findings in the context of data
obtained in other models. Like all investigations using
animal models, our studies served at least one of two
purposes: either improving our understanding of the
neuropathological mechanism(s) of HIV infection, or
suggesting potential future therapies for NeuroAIDS.

Chemokine receptors, HIV-1 infection and neuroAIDS

Several excellent reviews extensively discuss the currently
recognized 20 chemokine receptors and over 50 chemo-
kines (Locati and Murphy 1999; Zlotnik and Yoshie 2000;
Rot and von Andrian 2004; Cartier et al. 2005; Biber et al.
2006; Domanska et al. 2011). Chemokines are mostly
small, ~7 to 14 kD, proteins that have been categorized into
four subfamilies based on different cysteine-containing
sequence motifs near their N-terminus, α or CXC, β or
CC, γ or XC and δ or CX3C ligands (L). Chemokine
receptors have been named in analogy, such as α or CXCR
and β or CCR, and belong to the large family of seven

transmembrane domain G protein-coupled receptors (Zlotnik
and Yoshie 2000). Interestingly, chemokine receptors and
their ligands are expressed in a wide variety of cell types in
both the periphery as well as the central nervous system
(CNS) (Locati and Murphy 1999; Rot and von Andrian
2004; Bajetto et al. 2001; Cartier et al. 2005; Biber et al.
2006; Miller et al. 2008; Domanska et al. 2011; Gorry and
Ancuta 2011). Chemokines and their receptors were histor-
ically described as a biological system that controls cell
migration, mostly as part of the immune defense system.
However, it has become clear over time that this complex
receptor-ligand network contributes to many more biological
processes, including organ development, vascularization, cell
proliferation and apoptosis, in both health and disease.
Chemokine receptors play well recognized pathological roles
in diseases such as asthma, cancer and, most prominently,
HIV infection (Locati and Murphy 1999; Bisset and Schmid-
Grendelmeier 2005; Durig et al. 2001; Domanska et al.
2011; Gorry and Ancuta 2011).

In HIV-1 infection, CD4 and the chemokine receptors
CCR5 (CD195) and CXCR4 (CD184) likely provide the
first sites of host-virus interaction. The virus binds via its
envelope protein gp120 first to CD4 receptors, which are
only located on cells of immune lineage, in order to then
efficiently engage chemokine co-receptors and eventually
infect its primary target cells, macrophages/microglia and
CD4+ T-lymphocytes (Bleul et al. 1996; Alkhatib et al.
1996; Dragic et al. 1996; Kaul et al. 2001; Gonzalez-
Scarano and Martin-Garcia 2005). Besides CCR5, CCR3
possibly also facilitates HIV infection of microglia in the
brain (He et al. 1997). While most macrophage/microglia-
tropic (M-tropic) HIV are CCR5-preferring (R5) and most
CD4+ T-lymphocyte-infecting HIV (T-tropic) are CXCR4-
preferring virus strains (X4), many R5 viruses can readily
infect CCR5-expressing T cell populations and several X4
viruses can spread among macrophages(Alkhatib et al.
1996; Dragic et al. 1996; Choe et al. 1996; Bleul et al.
1996). In addition, numerous HIV-1 strains exist that can
use both CCR5 and CXCR4 (R5X4) and can propagate in
macrophages and T cells (dual tropic) (Doranz et al. 1996).
Therefore HIV tropism seems to be determined by more
factors than co-receptor usage (Gorry and Ancuta 2011).
CCR5, however, plays a crucial role in HIV-1 infection and
disease. In fact, most sexually transmitted viral strains
prefer CCR5, and a congenital deletion mutation, named
CCR5Δ32, causes the absence of this chemokine receptor
from the cell surface and offers significant protection from
infection (Dean et al. 1996). Most interestingly, a recent
transplantation of CCR5Δ32 hematopoietic stem cells into
a HIV patient with acute myeloid leukemia allowed
survival for already more than 20 month without detectable
viral titer in the absence of anti-retroviral therapy (Hutter et
al. 2009). In the presence of CCR5, its endogenous ligands,
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namely ‘macrophage inflammatory protein’ (MIP)-1α
(CCL3), MIP-1β (CCL4) and ‘regulated-and-normal-T
cell-expressed-and-secreted’ (RANTES, CCL5), can slow
progression to AIDS (Cocchi et al. 1995). However, once
HIV infection is established, dual tropic and X4-preferring
viruses can evolve, and these viruses usually herald
progression to AIDS (Michael and Moore 1999). Interest-
ingly, CD4+ T-lymphocytes seem to be more efficient
propagators of HIV-1 than macrophages, but also rapidly
die from apoptosis, except for a certain number of memory
cells that constitute a quiescent, latent reservoir (Pantaleo
and Fauci 1995; Chun and Fauci 1999; Alexaki et al. 2008).
Macrophages infected with HIV-1, on the other hand,
appear to produce less virus but constitute a long-lived
reservoir and are the primary suspects for trafficking HIV
into the brain where the virus may then spread to local
macrophages and microglia (Koenig et al. 1986; Kaul et al.
2001; Gonzalez-Scarano and Martin-Garcia 2005; Kraft-
Terry et al. 2009).

