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Abstract Chronic HIV-1 infection commonly affects be-
havioral, cognitive, and motor functions in the infected
human host and is commonly referred to as HIV-1-
associated neurocognitive disorders (HAND). This occurs,
in measure, as a consequence of ingress of leukocytes into
brain perivascular regions. Such cells facilitate viral
infection and disease by eliciting blood–brain barrier and
neuronal network dysfunctions. Previous works demon-
strated that the endocannabinoid system modulates neuro-
immunity and as such neuronal and glial functions. Herein,
we investigated CB2R receptor expression in murine HIV-1
encephalitis (HIVE) and the abilities of a highly selective
CB2R agonist, Gp1a, to modulate disease. HIV-1-infected
human monocyte-derived macrophages were injected into
the caudate and putamen of immunodeficient mice
reconstituted with human peripheral blood lymphocytes
(hu-PBL/HIVE). Brains of hu-PBL/HIVE mice showed
microglial activation and increased expression of CB2R,
but not CB1R or GPR55. Gp1a substantively reduced
infiltration of human cells into the mouse brain and reduced
HLA DQ activation. Gp1a down modulated CCR5 expres-
sion on human cells in the spleen with an increase in Fas
ligand expression. Our results support the notion that CB2
receptor agonists may be a viable therapeutic candidate for
HAND.
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Introduction

Endocannabinoids are linked to a broad range of neurolog-
ic, infectious, and inflammatory diseases (Ashton and Glass
2007; Basavarajappa et al. 2009; Leonelli et al. 2009; Patel
et al. 2010). As a consequence, the G-protein coupled
cannabinoid (CB) receptors, endocannabinoid (eCB) trans-
port, as well as its metabolizing enzymes can modulate
receptor-mediated signaling and may be useful in therapeu-
tic interventions (Cabral and Griffin-Thomas 2008; Klein
and Newton 2007; Pacher et al. 2006). Recent studies have
implicated dysregulation of the eCB in nervous system
inflammatory neurodegeneration (Benito et al. 2007a;
Centonze et al. 2007; Correa et al. 2007). The eCBs,
principally anandamide and 2-arachidonoylglycerol, are a
class of lipid messengers that modulate a range of
physiological processes in and outside the nervous system
through CB1R, CB2R, and the GPR55 orphan receptor
(Mackie and Stella 2006). Plant-derived cannabinoids or
synthetic cannabinoids are immunomodulatory molecules
that act through CB1R and CB2R. Activation of CB1
receptors has a psychotropic effect, but activation of CB2
receptors alone does not (Piomelli 2005). The distribution
pattern of levels of CB2R messenger RNA displays major
variation in blood cell populations with a rank order of B
lymphocytes > natural killer cells > monocytes > polymor-
phonuclear neutrophils > CD8+ and CD4+ T lymphocytes
(Galiegue et al. 1995). Studies on CB2 receptor knockout
mice show clear linkages between CB2R immune cell
functions for microbial infection, cell chemotaxis, and
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apoptosis (Buckley 2008). Modulation by either CB2
receptor agonists or antagonists/inverse agonists might be
of therapeutic benefit (Arevalo-Martin et al. 2008; Gonsiorek
et al. 2006; Lombard et al. 2007; Onaivi 2009).

In neuroinflammatory and neurodegenerative diseases
such as multiple sclerosis, Alzheimer’s (AD) and Parkin-
son’s diseases, and HIV-1-associated neurocognitive disor-
ders (HAND), neuroimmune regulation has gained recent
acclaim as a viable therapeutic approach (Benito et al.
2007b; Kreitzer and Stella 2009; Lastres-Becker et al. 2005;
Price et al. 2009; Shoemaker et al. 2007; Steffens et al.
2005; Thakur et al. 2009). Indeed, synthetic cannabinoids,
through activation of CB2R, suppress immunity in various
animal models including experimental autoimmune enceph-
alomyelitis (Berrendero et al. 2001; Mestre et al. 2009).
There is increasing evidence that the CB2R, in addition to
its linkage to immune cell activities at peripheral sites,
plays a functionally relevant role in the immune cells of
central nervous system (CNS) including primarily microglia
(Ashton and Glass 2007; Cabral et al. 2008; Stella 2009).
Alterations in the components of the eCB system occur in
brains of simian immunodeficiency virus (SIV)-infected
macaques (Benito et al. 2005). In addition, CB2 receptor
expression in activated microglial cells is associated with
deposits of beta amyloid peptide in AD (Benito et al. 2003).
The inducible nature of CB2 receptors under neuroinflam-
matory conditions makes them attractive targets for novel
therapeutic approaches.

The present study was conducted to ascertain the
mechanisms and benefits of targeting CB2R-mediated
signaling for HAND using a murine model of human
disease. Immunodeficient mice reconstituted with human
peripheral blood lymphocytes (hu-PBL) are valuable tools
to study HIV-1 disease [reviewed in (Pearson et al. 2008;
Van Duyne et al. 2009)]. In this regard, changes in CB
receptor expression were studied in murine HIV-1 enceph-
alitis (HIVE). Hu-PBL were reconstituted into immunode-
ficient Balb/c-Rag−/−γc−/− mice and HIV-1-infected
human monocyte-derived macrophages (MDM) were
injected into the brain to induce viral encephalitis (hu-
PBL/HIVE mice) (Poluektova et al. 2004a, b, 2002).
Increased CB2 receptor expression was found in the brains
of hu-PBL/HIVE mice. To examine whether CB2R agonists
could modulate neuroinflammation in HIVE, Gp1a (N-
(piperidin-1-yl)-1-(2,4-dichlorophenyl)-1,4-dihydro-6-
methylindeno[1,2-c]pyrazole-3-carboxamide), a new and
highly selective synthetic CB2R agonist, was tested. Its
biological activity expressed in K1 values is 0.037 and
363 nM for CB2 and CB1 receptors, respectively (Murineddu
et al. 2006). In hu-PBL/HIVE mice, Gp1a reduced the levels
of immune activation, infiltration of human cells into the
brain and downregulated neuroinflammation in HIVE. These
results, taken together, warrant further investigation for Gp1a

and other CB2R agonists as an adjunctive therapy for
HAND.

Materials and methods

Cells and viruses

Monocytes and PBL were obtained from HIV-1, HIV-2,
and hepatitis B seronegative donor leukopaks and were
purified by countercurrent centrifugal elutriation. Mono-
cytes were cultivated in DMEM (Sigma-Aldrich, St. Louis,
MO, USA) supplemented with 10% heat-inactivated pooled
human serum, 1% glutamine, 50 mg/ml gentamicin, 10 mg/
ml ciprofloxacin (Sigma-Aldrich), and 1,000 U/ml highly
purified recombinant human macrophage MCSF (generous
gift from Genetics Institute, Cambridge, MA, USA). After
7 days in culture, MDM were infected with HIV-1ADA at a
multiplicity of infection of 0.01.

