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Abstract A variety of studies have documented increased
presence of reactive microglia in the brains of not only
Alzheimer’s disease (AD) patients but its transgenic mouse
models. Since these cells are often characterized in associ-
ation with fibrillar Aβ peptide-containing plaques, it has
been assumed that plaque interaction provides one stimulus
for the phenotype observed. The growing appreciation that
microglia phenotype changes with age and that resident
immune cells are comingled with blood-derived macrophage
has complicated understanding of the behavior of these cells
in AD. In addition, comparison of microglia within AD
brains and the many rodent models suggests that there are
population phenotype differences among these cells within
any given brain during disease. Recent immunomodulatory
strategies that have been employed, although effective at
improving behavioral performance, decreasing Aβ plaque
load, and altering immune molecule levels, have not yet
resolved the details and dynamics of the microglial and
macrophage responses. The heterogeneity of microglial
presentation in AD brains and its transgenic mouse models
and the outcomes of immunoregulatory efforts will be
reviewed below along with the remaining question of how
much understanding of microglial behavior is actually
required in order to propose a microglia-related therapy
for AD.
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Reactive microglia are present within the AD brain

Increased numbers of morphologically reactive microglia
are a well-characterized histological observation from
Alzheimer’s disease (AD) brains compared to nondemented
controls (Akiyama and McGeer 1990; Cras et al. 1990;
McGeer et al. 1987; Styren et al. 1990). These have
commonly been described in both white and gray matter
with gray matter microglia often reported in association
with compact Aβ peptide-containing plaques (Itagaki et al.
1989; Mackenzie et al. 1995; Mattiace et al. 1990; Sasaki et
al. 1997). The majority of morphologically reactive micro-
glia are within and around compact plaques but a small
percentage of diffuse plaques also have associated, mor-
phologically distinct microglia (Akiyama et al. 1999;
Itagaki et al. 1989; Mackenzie et al. 1995; Mattiace et al.
1990; Sasaki et al. 1997). Ultrastructural analyses have
demonstrated finger-like projections from individual micro-
glia surrounding fibrillar Aβ within compact plaques,
suggesting that a very specific microglia–fibril interaction
occurs (Perlmutter et al. 1990; Wisniewski et al. 1992).
These types of data have helped support the notion that
microglia respond to fibrillar Aβ plaque deposition and the
resultant changes in their phenotype are a component of
disease progression.

However, several observations support the idea that
microgliosis may actually be an early component of the
disease process and not necessarily dependent upon Aβ
plaque interaction as a stimulus. It has been reported that
numbers of ferritin-immunoreactive microglia in the frontal
cortex do not correlate with the age of onset or duration of
disease allowing Hayes et al. (2002) to conclude that
microgliosis is an early occurring event. A similar report of
increased HLA-DR-immunoreactive microglia in probable
AD cases versus control brains compared to no difference
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for glial fibrillary acidic protein-immunoreactive astrocytes
again suggests that microglial phenotype changes may
begin early in disease progression (Vehmas et al. 2003). An
earlier study following four AD patients from biopsy to
autopsy over the course of nearly a decade demonstrated
that, although plaque and tangle load increased in two of
the four samples, increased microgliosis only occurred in
one of them in spite of progressive cognitive decline for all
(Di Patre et al. 1999). Also, increased microglial immuno-
reactivity for HLA-DR is reportedly unique to mild to
moderate AD brains compared to high plaque pathology
nondemented controls and total reactive microglial load
correlated inversely with performance on the mini mental
status exam (Parachikova et al. 2007). These data demon-
strate via immunodetection that elevated levels of micro-
gliosis have been characterized in early or probable disease,
end-stage disease, as well as, in a more limited fashion,
progressive disease versus controls. On the other hand,
microgliosis does not appear to be exquisitely dependent
upon plaque deposition nor is it an absolute requirement for
all cases of cognitive decline. When considering this
ambiguity, it is important to consider that different brain
region comparisons from study to study as well as different
microglial and plaque detection strategies may well
influence the conclusions drawn regarding microgliosis.