Interestingly, expression of CCR5 and CXCR4 is not
restricted to cells of immune lineages, such as macrophages
and microglia. Neurons and astrocytes, which lack CD4,
readily express the two major HIV co-receptors (Lavi et al.
1997; Halks-Miller et al. 1997; Rottman et al. 1997; Kaul et
al. 2007). Of note, interaction between HIV-1 gp120 and
CXCR4, independent of CD4, has been reported to trigger
intracellular Ca2+ accumulation and signaling (Hesselgesser
et al. 1997). Furthermore, the virus seems to be able to enter
astrocytes via a process that requires a mannose receptor and
leads to a non-productive infection (Liu et al. 2004). While
neurons appear to resist HIV infection, direct interaction of
gp120 with neuronal chemokine receptors may nevertheless
contribute to neuronal injury (Hesselgesser et al. 1997;
Hesselgesser et al. 1998; Wang et al. 2009). In any case,
several lines of evidence suggest that activation of HIV co-
receptors on CD4+ macrophages, with or without resultant
HIV infection, and subsequent release of neurotoxins,
including excitotoxins, chemokines and pro-inflammatory
cytokines, provide the predominant trigger for neuronal
injury and death (Giulian et al. 1990; Giulian et al. 1993;
Kaul and Lipton 1999; Porcheray et al. 2006; O’Donnell et
al. 2006; Cheung et al. 2008; Eggert et al. 2010; Medders et
al. 2010; Kaul et al. 2001; Gonzalez-Scarano and Martin-
Garcia 2005; Kraft-Terry et al. 2009). In line with this
hypothesis two recent studies observed that the amount of
pro-viral HIV DNA in peripherally circulating monocytes
and macrophages correlates well with HAND (Shiramizu et
al. 2005; Shiramizu et al. 2006).

Development of NeuroAIDS in patients during life time
is believed to underlie the neurological and neurocognitive
complications subsumed under the term HAND. HIV-
associated dementia (HAD) represents the most severe
manifestation of HAND (Antinori et al. 2007) and has been

correlated to a range of post mortem diagnosed neuropatho-
logical features that are often referred to as HIV encephalitis
(HIVE). The neuropathological hallmarks include infiltration
predominantly by monocytes and macrophages entering
from the blood stream, activated resident microglia, micro-
glial nodules, multinucleated giant cells, widespread reactive
astrocytosis, myelin pallor, and decreased synaptic and
dendritic density, combined with selective neuronal loss
(Petito et al. 1986; Masliah et al. 1997a). Interestingly,
cognitive dysfunction and HAND during life seem to
correlate with evidence of excitatory neurotoxins in cerebro-
spinal fluid (CSF) and serum (Heyes et al. 1991) and the
amount of pro-viral HIV DNA in peripherally circulating
monocytes and macrophages (Shiramizu et al. 2005;
Shiramizu et al. 2006). In contrast, HAND is not necessarily
reflected by the numbers of HIV-positive cells, multinucle-
ated giant cells or the abundance of viral antigens in brain
tissue found at autopsy (Glass et al. 1995; Achim et al. 1994;
Wiley et al. 1994; Masliah et al. 1997a). Instead, clinical
signs of HAND coincide best with post mortem findings of
decreased synaptic and dendritic density, selective neuronal
loss (Masliah et al. 1997a; Achim et al. 1994; Wiley et al.
1994), increased counts of microglia (Glass et al. 1995), and
elevated tumor necrosis factor (TNF)-α mRNA in microglia
and astrocytes (Wesselingh et al. 1997).