Hu-PBL/HIVE mice

Balb/c-Rag2−/−γc−/− mice were obtained from the Central
Institute of Experimental Animals (Dr. Mamoru Ito,
Kawasaki, Japan) and were bred and maintained under
specific pathogen-free conditions in accordance with the
ethical guidelines for the care of laboratory animals at the
University of Nebraska Medical Center and National
Institutes of Health. Four-week-old animals were injected
intraperitoneally (i.p.) with human PBL (20×106 cells/
mouse). On day 7 after PBL reconstitution, HIV-1ADA-
infected MDM (3×105 cells in 5 ml) were injected
intracranially (i.c.) to produce hu-PBL/HIVE mice
(Fig. 1a). Sham-operated mice with media injected i.c.
were controls. PBL-reconstituted mice without intracranial
injections of HIV-1-infected cells were included in the
immunological analyses (hu-PBL mice). Animals were
sacrificed at day 21 after reconstitution. Mice with limited
PBL engraftment (<10% of human cells in mouse spleen)
were excluded from the analyses. Three individual experi-
ments with cells from different donors were performed.
Brain tissues were used for immunohistochemistry or for
RNA extractions.

Drug treatment

Gp1a was obtained from Tocris Bioscience (Ellisville, MO,
USA) and thoroughly mixed in almond paste to orally feed
mice at a concentration of 1 mg/kg body weight/day. Animals
were fed the drug from day 7 after PBL reconstitution or from
day 1 of i.c. injections with HIV-1-infected MDM until
sacrifice. The duration of drug treatment was 14 days
(Fig. 1a). Control animals received vehicle alone.
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FACS analysis of splenocytes

Spleens were extracted from the mice at sacrifice and
crushed through a 40-μm cell strainer to obtain single
cell suspensions. Splenocytes thus isolated were stained
for human cells using antibodies to CD45, CD4, CD8,
CD95, CD178, and CCR5. Appropriate isotype controls
were used, and all antibodies were obtained from BD
Pharmingen (San Diego, CA, USA). Cells were ana-
lyzed using BD LSR II with BD FACS Diva software
(BD Immunocytometry Systems, Mountain View, CA,
USA).

Viral load analysis

The levels of viral RNA copies per milliliter in plasma were
analyzed using automated COBAS Amplicor System
(Roche Molecular Diagnostics, Basel, Switzerland) with
detection limit of 50 viral RNA copies/ml. Mouse plasma
samples (20 μl each) were diluted to 500 μl with normal
human serum for assay use, which makes the detection
limit 1,250 copies/ml. HIV-1 infection was confirmed by
virologic and histologic examinations.

Immunocytochemistry

Brain tissues were collected on day 14 after i.c.
injection, fixed in 4% phosphate-buffered paraformalde-
hyde, and embedded in paraffin for later use. Blocks
were cut to identify the injection site. For each mouse,
30–100 serial (5-μm-thick) sections were cut to include
human MDM injection site, and three to seven slides
(10 sections apart) were analyzed. Brain sections were
deparaffinized with xylene and hydrated in gradient
alcohols. Immunohistochemical staining followed previ-
ously published procedures for human CD45 (1/50; BD
PharMingen), mouse glial fibrillary acidic protein
(GFAP; 1/3,000, DAKO, Carpinteria, CA, USA), Iba-
1, and HIV-1 p24 (DAKO) (Poluektova et al. 2004a).
The Vectastain Elite ABC kit (Vector Laboratories,
Burlingame, CA, USA) and the DAKO EnVision
polymer-based system developed the immunolabeling
tests. All paraffin-embedded sections were counterstained
with Mayer’s hematoxylin. Deletion of primary Ab or
mouse IgG served as controls. Tissue examination was
performed with an Eclipse 800 microscope (Nikon,
Melville, NY, USA).

Experimental Scheme

human PBL ip injection
(2x10 7/mouse)

BRAIN: immunohistochemistry
and RT-PCR.

SPLEEN: FACS

BLOOD: Viral load

day 7 day 21

Monocytes 
and 

lymphocytes (PBL) 
separation.

HIV-1 infection of 
monocyte-derived-macrophages

and ic injection (3x105/mouse)

Gp1a administration for two weeks per os 
at a concentration 1mg/kg/day.

day 0

Sacrifice

a

b

MCSF

Lymph Node Spleen Lung Liver Intestine

Fig. 1 hu-PBL/HIVE mouse model and scheme of the experiment. a
Balb/c-Rag−/−γc−/− mice were reconstituted intraperitoneally with
human PBL isolated from leukopaks. Monocytes isolated from the
same leukopak were differentiated into macrophages, infected with
HIV-1ADA and injected into the brain caudate putamen intracranially
on day 7 using stereotactic equipment. From the day when mice are
injected intracranially, they were fed (per os) with Gp1a mixed in

almond paste for 14 days and then sacrificed to collect brain, blood,
and spleen. For RT-PCR on brain, a 2-mm slice on ipsilateral
hemisphere containing the injection area was collected for RNA
extraction. The corresponding contralateral area was also used for
comparison. b Immunohistology of various tissue sections isolated
from a mouse reconstituted with hu-PBL for 21 days stained for
human CD45
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Real time RT-PCR

Total RNA from brain sections was extracted with TRIzol
(Invitrogen, Carlsbad, CA, USA). RNA was reverse
transcribed with random hexamers, and real-time quantita-
tive polymerase chain reaction (PCR) was performed with
complementary DNA using an ABI PRISM 7000 sequence
detector (Applied Biosystems, Foster City, CA, USA).
Taqman assays-on-demand were used to determine the
expression of HLA-DQ for human cells, mouse GFAP,
tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), IL-
1β, and inducible nitric oxide synthase (iNOS). HIV-1gag
expression was determined using PCR assays (Cota et al.
2000). All PCR reagents were obtained from Applied
Biosystems. Gene expression was normalized to glyceral-
dehyde 3-phosphate dehydrogenase and used as an endog-
enous control.

Statistical analysis

Data were analyzed using Excel with Student’s t test for
comparisons and ANOVA. A value of p<0.05 was
considered statistically significant. All results are presented
as the mean ± SD.