Recent imaging studies to visualize microglia have
helped to clarify the relationship between microgliosis,
disease progression, and plaque deposition that has
remained unclear from the immunohistology. For example,
positron emission tomography (PET) imaging to visualize
reactive microglia via binding to ligands for the peripheral
benzodiazepine binding receptor have demonstrated that
reactive microglial load increases in AD versus control
brains and does directly correlate with degree of cognitive
deficit (Cagnin et al. 2001; Versijpt et al. 2003). This
finding supports the limited immunohistological analysis
described above (Di Patre et al. 1999) demonstrating that
progressive microgliosis directly correlates with disease
progression in some cases. Moreover, Edison et al. (2008),
again using PET imaging, demonstrated that mini mental
status exam scores correlated inversely with activated
microglial density rather than plaque load in AD patients.
Similar to conclusions drawn from immunodetection
studies (Parachikova et al. 2007), this data suggests that
microglial activation, at least as assessed by peripheral
benzodiazepine binding receptor ligand interaction, can be
independent of fibrillar Aβ interaction. Finally, a very
recent additional PET study imaged reactive microglial load
versus fibrillar amyloid burden in patients with mild
cognitive impairment versus AD and control patients. The
authors observed increased amyloid burden comparable to
AD patients in seven out of 14 impaired individuals while
only five out of 13 impaired individuals had increased

reactive microglia load comparable to AD brains (Okello et
al. 2009). Moreover, only three of these five had elevated
amyloid burden comparable to those found in compared
AD brains (Okello et al. 2009). Therefore, using the method
of PET-based microglial detection, the data again supports
the idea that microgliosis is increased in AD versus control
brains but is not exclusively tied to plaque deposition and is
not definitively required for all cases of AD-related
behavioral decline. Although these recent imaging data
are limited to assessing microgliosis via one method of
detection, the studies support the idea that microglial
phenotype changes are a component of the disease process
and the source of their activation may be somewhat
heterogeneous in nature.

This complexity of microglial response with regard to
plaque load suggests that the stimuli for microglial
phenotype change and microglial-mediated contribution to
the disease process has yet to be fully determined. For
example, it appears that there is nothing particularly unique
about the Aβ fibril itself with regard to ability to stimulate
microglia. Miyazono et al. (1991) have assessed another
compact plaque pathology in kuru brains unrelated to Aβ
fibrils and demonstrated abundant, associated reactive
microglia. These results indicate that fibrillar extracellular
aggregates, per se, rather than Aβ uniquely, are a potent
source of microglial activation (Miyazono et al. 1991). On
the other hand, Shepherd et al. (2000, 2005) compared
early onset AD brains related to mutations in presenilin 1
(PS1) to sporadic AD brains to demonstrate no correlation
between the unique, Aβ-negative “inflammatory” plaque
pathology with abundant reactive microglia, in early onset
disease and the degree of neuron loss, in spite of the
significantly greater degree of neuron loss present in early
onset versus sporadic disease brains. This suggests that
microglia activation to fibrillar aggregates, per se, is also
not necessarily contributing to neurodegeneration.

Independent of this possible ambiguity regarding the
source of microglial stimulation in AD and the resultant
effects on disease process, it has also become increasingly
clearer that there is a normal age-associated dystrophy of
subpopulations of HLA-DR-immunoreactive microglia in
the brain that is independent of plaque association (Lopes et
al. 2008; Streit et al. 2004). This suggests that Aβ-
dependent or Aβ-independent microglial activation during
disease is superimposed upon concomitant age-associated
changes. Additional methods of detecting microglia have
provided essentially the same conclusion that specific
microglial phenotypes exist independent of fibrillar amyloid
interaction. For instance, laminar distribution of IL-1α-
immunoreactive microglia in the human brain parallels the
eventual distribution of neuritic plaques in disease (Sheng
et al. 1998). Similarly, Sheffield et al. (2000) demonstrated
that microglial distribution visualized by Ricinus communic
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agglutinin-1 labeling also predicts the eventual distribution
not of plaques but of neurofibrillary tangle pathology.
Collectively, there appears overwhelming evidence that
microglial activation is a component of the AD process.
The necessary details of determining variability in the
nature of the response, the stimulus for the response, the
ensuing consequences of the response, and the necessity of
the response for neuron loss remain viable questions.