The genome of HIV-1 encodes nine proteins with
structural, regulatory or accessory functions (reviewed in
(Ellis et al. 2007)). Most of these viral factors have been
implicated in the process of infection and in the HIV life
cycle; six of the proteins have been reported to directly or
indirectly affect neurons and glia (Ellis et al. 2007). Beyond
establishing the first virus-host interaction and initiating
infection, the envelope protein gp120 seems to be a major
inducer of apoptosis in infected and uninfected bystander
lymphocytes (Perfettini et al. 2005a; Perfettini et al. 2005b)
and has been implicated in brain injury underlying HAND
(Brenneman et al. 1988; Giulian et al. 1993; Meucci and
Miller 1996; Kaul and Lipton 1999; Liu et al. 2000; Kaul et
al. 2001; Mattson et al. 2005). In fact, the envelope
glycoprotein gp120s of various HIV-1 strains produce in
vitro and in vivo injury and apoptosis in both primary human
and rodent neurons (Brenneman et al. 1988; Lannuzel et al.
1995; Meucci and Miller 1996; Singh et al. 2005; Giulian et
al. 1993; Toggas et al. 1994; Meucci et al. 1998; Kaul and
Lipton 1999; Kaul et al. 2007; Hesselgesser et al. 1998).
These observations may not be completely surprising
considering the high degree of conservation between human,
mouse and rat for the two major HIV-co-receptors and CD4.
Homology in percent at the level of protein sequence
between the various species is: hu CXCR4: 91% with rat
CXCR4, 89% with mouse; 96% between mouse and rat; hu
CCR5: 82% each with rat and mouse CCR5; 92% between
mouse and rat CCR5; hu CD4: 56% with mouse CD4
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(L3T4), 53% with rat CD4; 74% between mouse and rat
(Maung et al. 2011).

Chemokine receptor knockout-mice in neuroAIDS
research

In order to investigate the role of CCR5 and CXCR4 in
neuronal injury and death as it can be induced by HIV-1
gp120, we employed mice deficient in either one or both of
the viral co-receptors (Kaul et al. 2007). Mice expressing
both alleles of both chemokine receptors served as wild
type controls. Of note, embryos derived from murine
chemokine receptor wild type between days E14.5 and
E16 and rat embryos at days E16 to E17 give rise to
cerebrocortical cell cultures that respond in an almost
identical fashion to recombinant HIV gp120s from R5-,
X4- and R5X4 viral strains in neurotoxicity experiments
(Kaul et al. 2007). Mixed cerebrocortical cell cultures,
containing neurons, astrocytes and microglia were prepared
from mouse embryos of all four genotypes between days
E14.5 and E16 and allowed to differentiate in vitro for
17 days before neurotoxicity studies. Interestingly, based on
immunostaining with cell type-specific markers for neu-
rons, astrocytes and microglia and with regard to the
percentage of the different cell types, wild type and
chemokine receptor-deficient cerebrocortical cell cultures
appeared indistinguishable (Kaul et al. 2007). However,
while the in vitro approach appears helpful by leveling the
field for survival, growth and development of cerebrocort-
ical cells with and without HIV co-receptors, a look at the
in vivo situation reveals important peripheral and central
differences between the genotypes.

CXCR4 knockout (KO) mice have been generated by
three different groups (Ma et al. 1998; Zou et al. 1998;
Tachibana et al. 1998). Mice heterozygous for CXCR4
gene deficiency are viable, fertile and appear indistinguish-
able from wild type littermates. In contrast, homozygous
CXCR4-deficient animals die in utero or at the first day
after birth (Ma et al. 1998). Although it has been estimated
that about one third of CXCR4 KO embryos are dead at day
E18.5, we found that they seem to stay alive throughout
E14.5 to E16 (Kaul et al. 2007). The most prominent
pathology of CXCR4-deficient mice revealed by histolog-
ical analysis presented itself as severe alterations in bone
marrow and cerebellum (Ma et al. 1998; Zou et al. 1998;
Tachibana et al. 1998). All other organs appeared grossly
and microscopically normal, although the lungs were
collapsed, the kidneys showed vascular congestion and
pronounced interstitial hemorrhage, and intestinal vascular-
ization seemed to be abnormal (Tachibana et al. 1998).
Interestingly, contrary to other CXCR4 mutant mouse
strains generated in two different laboratories (Zou et al.