Results

Hu-PBL/HIVE mice and cannabinoid receptor expression

The hu-PBL/HIVE mouse model allows the investigation
of neuroinflammation, effector function of T cells, and HIV-
1 replication as it would occur in an infected human host
(Poluektova et al. 2002, 2004a, b). Balb/c-Rag2–/–γc–/–
mice were transplanted with human PBL into the peritoneal
cavity followed by i.c. injection of HIV-1-infected human
MDM. Figure 1a illustrates the steps involved in the model
generation and the experimental scheme. Mice were treated
with Gp1a from day 7, when the mice were injected i.c.
with HIV-1-infected MDM, and continued for 14 days.
Human lymphocytes reconstitute mouse lymph nodes,
spleen, and other tissues including the liver, lung, and
intestine (Fig. 1b). When HIV-1 MDM are placed in the
brain, lymphocytes readily ingress and proliferate in
association with HIV-1-infected human MDM (Poluektova
et al. 2004a). At the time of sacrifice, brains collected were
either processed for histological evaluation or RNA
extraction.

Brain sections were stained for human cells (CD45),
HIV-1 p24, murine astrocytes (GFAP), and macrophage/
microglial cells (Iba-1, species non-specific). Representa-
tive sections are shown in Fig. 2. Serial sections containing
the injected site are shown containing both implanted HIV-

1-infected MDM and infiltrated human lymphocytes.
Sections stained for Iba-1 demonstrate microglial nodule
formation around the injection line as a result of increased
microglial activation. Gp1a treatment shows reduced
intensity of Iba-1 staining, but GFAP was found to be
similar in both groups. Quantitative analysis of cannabinoid
receptors, human cell presence, the levels of infection, and
inflammation was performed by RT-PCR.

Cannabinoid receptor expression

RNA extracted from the brains collected at 14 days after i.c.
injections were analyzed by real-time RT-PCR for CB1 and
CB2 receptors and GPR55. CB1 receptors and GPR55 are
widely expressed in the brain, and we could not find
significant changes in the expression of CB1R and GPR55
in hu-PBL/HIVE mouse brain when compared to sham-
injected controls. However, CB2 receptor expression was
significantly higher (fourfold, p<0.005) in injected hemi-
spheres of hu-PBL/HIVE mice compared to their contra-
lateral hemispheres and also to that of sham-injected mice
(Fig. 3). Based on these results, we next tested whether
CB2 receptor agonists could be effective as neuroimmune
modulators in our murine HIVE model of human disease.

Human cells and HIV-1 viral load in the brain

Brains were analyzed by RT-PCR for human cells (HLA-
DQ gene) and HIV-1 infection (HIV-1gag). HLA-DQ
expression was significantly reduced in both ipsilateral
hemispheres (containing injection site) and contralateral
hemispheres of Gp1a-treated animals compared to non-
treated controls [tenfold reduction (Fig. 4a)]. This
decrease in HLA-DQ could account for both reduced
numbers of infiltrated cells as well as reduced expression
of HLA-DQ with decrease in activation. HIV-1 gag
expression in brains was reduced with Gp1a but did not
reach significant levels (49±36 vs 20.6±12, p=0.058).
Peripheral viral load measured in the sera of non-treated
animals was similar to that of Gp1a-treated animals
(Fig. 4b).

Brain inflammation

Expression of inflammation markers and inflammatory
cytokines in the brains was determined by real-time RT-
PCR. Figure 5 shows the expression levels of Mac-1
(CD11b) for microglial activation, iNOS, and TNF-α in the
brains of Gp1a-treated and non-treated HIVE animals. A
significant decrease in Mac-1 and TNF-α expression in the
ipsilateral hemispheres of Gp1a-treated brains was observed
compared to non-treated controls (twofold decrease, p<
0.05). Infiltration of human cells into the brain induced
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significant levels of iNOS expression, and Gp1a treatment
did not reduce iNOS expression. GFAP as a marker of
astrogliosis and the proinflammatory cytokines including
IL-6 and IL-1B were also measured and were not affected
significantly by Gp1a treatment (data not shown).

Gp1a and survival

Human PBL reconstitution in immunodeficient mice has
been shown to induce graft-versus-host (GVH) disease due
to the activation of human cells reacting to the mouse
environment. Almost 50% of animals died from the non-

treated group, while 100% survival was observed in the
treated group (Fig. 6). Gp1a treatment significantly reduced
GVH-induced deaths.

CD4/CD8 T-cell numbers and FasL expression

Morphologically, spleens from Gp1a-treated animals were
two times smaller than those of non-treated animals. Flow
cytometric analyses on splenocytes showed that the total
number of human cells (CD45+) was slightly reduced in
Gp1a-treated non-infected hu-PBL mice compared to
controls (Fig. 7). Significant reduction in the total number

Human CD45

HIV-1 p24

Iba-1

GFAP

Vehicle GP1aFig. 2 Immunohistology of
brain sections. Paraffin-
embedded 5-μm sections were
stained for human CD45 to
detect human cells, HIV-1 p24
for infected cells, glial markers
Iba-1 for microglial activation,
and GFAP for astrogliosis.
CD45 stained both injected
human macrophages and
infiltrated peripheral lympho-
cytes. Bigger cells are macro-
phages (red arrow) and smaller/
brighter cells (black arrow) are
lymphocytes. Iba-1 stained both
injected macrophages and acti-
vated mouse microglia
surrounding the injection line.
Microglial nodules (arrow
heads) were observed to a
higher extent in the non-treated
group. GFAP intensity was
found to be similar
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of human cells was observed with HIV infection (hu-PBL
vs HIVE, 70.8±3.3% and 43.1±6.1%, respectively). Re-
markable changes in CD4/CD8 ratios were found with
Gp1a treatment in hu-PBL mice. Normally, with PBL
reconstitution in immunodeficient mice, CD8+ cells are
found at greater proportion than CD4+ cells (CD4/CD8
ratio 0.7±0.1). Gp1a treatment normalized the ratio to 1.0±
0.3, by increasing the number of CD4+ cells (31.7±5.04%
to 37.5±5%, p<0.05) and by reducing the number of CD8+
cells (48±2 to 35±12). In HIVE animals, the number of
CD4+ cells was decreased with infection and the CD4/CD8
ratios fell to 0.5±0.2. Gp1a treatment in HIVE mice
increased the CD4/CD8 ratio to 0.7±0.2, but the rise was
not significant compared to the non-treated group. To
explore the mechanisms of Gp1a-mediated changes in
populations of human cells, we studied lymphocyte surface

expression of Fas (CD95) and Fas ligand (FasL, CD178).
CB2R agonists were shown to induce apoptosis (Lombard
et al. 2007), and the Fas/FasL pathway contributes to the
deletion of activated T cells. CD95 expression was similar
throughout the groups; however, CD178 was found to be
differentially expressed on both CD4 and CD8 positive T
cells with Gp1a treatment (Fig. 4a). Gp1a increased CD178
expression on CD4+ cells in hu-PBL mice while the
increase in Gp1a-treated HIVE mice was not significantly
higher than non-treated HIVE mice. In both infected and
non-infected mice, CD178 expression on CD8+ cells was
significantly increased with Gp1a.
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CCR5 receptor expression