Reactive microglia are present in the brains of AD
transgenic mouse models

Animal studies offer the potential, at least, to begin
answering these temporal and mechanistic questions raised
by the data collected from human studies. In particular, a
reasonable approach has been to turn to the many available
transgenic mouse models of AD to attempt to define the
role of microglial activation in the disease process. Since
these transgenic animal models are, by design, the result of
exogenous expression of a mutant human protein(s) linked
to early onset disease, they present the potential caveat of
representing the rarer early onset form of disease rather than
the majority sporadic form. Nevertheless, it has been noted
that microglia phenotype, as assessed by varying immuno-
detection choices, is quite diverse in response to mutant
protein expression in the various transgenic models
(Morgan et al. 2005). This is a conclusion not entirely
different from those drawn above based upon data from
human studies. Therefore, with regard to the complexity of
microglial response, both plaque-related and nonplaque-
related, the transgenic animals appear a reasonable model
for study.

Without reiterating the summary of prior reviews
documenting the microglia phenotype changes in the AD
mouse models, a few comparisons will be made to the
human disease with particular attention to the issue of
microglia–plaque association. In general, observations
regarding whether or not microglia associate with amyloid
plaques are similar between human disease and the mouse
models. For instance, using the Tg2576 transgenic line at
10–16 months of age expressing the human APP695 double
Swedish mutation (K670N, M671L, APP770 numbering)
under the control of the hamster prion promoter, Frautschy
et al. (1998) described increased phosphotyrosine-
immunoreactive microglial density and size that decreased
with distance away from fibrillar plaques. Similar plaque-
associated microgliosis has been reported from this same
line using antibodies recognizing CD45 and CD11b
(Benzing et al. 1999). These animals develop particularly
large amyloid plaques that are associated with increasing
numbers of microglia with size (Sasaki et al. 2002; Wegiel
et al. 2001, 2003). Similar findings were reported by

Stalder et al. (1999) using the APP23 transgenic mouse
that also expresses the human APP Swedish familial
double mutation but under the control of the neuron
specific Thy-1 promoter. Importantly, however, this study
documented no association of reactive microglia with
diffuse Aβ-immunoreactive plaques in the APP23 line
(Stalder et al. 1999). This is in contrast to findings from
human brain demonstrating that some microglia are
associated with diffuse plaques (Akiyama and McGeer
1990; Itagaki et al. 1989; Mackenzie et al. 1995; Mattiace
et al. 1990; Sasaki et al. 1997). A further separation from
human disease was demonstrated by Schwab et al. (2004)
using the APP23 line in which they demonstrated weakly
CD11b-immunoreactive microglia surrounding the amyloid
plaques in the mouse brain compared to strongly CD11b-
immunoreactive microglia invested within plaques in human
disease. Similarly, the plaques themselves in this mouse line
differed dramatically with respect to several complement
protein immunoreactivities when compared to human brains
(Schwab et al. 2004). Nevertheless, ultrastructural analysis of
plaque-associated microglia from the APP23 mice do
demonstrate microglia with channel-like or finger-like
extensions around Aβ fibrils similar to findings reported in
the human brain (Stalder et al. 2001). This demonstrates that,
although there may be some differences in specific
immunoreactivity-based phenotypes, the microglia in the
mouse models may be interacting with fibrils in a fashion
similar to that occurring in human disease thus offering
tentative validation of these models.

In support of continued use of the transgenic models
to assess microgliosis, Matsuoka et al. (2001) demon-
strated that CD11b-immunoreactive microglia associate
with diffuse as well as compact plaques when the Tg2576
line was crossed with a mutant presenilin 1 (PS1M146L)
mouse. Two recent in vivo multiphoton imaging studies
have offered rather definitive evidence of the ability of
microglia to associate with fibrillar amyloid. Using
PDAPP mice which express a human APP minigene
encoding the APPV717F mutation under the control of the
platelet-derived growth factor-β promoter (Games et al.
1995) crossed to a mouse with a targeted deletion of the
CX3CR1 fractalkine receptor replaced with green fluorescent
protein (Jung et al. 2000), Meyer-Luehmann et al. (2008)
demonstrated that plaques, both large and small diameter,
form within a 24-h period followed by subsequent, rapid
recruitment of microglia. However, using the same crossed
line, Koenigsknecht-Talboo et al. (2008) demonstrated that
microglia from 14- to 17-month-old mice compared to 3.5- to
6.5-month-old mice are less motile with fewer processes
regardless of whether they are plaque-associated or not.
Moreover, in this same study, the authors document that
microglia that are directly plaque-associated are highly
CD45-immunoreactive after passive immunization compared
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to those further away (Koenigsknecht-Talboo et al. 2008).
These data once again suggest that microglia are heteroge-
neous in nature both physiologically and during disease, not
entirely different from the conclusions drawn from human
data. More importantly, however, is the possibility that all
transgenic mouse models may not be the same with regard to
microglial activation state and response to fibrillar or diffuse
plaque deposition. These possible differences based upon
animal background or particular transgene expression strategy
indicates that a specific temporal and spatial comparison with
multiple assessments of microglial phenotype change across
the various transgenic lines may ultimately be required to
identify a model closest to human disease.