1998; Tachibana et al. 1998), no septal defects were
observed in the CXCR4 mutant strains described by a third
group (Ma et al. 1998).

Hematopoiesis in CXCR4-deficient mice is also affected.
At E15.5, the bone marrow is hypocellular with remarkably
reduced hematopoiesis compared to wild type littermates, and
comprises primarily stromal cells and osteoclasts with severe
reduction in all hematopoietic lineages. While surviving
E18.5 KO embryos show cellularity comparable with wild
type and normal numbers of maturing erythrocytes and
megakaryocytes, hematopoiesis remains underdeveloped
(Ma et al. 1998; Zou et al. 1998; Tachibana et al. 1998).

While B-lymphopoiesis in CXCR4-KO liver at E18.5 is
strongly reduced compared to wild type and heterozygotes,
T-lymphopoiesis appears undisturbed in CXCR4-deficient
thymus. Myelopoiesis, however, is also defect in CXCR4
deficiency, with virtual absence of myeloid forms at day
E18.5 (Ma et al. 1998; Zou et al. 1998; Tachibana et al.
1998).

Regarding the central nervous system, the cerebellum of
CXCR4-deficient (and SDF-1 KO) mice displays a highly
abnormal structure while cerebrum, basal ganglia, mid-
brain, and spinal cord appear normal. In the cerebellum, the
external granular layer (EGL) seems diminished and
chromophilic cell clumps are visible after H&E staining.
Furthermore, the EGL is irregular, the overall shape of
cerebellum is altered, and foliation is absent. Purkinje cells
which are normally located immediately underneath the
EGL, are located ectopically in the absence of CXCR4 (Ma
et al. 1998; Zou et al. 1998). In addition, CXCR4 KO mice
display significant defects in the formation of the hippo-
campus, in particular the dentate gyrus (Lu et al. 2002). A
reduction in the number of neural precursors and cells in
the rostral migratory stream indicate a severe disturbance of
hippocampal neurogenesis. CXCR4 also plays a crucial role
in the correct placement of interneurons in the neocortex
during brain development (Stumm et al. 2003).

CCR5 KO mice have been generated independently by
two groups (Zhou et al. 1998; Huffnagle et al. 1999).
CCR5-deficient mice are viable, fertile and at birth
indistinguishable from wild type or heterozygous litter-
mates. Histopathological analysis of major organs does not
indicate any abnormalities in gross morphology. No differ-
ences between CCR5 KO and wild type mice were found in
cells from thymus, spleen, lymph nodes, and bone marrow
using markers for T-, B-, granulocyte, and monocyte/
macrophage type cell populations. Also, there was no
significant change observed in macrophage recruitment in a
disease model of glucan-induced granuloma. However,
CCR5-deficient macrophages display reduced cytokine
production compared to their wild type counterparts (GM-
CSF, IL-1ß, IL-6=50%), although production of TNF-α
and IL-10 appear to be normal. In the T cell compartment,
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the lack of CCR5 goes along with enhanced cytokine
production (IFNy: 5-fold, GM-CSF: 2.5-fold, IL-4: 2-fold).
Interestingly, peripheral production of chemokines, namely
CCR5 ligands CCL5/RANTES, CCL3/MIP-1α, or CCL4/
MIP-1ß, seems to be not different between CCR5-expressing
and deficient mice. On the other hand, depending on the
antigen trigger CCR5 KO show enhanced cell-mediated or
humoral immune responses compared to wild type controls
(Zhou et al. 1998).