Given that the reconstituted human PBL in mice get
significantly activated and as a result induce GVH, and
the Gp1a treatment reduced GVH-induced deaths signifi-
cantly, we wanted to estimate the changes in the activation
levels of T cells with Gp1a treatment. Due to a significant
involvement of CCR5 receptor in HIV-1 entry in human

lymphocytes and macrophages and because this marker is
broadly expressed on activated human memory T cells,
which preferentially are eliminated during HIV-1 infection,
we stained the splenocytes for CCR5. Flow cytometric
analyses showed that CCR5 expression on CD4+ cells was
significantly reduced with Gp1a treatment both in hu-PBL
(25.9±5.7 non-treated vs 16.7±4.8 treated) and HIVE mice
(13±2.8 vs 9.7±4.6) (Fig. 8). The levels of CCR5
expression on CD8+ cells was not altered significantly
between treated and non-treated groups (50.5±10.8% and
56±6.5%, respectively).

Discussion

HAND results from neuronal injury induced by inflamma-
tory neurotoxic factors produced from immune-competent
and virus-infected perivascular macrophages and microglia
(Gendelman et al. 1997, 2004). The neurotoxic factors
include, but are not limited to, HIV-1 proteins such as
gp120 and tat, proinflammatory cytokines, arachidonic acid
and its metabolites, quinolinic acid, and glutamate (Kaul et
al. 2005; Rostasy et al. 1999; Smith et al. 2001). Despite
the widespread use of antiretroviral therapy, mild cognitive
impairments still persist (Ances and Ellis 2007; Kaul and
Lipton 2006). SIV-infected rhesus macaques demonstrate
neural dysfunction in the early stages of viral infection
(Marcondes et al. 2001), and these disturbances parallel T-
cell ingress to the brain (Marcondes et al. 2001, 2003). Hu-
PBL/HIVE mice mimics the hallmarks of human brain
disease such as the presence of HIV-1-infected multinucle-
ated giant cells, T cell infiltration, astro- and microgliosis,
and neuronal loss with neuropathological observations of
myelin pallor, features of advanced HIV-1 infection, and
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rate in the non-treated groups. Results from one out of three individual
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encephalitis. Increased expression of neurotoxic factors
including proinflammatory cytokines and iNOS was also
described (Poluektova et al. 2004a). Using mouse models
of neuroAIDS, our laboratories investigated a range of
immune-modulatory adjunctive therapies that can interrupt
neuronal damage and attenuate macrophage activation
(Eggert et al. 2009, 2010; Gorantla et al. 2007; Potula et
al. 2005). We now report that the mouse model also
exhibits altered CB2 receptor expression. Profound changes
in the distribution pattern of cannabinoid CB2 and FAAH
proteins in cortical regions of macaque brains affected SIV
encephalitis (SIVE) (Benito et al. 2005). CB2 receptors
were shown to be expressed abundantly in perivascular
microglial cells and infiltrated lymphocytes in the brain.
Interestingly, no changes in CB1 receptor and GPR55
expression were observed. CB1 receptor and GPR55 are
widely expressed in the CNS (Ryberg et al. 2007). The
pattern of CB1 receptor expression is unchanged in AD
(Benito et al. 2003) and SIVE-infected macaque brains
(Benito et al. 2005). Since our mouse model allows
experimental modulation of adaptive immunity as well as
microglial activation, we attempted to investigate whether
CB2 receptor agonist could lead to neuroprotection in
HIVE.

CB2 receptor is the main peripheral molecular target
responsible for the inhibitory properties of the cannabinoids
on the immune system (Docagne et al. 2008; Lunn et al.
2006, 2008). In the present study, we have evaluated the
effect of CB2 receptor activation on the immune system
using Gp1a, a new synthetic CB2R-selective agonist. Using

the hu-PBL/HIVE mouse model, we demonstrated that
Gp1a induced a strong suppressive effect on the immune
system. There are several synthetic CB2 agonists available,
none specific to CB2 or CB1 alone because there is 40%
homology between the receptors. However, different
agonists have varying levels of affinity towards the
receptors. Gp1a is a highly selective CB2 agonist with a
binding affinity for CB2R 1,000-fold higher than for CB1R
(Murineddu et al. 2006). Ours is the first in vivo study
using this agonist.

There was a significant reduction in the HLA-DQ
expression, a measure of the number of human cells as
well as the level of human cell activation, in Gp1a-treated
brains. CB2 receptor agonists suppress leukocyte traffick-
ing by reducing rolling and infiltration into inflamed areas
(Xu et al. 2007). Activated proinflammatory Th1-directed T
cells infiltrate the brain during HIV infection and could
affect perivascular macrophage and microglial responses,
leading to neuronal dysfunction and deficits in neural
structural integrity (Gorantla et al. 2007). Diminished
microglial activation and decreased proinflammatory cyto-
kine TNF-α expression in HIVE brains due to Gp1a could
be due to the reduced infiltration of activated lymphocytes
into the brain, as well as a direct effect of agonist on
microglia. CB2R stimulation was shown to suppress
microglial activation and reduce TNF-α production in
rodent microglial cells (Ehrhart et al. 2005; Facchinetti et
al. 2003; Puffenbarger et al. 2000). Gp1a did not down-
regulate iNOS, probably because inducible nitric oxide
production in brains is regulated via CB1R (Cabral et al.
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2001; Waksman et al. 1999). In addition, the effect of
CB2R agonist on endothelial cells could also contribute to
diminished infiltration of human cells into the brain by
reducing the expression of adhesion molecules required for
transmigration (Burstein et al. 1992; Mestre et al. 2009).
Given that Gp1a is an agonist for both mouse and human
CB2R, the effect of Gp1a on mouse macrophages and
endothelial cells needs to be investigated in further studies.