Modulating microglial phenotype to improve disease
conditions in humans

In spite of the fact that the actual stimulating ligand(s) for
microglial activation in the AD brain may be diverse and
change with age and the possibility that transgenic mouse
models may differ with respect to their own mechanisms
and profile of microgliosis, it is generally accepted, based
upon the preponderance of evidence, that microglia both in
human brain and the mouse models exhibit some form of
reactive phenotype when associated with the compact
amyloid deposits. Therefore, the proximity of the cells to
what appears to be undigested, extracellular Aβ aggregates
has prompted the rationale to alter microglial phenotype in
favor of increased phagocytic potential. Schenk et al.
(1999) demonstrated the feasibility of using an Aβ
immunization approach to attenuate both diffuse and
compact Aβ-immunoreactive plaques in parallel with an
increase in Aβ-immunoreactive, MHCII-positive microglia
in the PDAPP mice suggesting stimulated microglial
uptake. The logical extension of this approach was to
attempt similar results by immunizing AD patients against
Aβ peptide, termed AN-1792 (Schenk 2002). The double-
blind phase II trial was terminated early due to what is
believed to have been onset of aseptic meningoencephalitis
in ultimately 18 of the treated patients (Orgogozo et al.
2003). However, the limited amount of histological analysis
performed does indicate that immunization produced a
decrease in parenchymal rather than vascular fibrillar
plaque load in parallel with an increase in Aβ-
immunoreactive microglia consistent with phagocytic up-
take (Ferrer et al. 2004; Masliah et al. 2005; Nicoll et al.
2003). Although the mechanism remains unclear, it is
intriguing to speculate that the beneficial effect may have
been due, in part, to microglial-dependent phagocytosis of
opsonized plaques simultaneously clearing fibrillar aggre-
gates from the brain and altering the phenotype of the
microglia involved. This tantalizing data supports the idea

that it may not be entirely necessary to understand the
complexity of microglial behavior during disease in order
to harness their responses to provide a measurable,
therapeutic outcome such as plaque clearance.

Modulating microglial phenotype to improve disease
conditions in AD transgenic mouse models

Based upon the presumed mechanisms of altering microglial
behavior to promote plaque clearance after immunization, a
plethora of microglial modulatory strategies have ensued in
recent years with a common goal of decreasing fibrillar plaque
load, minimizing markers of inflammatory change, and
improving behavioral performance. Aβ vaccination, both
active and passive, has been a logical and largely successful
strategy to carry out exactly these goals. This has been the
subject of many prior reviews and, therefore, will not be
discussed at length (Brody and Holtzman 2008; Hawkes and
McLaurin 2007; Maier et al. 2005; Morgan 2006; Okura and
Matsumoto 2007; Schenk et al. 2005; Steinitz 2008).
However, several recent rodent studies have either attempted
to directly modulate microglial phenotype or have concluded
that changes in microglial phenotype contribute to altered
plaque load or inflammatory state in the brain independent of
any active or passive vaccination strategy (Ding et al. 2008;
El Khoury et al. 2007; Jiang et al. 2008; Jin et al. 2008; Li et
al. 2008; Maier et al. 2008; Nichol et al. 2008; Richard et al.
2008; Scholtzova et al. 2009; Shaftel et al. 2007; Town et al.
2008). It is important to note that, these studies, in line with
the immunization approaches, have directly or indirectly
sought to alter microglial behavior rather than generally
inhibit it. This is likely a reflection of the growing
appreciation, as already mentioned, of the intrinsic hetero-
geneity of microglial response during disease.