Over time, several studies have revealed that with regard
to infections and inflammation, CCR5 plays important roles
in the resolution of some diseases but exerts an aggravating
effect in other pathological circumstances. As such, CCR5
KO mice present with more severe disease outcome in the
case of infection with L. monocytogenes (Zhou et al. 1998),
Cryptococcus neoformans (Huffnagle et al. 1999), Toxo-
plasma gondii (Luangsay et al. 2003; Khan et al. 2006),
Trypanosoma cruzi (Machado et al. 2005), Influenza A
virus (Dawson et al. 2000), Herpes Simplex Virus (HSV)-2
(Thapa et al. 2007), HSV-1 (Teixeira et al. 2010), and
lethality in West Nile virus (WNV) infection (Glass et al.
2005).

In contrast, CCR5 KO mice show less severe disease or
protection during Lipopolysaccharide (LPS)-induced endo-
toxemia (Zhou et al. 1998), IFNγ-induced pulmonary
emphysema (Ma et al. 2005; Bracke et al. 2007),
atherosclerosis due to high fat diet (Potteaux et al. 2006;
Zernecke et al. 2006; Braunersreuther et al. 2007),
inflammation-associated hepatic fibrosis (Seki et al. 2009)
and in a model of cerebral malaria triggered by infection
with Plasmodium berghei (Belnoue et al. 2003; Nitcheu et
al. 2003)

Overall, the above reports suggest that differences due to
the absence of the β-chemokine receptor emerge primarily
with a challenge of the immune response. Still, a recent
study of 12 to 18 month old CCR5 KO mice found in
comparison to age-matched controls memory impairment,
astrocytosis and increased β-amyloid deposition in the
brain (Lee et al. 2009). As a note of caution, the controls in
this study did not completely match the genetic background
of the CCR5 KO animals. In contrast, our group has been
studying the consequences of CCR5-deficiency for the
CNS in a different mixed genetic background using a
breeding strategy that allows for production of CCR5-
expressing and –lacking animals as littermates. Thus, the
animals in our investigations share a common genetic
background. Interestingly, we found in a genome-wide gene
expression analysis using RNA from whole brain tissue
significant differential regulation between CCR5 KO and
wild type mice for more than 250 genes (Maung et al.
2011).

CCR5-CXCR4 Double KO (DKO) mice were generated
by our group through cross-breeding of animals first

described by Ma and colleagues (CXCR4KO) and Huffnagle
and collaborators (CCR5KO) (Ma et al. 1998; Huffnagle et al.
1999; Kaul et al. 2007). The new mouse line is maintained
using viable CXCR4+/−CCR5+/− and CXCR4+/−CCR5−/−

animals which allow for production of homozygous, single
and double chemokine receptor KO embryos as well as wild
type controls.

Cerebrocortical cultures with the various chemokine
receptor deficiencies (CCR5 KO, CXCR4 KO, CCR5-
CXCR4 double KO and wild type as control) enabled us to
show that both CCR5 and CXCR4 can separately mediate
the neurotoxic effect of gp120 depending on the co-receptor
usage of the virus strain from which the envelope protein
was originally isolated (Kaul et al. 2007). The fact that the
absence of CCR5 or CXCR4 in mixed neuronal-glial
cerebrocortical cells from mouse abrogates or significantly
decreases neurotoxicity by CCR5- or CXCR4-preferring
gp120s, respectively, resembles the specificity of HIV co-
receptor usage in human cells. Thus, the murine system
provides a suitable model for these functional studies of the
two major HIV co-receptors. Moreover, only cerebrocort-
ical cells of CCR5-CXCR4 DKOs were resistant to the
neurotoxicity of any tested viral gp120. Interestingly,
however, when we replaced microglia in CCR5-CXCR4
DKO cerebrocortical cell cultures with human monocytic
THP-1 cells, which express both HIV co-receptors, neuro-
toxicity of gp120 was restored (Medders et al. 2010). This
finding indicates that activation by HIV gp120 of viral co-
receptors in macrophages and microglia may suffice to
indirectly produce neuronal injury and death, and that
CXCR4−/−CCR5−/− neurons are still susceptible to macro-
phage toxins induced by HIV-1 envelope protein.