Significant reduction in GVH-mediated deaths with
Gp1a treatment suggested an immune-suppressive effect
of Gp1a. It is well known that hu-PBL mice experience
severe GVH disease (Berney et al. 2001; Gorin et al.
2002; Hoffmann-Fezer et al. 1993; Huppes et al. 1994;
Roychowdhury et al. 2005; Tary-Lehmann et al. 1994;
Tournoy et al. 2000; Verlinden et al. 1998). Depending on
the human-murine histocompatibility, hu-PBL animals
readily develop GVH disease that kills mice in a time-
frame from 3 to 5 weeks post transplantation (Goldman et
al. 1998; Pino et al. 2010; Schneider and Gronvik 1995).
The use of this model provided a unique possibility to
evaluate anti-GVH activity of CB2R signaling and Gp1a
was found to be a strong suppressant of GVH. FasL was
found to be involved in this immunosuppressive effect of
Gp1a. Increased expression of FasL on both CD4 and CD8
positive cells was observed with Gp1a. Cannabinoids are
known to induce apoptosis in immune cells and inhibit their
proliferation (Lombard et al. 2007). FasL acts as a
prototypic death factor due to its ability to induce apoptosis
in Fas (APO-1, CD95) expressing cells (Dhein et al. 1995;
Ju et al. 1995). Moreover, the ligation of Fas with FasL was
recognized as an important homeostatic control mechanism
for maintaining appropriate numbers of T cells (Takahashi
et al. 1994). Its role in the downregulation of immune
responses during activation-induced cell death (AICD) is
well documented (Green et al. 2003). Increased levels of
FasL expression with Gp1a might be leading to AICD in
GVH and thus assist with the maintenance of immune
homeostasis, as observed with an increase in CD4/CD8
ratios with Gp1a. However, an increase in FasL expression
paralleling an increase in CD4+ cell numbers with Gp1a
treatment is contradictory. Further analysis of T-cell subsets
expressing FasL with Gp1a is needed to understand exactly
in which subsets of CD4+ cells FasL is expressed, to
understand the involvement of FasL in CD4+ cell rescue.
Taken together, our study suggests that Gp1a regulates
immune homeostasis and might have therapeutic potential
in tissue transplantation.

CCR5 is another marker that we studied to understand
the attenuation of lymphocyte activation by Gp1a. CCR5 is
expressed mainly on Th1 cells, and T cells infiltrating
inflammatory sites, usually of the activated/memory type,
express CCR5 (Loetscher et al. 1998; Qin et al. 1998).
CCR5 is a marker for T cells associated with certain

inflammatory reactions. Reduction in CCR5 expression on
CD4+ cells in hu-PBL mice may contribute to the decrease
in chemokine-mediated homing to the inflamed sites.
During HIV-1 infection, naive CD4+ T cells exhibit
increased expression of the major viral co-receptor CCR5
(Ostrowski et al. 1998). In our study, there was a decrease
in CCR5 expression on CD4+ cells with HIV infection in
hu-PBL/HIVE mice compared to hu-PBL mice, which may
be due to the progressive depletion of activated CD4+ cells
with infection. Further reduction in CCR5 expression on
CD4+ cells with Gp1a in HIV-1-infected mice did not
reduce peripheral viral load. The synthetic CB1/CB2
agonist WIN55,212-2 was found to suppress replication of
HIV-1 in microglial cell cultures via CB2 receptors (Rock
et al. 2007). Decreased expression of HIV-gag was
observed in the brains of Gp1a-treated animals but was
not significant. The collective effect of Gp1a, either by
reduced infiltration of these cells into HIVE mouse brains,
by promoting the apoptosis of these cells or by altering the
cytokine profiles to Th2 responses, diminished microglial
activation and decreased proinflammatory cytokine TNF-α
expression in HIVE brains.

The present study serves to provide a rationale for
employing immunosuppressive strategies targeting the can-
nabinoid system to modulate neuroinflammatory responses
for therapeutic use for HAND. Cannabinoids havewidespread
effects on both innate and adaptive immune responses; hence,
the significance of CB2 receptor as an appealing therapeutic
target has risen in recent years. Its effect on immune cell
motility and novel immunoregulatory role of CB2 receptor
specific compounds makes this approach attractive.

Acknowledgments Charles Kusinsky, Meghan Michalak, and
Victoria Smith at the University of Nebraska Medical Center,
Omaha, NE, are thanked for their help with the FACS analyses.
We thank Jillian Braun, summer undergraduate student, for her
assistance in data analyses. We thank Dr. Mamoru Ito at Central
Institute of Experimental Animals, Kawasaki, Japan for providing
Balb/c-Rag2−/−γc−/− mice. We also thank Robin Taylor of the
University of Nebraska Medical Center for administrative assistance.

References

Ances BM, Ellis RJ (2007) Dementia and neurocognitive disorders
due to HIV-1 infection. Semin Neurol 27(1):86–92

Arevalo-Martin A, Garcia-Ovejero D, Gomez O, Rubio-Araiz A,
Navarro-Galve B, Guaza C, Molina-Holgado E, Molina-Holgado
F (2008) CB2 cannabinoid receptors as an emerging target for
demyelinating diseases: from neuroimmune interactions to cell
replacement strategies. Br J Pharmacol 153(2):216–225

Ashton JC, Glass M (2007) The cannabinoid CB2 receptor as a target
for inflammation-dependent neurodegeneration. Curr Neurophar-
macol 5(2):73–80

Basavarajappa BS, Nixon RA, Arancio O (2009) Endocannabinoid
system: emerging role from neurodevelopment to neurodegener-
ation. Mini Rev Med Chem 9(4):448–462

J Neuroimmune Pharmacol (2010) 5:456–468 465



Benito C, Nunez E, Tolon RM, Carrier EJ, Rabano A, Hillard CJ,
Romero J (2003) Cannabinoid CB2 receptors and fatty acid
amide hydrolase are selectively overexpressed in neuritic plaque-
associated glia in Alzheimer’s disease brains. J Neurosci 23
(35):11136–11141

Benito C, Kim WK, Chavarria I, Hillard CJ, Mackie K, Tolon RM,
Williams K, Romero J (2005) A glial endogenous cannabinoid
system is upregulated in the brains of macaques with simian
immunodeficiency virus-induced encephalitis. J Neurosci 25
(10):2530–2536

Benito C, Nunez E, Pazos MR, Tolon RM, Romero J (2007a) The
endocannabinoid system and Alzheimer’s disease. Mol Neuro-
biol 36(1):75–81

Benito C, Romero JP, Tolon RM, Clemente D, Docagne F, Hillard CJ,
Guaza C, Romero J (2007b) Cannabinoid CB1 and CB2
receptors and fatty acid amide hydrolase are specific markers of
plaque cell subtypes in human multiple sclerosis. J Neurosci 27
(9):2396–2402