For example, several studies have documented what
appears to be a varied phenotype with age and disease in
the transgenic mouse models. Using an APP/PS1 mouse
line coexpressing a humanized Swedish amyloid precursor
protein mutation (APP695SWE) and an exon 9 deletion
variant of human presenilin 1 (PSEN1/dE9) under the
control of the mouse prion promoter, Hickman et al. (2008)
demonstrated that, between 1.5 and 8 months of age,
microglial mRNA for several putative Aβ fibril-interacting
proteins decrease with age in both wild-type and mutant
animals. However, mutant animals had a significantly
decreased level compared to wild-type controls indicating,
once again, that age-associated changes are superimposed
upon events occurring during disease (Hickman et al.
2008). Microglial mRNA for Aβ-degrading enzymes also
decreased significantly in mutant versus control animals
over this time period (Hickman et al. 2008). Jimenez et al.
(2008) used a different mouse line expressing human
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mutant APP with the Swedish double and London (V642I)
mutations under the control of the mouse Thy-1 promoter
and human mutant presenilin 1 (PS1M146L) driven by the
HMG-CoA reductase promoter to demonstrate a related
observation of temporally changing immune state in the
brain with age and disease. Real-time reverse transcription
polymerase chain reaction (RT-PCR) analysis of whole-
brain RNA demonstrated increased levels of chitinase
3-like 3 (YM-1) message, a putative alternative activation
phenotype marker in peripheral macrophage, at 6 months of
age maintained until 18 months of age (Jimenez et al.
2008). However, classic inflammatory markers, such as
mRNA for TNFα, were only increased at 18 months of age
(Jimenez et al. 2008). Immunolocalization at 18 months
demonstrated that YM-1-positive cells were microglia
exclusively surrounding and infiltrating the plaques while
TNFα-positive cells were microglia that were not directly
associated with plaques (Jimenez et al. 2008). This increase
in TNFα-positive, YM-1-negative microglia with age
corresponded to an increase in IL-4-immunoreactive, Th2-
type CD3+ T cells in the aged animals (Jimenez et al. 2008).
Finally, Colton et al. (2006) also demonstrated by RT-PCR,
this time from Tg2576 mice and AD brains, that mRNA for
TNFα and alternative activation genes, arginase I, mannose
receptor, and chitinase 3-like 3 (YM-1 in mice), and
chitinase 3-like 1 and 2 (CHI3L1 and CHI3L2 in humans)
were increased compared to wild-type mice and non-
demented controls, respectively. Collectively, these data
support the growing notion that microglial phenotype
changes during disease and microglia are heterogeneously
activated at any given point in the process.

However, as the vaccination strategies have proven, it
is not necessary to entirely define microglial behavior to
begin altering it to offer quantifiable, therapeutically
attractive outcomes. For example, treatment of the prion
promoter-driven APP/PS1 line with all-trans retinoic acid
during 5–7 months of age resulted in a decrease in Iba-I-
immunoreactive microglial volume and density in corre-
lation with a decrease in Aβ plaque volume, neuronal
marker protein loss, and spatial memory deterioration
(Ding et al. 2008). One possible explanation for the
therapeutic benefit was the suggested anti-inflammatory
action of all-trans retinoic acid on microglia (Dheen et al.
2005). In another study, Maier et al. (2008) used mice
deficient for complement protein 3 (C3−/−) but expressing
platelet-derived growth factor promoter-driven human
APP with both the Swedish (K670N, M671L) and Indiana
(V717F) mutations and compared them to animals that
expressed endogenous C3 levels and the mutant APP. The
authors demonstrated that microglia at 17 months but not
8 or 12 months of age had increased immunoreactivity for
CD45 in the mutant APP;C3−/− animals compared to
animals expressing mutant APP alone (Maier et al. 2008).

Interestingly, immunoreactivity for CD68 or Iba1, other
common microglial markers, demonstrated no significant
differences across the two lines (Maier et al. 2008). This
change in microglial immunoreactivity correlated with
increased IL-4 but decreased iNOS and TNFα levels in
the APP;C3−/− animals compared to the mice expressing
mutant APP alone (Maier et al. 2008). The microglial
changes also correlated with increased Aβ plaque load in
the 17-month-old APP;C3−/− animals compared to the
mutant APP alone expressing mice (Maier et al. 2008). The
authors suggested that one possibility for the changes in Aβ
load might be due to decreased microglial uptake via
decreased complement-mediated opsonization of plaques.
Another study by Li et al. (2008) crossed a G protein-
coupled receptor (GPCR) kinase 5 knockout (GRK5) mouse
with the Tg2576 line to demonstrate that animals hemizy-
gous for the knockout had increased amounts of CD45-
immunoreactive microglia compared to the Tg2576 line
alone at 18 months of age. A suggested mechanism for the
increased microgliosis was that a loss of the dampening
effect of the GRK5 on GPCR signaling had occurred in
microglia. An additional microglial modulatory strategy was
suggested by Jiang et al. (2008) in which the Tg2576 mouse
line was treated with the liver X receptor (LXR) agonist,
GW3965, from 12 to 16 months of age to decrease plaque
load and improve contextual memory. These changes
correlated with an increased ability of microglia to degrade
Aβ both intracellularly and extracellularly upon stimulation
of the LXR (Jiang et al. 2008).