HIV-1 gp120-transgenic mice as animal model
in neuroAIDS research

Three different genetically engineered mouse lines have
been reported so far that express either HIV-1 gp120 or its
precursor gp160 as transgene in the absence of other viral
proteins. Of note, two of these transgenic mice have been
specifically generated for NeuroAIDS research (Toggas et
al. 1994; Berrada et al. 1995) while a third line was
designed to study the effect of the viral envelope on CD4+

T lymphocytes (Finco et al. 1997).
The HIV gp120-transgenic mouse aimed at investigating

the demise of T-cells in AIDS is a viral gp120-human CD4-
doubly transgenic animal expressing both proteins in
lymphocytes (Finco et al. 1997). The viral gp120 is derived
from HIV-1 SF2 and is expressed under the control of a
modified Thy1.2 promotor containing an immunoglobulin
heavy chain enhancer (Thy-1Eμ) which leads to transgene
expression in most peripheral T-cells and thymocytes, but

J Neuroimmune Pharmacol (2012) 7:306–318 311



also the central nervous system. Therefore, it may not seem
surprising that these animals develop besides antibody-
dependent T-cell depletion also pathological changes in the
blood–brain-barrier (BBB) (Toneatto et al. 1999). However,
it remains unknown whether or not these animals display
any additional neuropathological changes.

A transgenic mouse that expresses viral gp160 of the
HIV-1 strain IIIB under the control of the human neuro-
filament light chain promotor in neurons shows expression
of viral envelope in brain stem and anterior horns of the
spinal cord and dendritic swellings in motor neurons and
other fibers of the spinal cord (Berrada et al. 1995).
Surprisingly, however, no expression is detected in cerebral
cortex.

The first HIV gp120-transgenic mouse reported is
apparently so far also the most studied model and expresses
a soluble viral envelope gp120 of HIV-1 LAV in the brain
in astrocytes under the control of the promoter of glial
fibrillary acidic protein (GFAP-gp120-transgenic mouse)
(Toggas et al. 1994). The expression of transgene is the
highest in neocortex, olfactory bulb, hippocampus, tectum,
selected white matter tracts, and along the glia limitans.
Although this transgenic mouse only expresses viral gp120,
it develops a neuropathology that is strikingly similar to
human AIDS brains, including decreased synaptic and
dendritic density, frank neuronal loss, increased numbers
of activated microglia and pronounced astrocytosis (Toggas
et al. 1994). The potential relevance of this model is
supported by a comparable neuropathology that results
when HIV-infected human macrophages are intracerebrally
administered into SCID mice, an experimental approach
that also closely recapitulates the above mentioned features
of the neuropathology in human AIDS brains (Persidsky et
al. 1996). The founder lines described in the first study of
GFAP-gp120-transgenic mice also suggested that neuropa-
thology required a sufficiently high expression of gp120
RNA while unfortunately at the time, due to a lack of
suitable antibodies, the protein itself was not detected.
However, a peripheral immune challenge with recombinant
gp160 triggered a strong lymphocyte-mediated immune
response and infiltration of the brain only in gp120-
transgenic animals, but not non-transgenic littermate con-
trols or in GFAP-LacZ transgenic mice, thus providing
indirect evidence for the presence of envelope protein in the
CNS of gp120-transgenic mice (Toggas and Mucke 1998).
Several subsequent studies included an additional GFAP-
gp120-transgenic founder line that expresses more easily
detectable envelope protein levels and therefore is called
gp120-transgenic High Protein Expressor, (HPX) line
(Toggas and Mucke 1996; Garden et al. 2002; Lee et al.
2011; Maung et al. 2011).

The neuropathological features that have so far been
described for the GFAP-gp120-transgenic mouse com-

prise: 1) Loss of neuronal dendrites at 3, 6, 10 and
12 months of age (Toggas et al. 1994), (Garden et al.
2002; Kang et al. 2010; Maung et al. 2011), (see Fig. 1 for
immunofluorescence staining of neocortex of 6 months-old
mice); 2) loss of synapses at 3 and 6 months (Toggas et al.
1994; Maung et al. 2011); 3) activated microglia at 3, 6,
10 months (Toggas et al. 1994; Kang et al. 2010; Maung et
al. 2011); 4) astrocytosis at 3 and 6 months (Toggas et al.
1994; Maung et al. 2011), and 5) compromised neuro-
genesis at 2 and 4 to 5 months (Okamoto et al. 2007; Lee et
al. 2011).