Berney T, Molano RD, Pileggi A, Cattan P, Li H, Ricordi C, Inverardi
L (2001) Patterns of engraftment in different strains of
immunodeficient mice reconstituted with human peripheral blood
lymphocytes. Transplantation 72(1):133–140

Berrendero F, Sanchez A, Cabranes A, Puerta C, Ramos JA, Garcia-
Merino A, Fernandez-Ruiz J (2001) Changes in cannabinoid CB
(1) receptors in striatal and cortical regions of rats with
experimental allergic encephalomyelitis, an animal model of
multiple sclerosis. Synapse 41(3):195–202

Buckley NE (2008) The peripheral cannabinoid receptor knockout
mice: an update. Br J Pharmacol 153(2):309–318

Burstein SH, Audette CA, Breuer A, Devane WA, Colodner S, Doyle
SA, Mechoulam R (1992) Synthetic nonpsychotropic cannabi-
noids with potent antiinflammatory, analgesic, and leukocyte
antiadhesion activities. J Med Chem 35(17):3135–3141

Cabral GA, Griffin-Thomas L (2008) Cannabinoids as therapeutic
agents for ablating neuroinflammatory disease. Endocr Metab
Immune Disord Drug Targets 8(3):159–172

Cabral GA, Harmon KN, Carlisle SJ (2001) Cannabinoid-mediated
inhibition of inducible nitric oxide production by rat microglial
cells: evidence for CB1 receptor participation. Adv Exp Med
Biol 493:207–214

Cabral GA, Raborn ES, Griffin L, Dennis J, Marciano-Cabral F
(2008) CB2 receptors in the brain: role in central immune
function. Br J Pharmacol 153(2):240–251

Centonze D, Rossi S, Finazzi-Agro A, Bernardi G, Maccarrone M
(2007) The (endo)cannabinoid system in multiple sclerosis and
amyotrophic lateral sclerosis. Int Rev Neurobiol 82:171–186

Correa F, Docagne F, Mestre L, Loria F, Hernangomez M, Borrell J,
Guaza C (2007) Cannabinoid system and neuroinflammation:
implications for multiple sclerosis. Neuroimmunomodulation 14
(3–4):182–187

Cota M, Mengozzi M, Vicenzi E, Panina-Bordignon P, Sinigaglia F,
Transidico P, Sozzani S, Mantovani A, Poli G (2000) Selective
inhibition of HIV replication in primary macrophages but not T
lymphocytes by macrophage-derived chemokine. Proc Natl Acad
Sci U S A 97(16):9162–9167

Dhein J, Walczak H, Baumler C, Debatin KM, Krammer PH (1995)
Autocrine T-cell suicide mediated by APO-1/(Fas/CD95). Nature
373(6513):438–441

Docagne F, Mestre L, Loria F, Hernangomez M, Correa F, Guaza C
(2008) Therapeutic potential of CB2 targeting in multiple
sclerosis. Expert Opin Ther Targets 12(2):185–195

Eggert D, Dash PK, Serradji N, Dong CZ, Clayette P, Heymans F,
Dou H, Gorantla S, Gelbard HA, Poluektova L et al (2009)
Development of a platelet-activating factor antagonist for HIV-1
associated neurocognitive disorders. J Neuroimmunol 213(1-
2):47–59

Eggert D, Dash PK, Gorantla S, Dou H, Schifitto G, Maggirwar SB,
Dewhurst S, Poluektova L, Gelbard HA, Gendelman HE (2010)
Neuroprotective activities of CEP-1347 in models of neuroAIDS.
J Immunol 184(2):746–756

Ehrhart J, Obregon D, Mori T, Hou H, Sun N, Bai Y, Klein T,
Fernandez F, Tan J, Shytle RD (2005) Stimulation of cannabinoid
receptor 2 (CB2) suppresses microglial activation. J Neuro-
inflammation 2:29

Facchinetti F, Del Giudice E, Furegato S, Passarotto M, Leon A
(2003) Cannabinoids ablate release of TNFalpha in rat microglial
cells stimulated with lipopolysaccharide. Glia 41(2):161–168

Galiegue S, Mary S, Marchand J, Dussossoy D, Carriere D, Carayon
P, Bouaboula M, Shire D, Le Fur G, Casellas P (1995)
Expression of central and peripheral cannabinoid receptors in
human immune tissues and leukocyte subpopulations. Eur J
Biochem 232(1):54–61

Gendelman HE, Persidsky Y, Ghorpade A, Limoges J, Stins M, Fiala
M, Morrisett R (1997) The neuropathogenesis of the AIDS
dementia complex. Aids 11(Suppl A):35–45

Gendelman HE, Diesing S, Gelbard H, Swindells S (2004) The
neuropathogenesis of HIV-1 infection. Elsevier, London, pp 95–
116

Goldman JP, Blundell MP, Lopes L, Kinnon C, Di Santo JP, Thrasher
AJ (1998) Enhanced human cell engraftment in mice deficient in
RAG2 and the common cytokine receptor gamma chain. Br J
Haematol 103(2):335–342

Gonsiorek W, Hesk D, Chen SC, Kinsley D, Fine JS, Jackson JV,
Bober LA, Deno G, Bian H, Fossetta J et al (2006) Character-
ization of peripheral human cannabinoid receptor (hCB2)
expression and pharmacology using a novel radioligand, [35S]
Sch225336. J Biol Chem 281(38):28143–28151

Gorantla S, Liu J, Sneller H, Dou H, Holguin A, Smith L, Ikezu T,
Volsky DJ, Poluektova L, Gendelman HE (2007) Copolymer-1
induces adaptive immune anti-inflammatory glial and neuro-
protective responses in a murine model of HIV-1 encephalitis. J
Immunol 179(7):4345–4356

Gorin NC, Piantadosi S, Stull M, Bonte H, Wingard JR, Civin C
(2002) Increased risk of lethal graft-versus-host disease-like
syndrome after transplantation into NOD/SCID mice of human
mobilized peripheral blood stem cells, as compared to bone
marrow or cord blood. J Hematother Stem Cell Res 11(2):277–
292

Green DR, Droin N, Pinkoski M (2003) Activation-induced cell death
in T cells. Immunol Rev 193:70–81

Hoffmann-Fezer G, Gall C, Zengerle U, Kranz B, Thierfelder S (1993)
Immunohistology and immunocytology of human T-cell chime-
rism and graft-versus-host disease in SCID mice. Blood 81
(12):3440–3448

Huppes W, Fickenscher H, tHart BA, Fleckenstein B (1994) Cytokine
dependence of human to mouse graft-versus-host disease. Scand
J Immunol 40(1):26–36