Other microglial modulatory strategies and interpreted
outcomes in the rodent models have been complicated by
the possibility that the heterogeneity of microglial phenotype
is a combination of resident microglial behavior and that of
blood-derived macrophage migrating into the brain. For
instance, Butovsky et al. (2007) demonstrated, using the
prion promoter-driven APP/PS1 line crossed to animals with
CDllc promoter-driven expression of human diphtheria toxin
receptor–green fluorescent protein fusion protein, that T cell-
based immunization with glatiramer acetate stimulated an
increase in CDllc-positive blood-derived macrophage into
the brain as an essential component of a subsequent decrease
in plaque load. Another study using excisional activation of
IL-1β in the APP/PS1 line demonstrated that localized
expression of IL-1β in the hippocampus of these animals
from 6 to 7 months of age significantly decreased Congo
red-labeled plaque load and insoluble Aβ in conjunction
with increased numbers of Iba1-immunoreactive and
MCHII-immunoreactive microglia associated with plaques
in the IL-1β-overexpressing hippocampus compared to the
contralateral control (Shaftel et al. 2007). Interestingly, this
increase in plaque-associated microglia was again heteroge-
neous with a population that was MHCII/Iba1 double labeled
and a population that was Iba1-immunoreactive alone
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(Shaftel et al. 2007). The authors suggested the possibility
that the decrease in plaque load may have been due to
increased phagocytosis by resident microglia or increased
influx of blood-derived macrophage (Shaftel et al. 2007).
An additional therapeutic strategy employed 3-week
voluntary running wheel exercise for 17- to 19-month-
old Tg2576 mice that apparently also altered microglial
phenotype in conjunction with a decrease in soluble Aβ1–
40 levels and increased cognitive performance (Nichol et
al. 2008). Microglia from run versus sedentary Tg2576
animals displayed increased CD40, MHC, and CD11c
immunoreactivity in addition to decreased levels of TNFα
and IL-1β, supporting the idea that exercise promoted
acquisition of an alternative reactive phenotype (Nichol et
al. 2008). Much of this increased microglial marker
immunoreactivity was vascular-associated as well as
plaque-associated, supporting the conclusion that, not
only was an altered microglia phenotype induced by
exercise, but also increased infiltration of perivascular,
blood-derived macrophage (Nichol et al. 2008).

Other studies have assessed the consequences of altering
microglial phenotype to determine effects on Aβ deposition
and disease pathology in the mouse models by directly
altering microglial protein expression. For example, Town
et al. (2008) crossed a CD11c promoter-driven dominant-
negative TGF-β receptor-expressing mouse to the Tg2576
line to demonstrate that decreasing functional TGFβ
signaling in peripheral macrophage resulted in a significant
decrease in parenchymal and vascular Aβ deposition and
increase in infiltrating peripheral macrophage in 17- to 18-
month-old animals compared to the Tg2576 line alone. El
Khoury et al. (2007) arrived at a similar conclusion
regarding the importance of peripheral macrophage for
plaque clearance. The authors found that Tg2576 mice
crossed with animals deficient for CC-chemokine receptor
2 (Ccr2) resulted in earlier mortality, increased Aβ levels,
and decreased microglial activation compared to the parent
Tg2576 line. The authors also found a significant decrease
in CD45-immunoreactive blood-derived macrophage in the
Tg2576 Ccr2-deficient animals compared to the Tg2576
animals, suggesting that both resident microglia and
peripheral macrophage require Ccr2 stimulation for che-
motaxis into and within the brain to promote plaque
clearance (El Khoury et al. 2007). Decreased or mutant
expression of microglial/macrophage-related receptor, toll-
like receptor 2 (TLR2) and mutant expression of toll-like
receptor 4 (TLR4) in the prion promoter-driven APP/PS1
line resulted in increased Aβ accumulation compared to the
APP/PS1 line alone (Jin et al. 2008; Richard et al. 2008).
Importantly, expression of TLR2 via lentivirus in peripheral
macrophage was sufficient to rescue the TLR2-deficient
animals, again pointing towards a critical importance for
blood-derived cells in mechanisms of plaque clearance (Jin