In addition, GFAP-gp120-transgenic mice display in
comparison to non-transgenic littermate controls behavioral
changes or impairment at 12 months, such as reduced escape
latency, swimming velocity, and spatial retention (D’hooge et
al. 1999) as well as reduced contextual but not cued fear
conditioning at 9 to 13 months (Maung et al. 2011). In line
with these findings, electrophysiological studies detect
abnormalities in short- and long-term potentiation in the
CA1 region of the hippocampus in gp120-transgenic mice
(~53 day and 10.5 month-old mice) (Krucker et al. 1998),
(Piña-Crespo et al, unpublished observations). Moreover,
gp120-transgenic mice present with an altered acute response
to Methamphetamine that manifests as changes in stereotypic
behavior (Roberts et al. 2009).

Several studies have aimed at unraveling the potential
pathological mechanisms underlying the neuropathological
and behavioral features of GFAP-gp120-transgenic mice.
Compared to non-transgenic controls, only young but not
6 months-old gp120-transgenic animals were found to have
increased plasma corticosterone, and plasma and pituitary
adreno-corticotropic hormone (ACTH) levels, indicating
activation of the hypothalamic-pituitary axis (HPA) (Raber
et al. 1996). This endocrine activation depended on
activation of N-methyl-D-asparate-type glutamate receptors
(NMDAR), neuronal nitric oxide synthase (nNOS) and
reactive oxygen species (ROS) as it was inhibited by the
non-competitive NMDAR inhibitor memantine, the nNOS
blocker NG-methyl-L-arginine (LNMA) and a superoxide
dismutase (SOD)-transgene (Raber et al. 1996). Hence,
excitotoxic and oxidative stress are suspected as major
contributors to the development of gp120-induced brain
injury and possibly NeuroAIDS.

On the other hand, activation of protein kinase C (PKC)
may contribute to astrocytosis and potentially HIV gp120-
associated neuronal injury (Wyss-Coray et al. 1996). Also,
compared to non-transgenic littermate controls, gp120-
transgenic animals show increased expression of matrix
metalloproteinase (MMP)-2 (Marshall et al. 1998) and
accumulation of phosphorylated protein Tau (pTau) (Kang
et al. 2010), but it remains to be elucidated if these factors
are contributing causes or mere consequences of gp120-
initiated CNS insult. However, increased immunostaining
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for pTau was also found in brain specimen of NeuroAIDS
patients in comparison to age-matched healthy controls,
thus revealing another pathological feature of HIV-infected
brains that is present in the transgenic mouse model (Kang
et al. 2010).

Besides the investigation of putative mechanisms con-
tributing to the development of NeuroAIDS, GFAP-gp120-
transgenic mice have been used to explore potential
strategies for protection of the CNS against damage
associated with the expression of gp120 or HIV infection.
Memantine, which acts as a non-competitive inhibitor of
NMDARs and thus ameliorates excitotoxicity protected 1
to 6 weeks-old gp120-transgenic mice from loss of
neuronal dendrites and pre-synaptic terminals (Toggas et
al. 1996). Interestingly, human amyloid precursor protein
expressed as transgene also protected neurons of gp120-
transgenic and control mice at ~5 months of age against
acute or chronic excitotoxic injury (Mucke et al. 1995;
Masliah et al. 1997b). Another recent study found that
voluntary exercise or a selective serotonin re-uptake
inhibitor (Paroxetine) rescued hippocampal neurogenesis

in gp120-transgenic mice (Lee et al. 2011), but it remained
unclear if the protective effects extended into the cerebral
cortex. On the other hand, we found in a collaborative
study that erythropoietin (EPO) in combination with
insulin-like growth factor-1 (IGF-1) abrogated neuronal
injury and pTau accumulation, but not astrocytosis, in both
cerebral cortex and hippocampus of gp120-transgenic mice
(Kang et al. 2010).