Ju ST, Panka DJ, Cui H, Ettinger R, el-Khatib M, Sherr DH, Stanger
BZ, Marshak-Rothstein A (1995) Fas(CD95)/FasL interactions
required for programmed cell death after T-cell activation. Nature
373(6513):444–448

Kaul M, Lipton SA (2006) Mechanisms of neuronal injury and death
in HIV-1 associated dementia. Curr HIV Res 4(3):307–318

Kaul M, Zheng J, Okamoto S, Gendelman HE, Lipton SA (2005)
HIV-1 infection and AIDS: consequences for the central nervous
system. Cell Death Differ 12(Suppl 1):878–892

Klein TW, Newton CA (2007) Therapeutic potential of cannabinoid-
based drugs. Adv Exp Med Biol 601:395–413

Kreitzer FR, Stella N (2009) The therapeutic potential of novel
cannabinoid receptors. Pharmacol Ther 122(2):83–96

Lastres-Becker I, Molina-Holgado F, Ramos JA, Mechoulam R,
Fernandez-Ruiz J (2005) Cannabinoids provide neuroprotection

466 J Neuroimmune Pharmacol (2010) 5:456–468



against 6-hydroxydopamine toxicity in vivo and in vitro:
relevance to Parkinson’s disease. Neurobiol Dis 19(1–2):96–107

Leonelli M, Torrao AS, Britto LR (2009) Unconventional neuro-
transmitters, neurodegeneration and neuroprotection. Braz J Med
Biol Res 42(1):68–75

Loetscher P, Uguccioni M, Bordoli L, Baggiolini M, Moser B,
Chizzolini C, Dayer JM (1998) CCR5 is characteristic of Th1
lymphocytes. Nature 391(6665):344–345

Lombard C, Nagarkatti M, Nagarkatti P (2007) CB2 cannabinoid
receptor agonist, JWH-015, triggers apoptosis in immune cells:
potential role for CB2-selective ligands as immunosuppressive
agents. Clin Immunol 122(3):259–270

Lunn CA, Reich EP, Bober L (2006) Targeting the CB2 receptor for
immune modulation. Expert Opin Ther Targets 10(5):653–663

Lunn CA, Reich EP, Fine JS, Lavey B, Kozlowski JA, Hipkin RW,
Lundell DJ, Bober L (2008) Biology and therapeutic potential of
cannabinoid CB2 receptor inverse agonists. Br J Pharmacol 153
(2):226–239

Mackie K, Stella N (2006) Cannabinoid receptors and endocannabi-
noids: evidence for new players. AAPS J 8(2):E298–E306

Marcondes MCG, Burudi EME, Huitron-Resendiz S, Sanchez-Alavez
M, Watry D, Zandonatti M, Henriksen SJ, Fox HS (2001) Highly
activated CD8+ T cells in the brain correlate with early central
nervous system dysfunction in simian immunodeficiency virus
infection. J Immunol 167(9):5429–5438

Marcondes MC, Phillipson CA, Fox HS (2003) Distinct clonal
repertoire of brain CD8+ cells in simian immunodeficiency virus
infection. AIDS 17(11):1605–1611

Mestre L, Docagne F, Correa F, Loria F, Hernangomez M, Borrell J,
Guaza C (2009) A cannabinoid agonist interferes with the
progression of a chronic model of multiple sclerosis by down-
regulating adhesion molecules. Mol Cell Neurosci 40(2):258–266

Murineddu G, Lazzari P, Ruiu S, Sanna A, Loriga G, Manca I,
Falzoi M, Dessi C, Curzu MM, Chelucci G et al (2006)
Tricyclic pyrazoles. 4. Synthesis and biological evaluation of
analogues of the robust and selective CB2 cannabinoid ligand
1-(2′, 4′-dichlorophenyl)-6-methyl-N-piperidin-1-yl-1, 4-
dihydroindeno[1, 2-c ]pyrazole-3-carboxamide. J Med Chem
49(25):7502–7512

Onaivi ES (2009) Cannabinoid receptors in brain: pharmacogenetics,
neuropharmacology, neurotoxicology, and potential therapeutic
applications. Int Rev Neurobiol 88:335–369

Ostrowski MA, Justement SJ, Catanzaro A, Hallahan CA, Ehler LA,
Mizell SB, Kumar PN, Mican JA, Chun TW, Fauci AS (1998)
Expression of chemokine receptors CXCR4 and CCR5 in HIV-1-
infected and uninfected individuals. J Immunol 161(6):3195–
3201

Pacher P, Batkai S, Kunos G (2006) The endocannabinoid system as
an emerging target of pharmacotherapy. Pharmacol Rev 58
(3):389–462

Patel KD, Davison JS, Pittman QJ, Sharkey KA (2010) Cannabinoid
CB(2) receptors in health and disease. Curr Med Chem 17
(14):1394–1410

Pearson T, Greiner DL, Shultz LD (2008) Humanized SCID mouse
models for biomedical research. Curr Top Microbiol Immunol
324:25–51

Pino S, Brehm MA, Covassin-Barberis L, King M, Gott B, Chase TH,
Wagner J, Burzenski L, Foreman O, Greiner DL et al (2010)
Development of novel major histocompatibility complex class I
and class II-deficient NOD-SCID IL2R gamma chain knockout
mice for modeling human xenogeneic graft-versus-host disease.
Methods Mol Biol 602:105–117

Piomelli D (2005) The endocannabinoid system: a drug discovery
perspective. Curr Opin Investig Drugs 6(7):672–679

Poluektova LY, Munn DH, Persidsky Y, Gendelman HE (2002)
Generation of cytotoxic T cells against virus-infected human

brain macrophages in a murine model of HIV-1 encephalitis. J
Immunol 168(8):3941–3949

Poluektova L, Gorantla S, Faraci J, Birusingh K, Dou H, Gendelman
HE (2004a) Neuroregulatory events follow adaptive immune-
mediated elimination of HIV-1-infected macrophages: studies in
a murine model of viral encephalitis. J Immunol 172(12):7610–
7617

Poluektova LY, Gorantla S, Gendelman HE (2004b) Studies of
adaptive immunity in a murine model of HIV-1 encephalitis. In:
Gendelman HE, Grant I, Lipton S, Swindells S (eds) Neurology
of AIDS. Oxford University Press, Oxford

Potula R, Poluektova L, Knipe B, Chrastil J, Heilman D, Dou H,
Takikawa O, Munn DH, Gendelman HE, Persidsky Y (2005)
Inhibition of indoleamine 2, 3-dioxygenase (IDO) enhances
elimination of virus-infected macrophages in an animal model
of HIV-1 encephalitis. Blood 106(7):2382–2390