Ongoing and future neuroAIDS-related studies utilizing
chemokine receptor deficient and HIV gp120-transgenic
mouse models

In order to extent our above mentioned in vitro studies on
the potential role of HIV envelope gp120 and chemokine
receptors in the development of NeuroAIDS into an in vivo
model, we have crossed HIV gp120-transgenic with CCR5
KO mice (Maung et al. 2011). Investigating the role of
CCR5 in gp120-transgenic mice seems most interesting
because this chemokine receptor and its physiological

Fig. 1 Immunofluorescence
staining of MAP-2-positive
neuronal dendrites in cerebral
cortex of HIV gp120-transgenic
and non-transgenic, wild type
control mice. Sagittal brain sec-
tions of 6 months-old gp120-
transgenic and WT littermate
controls were immunostained
for neuronal MAP-2 (red). In
the upper panel Synaptophysin
(green) and DNA (blue) is
shown in addition to indicate
pre-synaptic terminals and nu-
clei, respectively. Fluorescence-
labeled sections were analyzed
using a Zeiss Axiovert 100 M
inverted microscope and Slide-
book software (Intelligent Im-
aging Innovations, Denver, CO)
to record Z-stacks for 3D re-
construction (upper panel, 3
color fluorescence of WT brain)
and deconvolution (lower pan-
els, MAP-2 only). Representa-
tive images of mid-frontal
cortex, layer 3, are shown. Note
the blood vessel on the left side
of the upper panel and the
diminished MAP-2-positive
structural features of gp120-
transgenic in comparison to WT
brain in the lower panel
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ligands influence HIV disease beyond a role in the initial
HIV-target interaction leading to viral entry (Dolan et al.
2007; Ahuja et al. 2008). In fact, we previously found that
CCR5-ligands, such as CCL4/MIP-1β and CCL5/RANTES
prevent neurotoxicity of gp120 from R5-, X4-, and R5X4-
viruses (Kaul et al. 2007). Thus, a clear rationale exists to
hypothesize that CCR5 can affect the neuropathology of
gp120-transgenic mice, even though the viral envelope in
this model is derived from HIV-1 LAV (Toggas et al. 1994),
a virus generally considered to be of the less frequent
CXCR4-preferring variety that can infect macrophages
(Valentin et al. 2000).

Cross-breeding of HIV gp120-transgenic with CCR5 KO
mice produces viable and fertile offspring with all expected
genotypes. Following an established approach, we first
estimated the percentage of MAP-2 or Synaptophysin-
positive neuropil by quantitative fluorescence and deconvo-
lution microscopy in sagittal brain sections of 6 months-old
gp120transgenic mice both expressing and lacking CCR5,
using CCR5KO and wild type (wt)/non-transgenic animals as
control. Interestingly, only CCR5wt/gp120-transgenic mice
displayed a significant reduction in the percentage of MAP-2
positive neuropil and Synaptophysin immunoreactivity in
comparison to all of the other three genotypes. Surprisingly,
quantification of GFAP immunofluorescence revealed that
astrocytosis occurred in brains of gp120-transgenic animals
regardless of CCR5-deficiency. Thus, CCR5 is necessary to
produce neuronal injury but not astrocytosis (Maung et al.
2011).

Microarray analysis of brain tissue from 6 months-old
mice revealed that HIV-1 gp120 caused differential expres-
sion of about 800 genes in the presence of CCR5 but of
only about 50 genes in the absence of the HIV co-receptor.
Differentially expressed genes in CCR5wt/gp120tg mice
suggested alterations in the function of the nervous system,
immune response, cell trafficking, endocrine system,
metabolism and cell death pathways compared to non-
transgenic controls. Gene expression between CCR5KO/
gp120tg and non-transgenic CCR5KO control mice differed
mostly for GFAP and factors of the innate immune system.
Interestingly, a database analysis showed that numerous
genes differentially expressed in CCR5wt/gp120tg mice
have also been reported for the brains of neurocognitively
impaired AIDS patients and SIV-infected non-human
primates, including the chemokines CCL2/MCP-1 and
CXCL10/IP-10 (Maung et al. manuscript in preparation).

Ongoing and future studies will expand the character-
ization of the combined chemokine receptor knockout and
transgenic mouse model and address questions regarding
the mechanism of CCR5 function under in vivo conditions.
Altogether, we propose that an in depth analysis of existing
models for HIV disease of the CNS, including the one
described here, will generate invaluable information.

Because only if we learn what the currently existing models
do or do not provide can we design the next generation of
new and better animal models. Given the apparent
limitations of all current animal models, new and improved
in vivo models will be necessary for a better understanding
and future treatment of NeuroAIDS.
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