Price DA, Martinez AA, Seillier A, Koek W, Acosta Y, Fernandez E,
Strong R, Lutz B, Marsicano G, Roberts JL et al (2009) WIN55,
212-2, a cannabinoid receptor agonist, protects against nigros-
triatal cell loss in the 1-methyl-4-phenyl-1, 2, 3, 6-
tetrahydropyridine mouse model of Parkinson’s disease. Eur J
Neurosci 29(11):2177–2186

Puffenbarger RA, Boothe AC, Cabral GA (2000) Cannabinoids inhibit
LPS-inducible cytokine mRNA expression in rat microglial cells.
Glia 29(1):58–69

Qin S, Rottman JB, Myers P, Kassam N, Weinblatt M, Loetscher M,
Koch AE, Moser B, Mackay CR (1998) The chemokine
receptors CXCR3 and CCR5 mark subsets of T cells associated
with certain inflammatory reactions. J Clin Invest 101(4):746–
754

Rock RB, Gekker G, Hu S, Sheng WS, Cabral GA, Martin BR,
Peterson PK (2007) WIN55, 212-2-mediated inhibition of HIV-1
expression in microglial cells: involvement of cannabinoid
receptors. J Neuroimmune Pharmacol 2(2):178–183

Rostasy K, Monti L, Yiannoutsos C, Kneissl M, Bell J, Kemper TL,
Hedreen JC, Navia BA (1999) Human immunodeficiency virus
infection, inducible nitric oxide synthase expression, and micro-
glial activation: pathogenetic relationship to the acquired immu-
nodeficiency syndrome dementia complex. Ann Neurol 46
(2):207–216

Roychowdhury S, Blaser BW, Freud AG, Katz K, Bhatt D, Ferketich
AK, Bergdall V, Kusewitt D, Baiocchi RA, Caligiuri MA (2005)
IL-15 but not IL-2 rapidly induces lethal xenogeneic graft-
versus-host disease. Blood 106(7):2433–2435

Ryberg E, Larsson N, Sjogren S, Hjorth S, Hermansson NO, Leonova
J, Elebring T, Nilsson K, Drmota T, Greasley PJ (2007) The
orphan receptor GPR55 is a novel cannabinoid receptor. Br J
Pharmacol 152(7):1092–1101

Schneider MK, Gronvik KO (1995) Acute graft-versus-host reaction
in SCID mice leads to an abnormal expansion of CD8+ V beta
14+ and a broad inactivation of donor T cells followed by a
host-restricted tolerance and a normalization of the TCR V beta
repertoire in the chronic phase. Scand J Immunol 41(4):373–
383

Shoemaker JL, Seely KA, Reed RL, Crow JP, Prather PL (2007) The
CB2 cannabinoid agonist AM-1241 prolongs survival in a
transgenic mouse model of amyotrophic lateral sclerosis when
initiated at symptom onset. J Neurochem 101(1):87–98

Smith DG, Guillemin GJ, Pemberton L, Kerr S, Nath A, Smythe GA,
Brew BJ (2001) Quinolinic acid is produced by macrophages
stimulated by platelet activating factor, Nef and Tat. J NeuroVirol
7(1):56–60

Steffens S, Veillard NR, Arnaud C, Pelli G, Burger F, Staub C, Karsak
M, Zimmer A, Frossard JL, Mach F (2005) Low dose oral
cannabinoid therapy reduces progression of atherosclerosis in
mice. Nature 434(7034):782–786

J Neuroimmune Pharmacol (2010) 5:456–468 467



Stella N (2009) Endocannabinoid signaling in microglial cells.
Neuropharmacology 56(Suppl 1):244–253

Takahashi T, Tanaka M, Brannan CI, Jenkins NA, Copeland NG, Suda
T, Nagata S (1994) Generalized lymphoproliferative disease in
mice, caused by a point mutation in the Fas ligand. Cell 76
(6):969–976

Tary-Lehmann M, Lehmann PV, Schols D, Roncarolo MG, Saxon A
(1994) Anti-SCID mouse reactivity shapes the human CD4+ T
cell repertoire in hu-PBL-SCID chimeras. J Exp Med 180
(5):1817–1827

Thakur GA, Tichkule R, Bajaj S, Makriyannis A (2009) Latest
advances in cannabinoid receptor agonists. Expert Opin Ther Pat
19(12):1647–1673

Tournoy KG, Depraetere S, Pauwels RA, Leroux-Roels GG (2000)
Mouse strain and conditioning regimen determine survival and
function of human leucocytes in immunodeficient mice. Clin Exp
Immunol 119(1):231–239

Van Duyne R, Pedati C, Guendel I, Carpio L, Kehn-Hall K, Saifuddin
M, Kashanchi F (2009) The utilization of humanized mouse
models for the study of human retroviral infections. Retrovirol-
ogy 6(1):76

Verlinden SF, Mulder AH, de Leeuw JP, van Bekkum DW (1998) T
lymphocytes determine the development of xeno GVHD and of
human hemopoiesis in NOD/SCID mice following human
umbilical cord blood transplantation. Stem Cells 16(Suppl
1):205–217

Waksman Y, Olson JM, Carlisle SJ, Cabral GA (1999) The central
cannabinoid receptor (CB1) mediates inhibition of nitric oxide
production by rat microglial cells. J Pharmacol Exp Ther 288
(3):1357–1366

Xu H, Cheng CL, Chen M, Manivannan A, Cabay L, Pertwee RG,
Coutts A, Forrester JV (2007) Anti-inflammatory property of the
cannabinoid receptor-2-selective agonist JWH-133 in a rodent
model of autoimmune uveoretinitis. J Leukoc Biol 82(3):532–541

468 J Neuroimmune Pharmacol (2010) 5:456–468


	Immunoregulation of a CB2 Receptor Agonist in a Murine Model of NeuroAIDS
	Abstract
	Introduction
	Materials and methods
	Cells and viruses
	Hu-PBL/HIVE mice
	Drug treatment
	FACS analysis of splenocytes
	Viral load analysis
	Immunocytochemistry
	Real time RT-PCR
	Statistical analysis

	Results
	Hu-PBL/HIVE mice and cannabinoid receptor expression
	Cannabinoid receptor expression
	Human cells and HIV-1 viral load in the brain
	Brain inflammation
	Gp1a and survival
	CD4/CD8 T-cell numbers and FasL expression
	CCR5 receptor expression

	Discussion
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing false
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