et al. 2008; Richard et al. 2008). Also of importance is the
fact that increased reactive microglia in the mutant TLR4
APP/PS1 mice were highly CD11b-immunoreactive com-
pared to the APP/PS1 animals while there was no
difference in CD45 immunoreactivity between the lines
(Jin et al. 2008). Targeting an additional microglia-related
receptor in the brain, toll-like receptor 9 (TLR9) via
administration of TLR9 agonists to the Tg2576 line from
6 weeks to 16 months of age improved working memory
and decreased Aβ plaque load in both the parenchyma and
vasculature in a study by Scholtzova et al. (2009). More
importantly, these changes correlated with an overall
decrease in both CD45-immunoreactive and CD11b-
immunoreactive microglia but an increase in specifically
plaque-associated CD45-immunoreactive cells (Scholtzova
et al. 2009). Taken together, the growing consensus using
strategies that indirectly or directly affect microglial
phenotype is that the population of cells in the brain is a
combination of both resident microglia and newly recruited
blood-derived macrophage. Moreover, their responses
during various plaque reduction strategies are varied and
quite possibly distinct.

Immune changes are a component of AD

This recent demonstration of heterogeneity in the phenotype
of microglia not only within the diseased brain but also across
age in AD and its mouse models is not surprising, given the
fact the peripheral immune cell traffic into the brain appears to
be a potentially important part of both physiologic and
pathologic processes. Moreover, it is now appreciated that
microglia themselves have a heterogeneous morphology and
phenotype within the brain in addition to their migratory and
proliferative capacity. Therefore, a diverse, resident cell type
to begin with coupled with a vasculature-derived peripheral
influxing population of leukocytes lends full support to the
idea that any type of phagocyte-mediated immune response in
the brain has the potential to be quite heterogeneous. One
simplified scenario that may be occurring, for example, is that
microglial phenotype is altered early in disease via factors
independent of Aβ such as vascular-derived or glial-derived
cytokines or degenerating neuron-secreted factors. The
resultant phenotype change, coupled with a change in age-
dependent behavior, could then lead to an inability of the cells
to clear Aβ thus promoting fibrillar accumulation and plaque
deposition. The accumulated Aβ plaques could serve as an
additional microglial stimulus to nearby or attracted cells
again altering secretion and phenotype. This change could
include increased chemotactic recruitment of blood-derived
macrophage into the brain and plaques. The combined
secretory presence of resident microglia-derived and blood-
derived macrophage could now create yet another phenotype
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alteration in both cell types now that is a combination of age-
associated phenotype, brain versus peripheral leukocyte
phenotype, and all the various disease process-stimulated
phenotypes. Deciphering the temporal and specific details of
such a process is daunting yet likely necessary to answer the
question of how to increase phagocytic potential of microglia
or macrophage while decreasing secretion of proinflammatory
factors. Encouragingly, there appears to be significant
supporting evidence that microglia/macrophage activation
and the coincident changes in immune mediator status in the
brain remains an integral characteristic of AD. For example,
when brains of AD patients are compared to those of
individuals with mixed dementia or vascular dementia alone,
the proinflammatory environment of AD appears unique.
Increased IL-1β levels are a characteristic of AD versus
vascular dementia (Cacabelos et al. 1994). Indeed, in contrast
to an overall impression of increased proinflammatory
cytokines in brains of AD patients, gray and white matter
quantitation from vascular and mixed dementia patients
indicates decreased levels of MCP-1 and IL-6 compared to
nondemented controls (Mulugeta et al. 2008). In fact, a
population-based cohort study by in in t’ Veld et al. (2001)
demonstrated that long-term nonsteroidal anti-inflammatory
drug (NSAID) use decreased the risk for developing AD but
not vascular dementia again supporting the idea that immune
changes, likely involving microglia and macrophage, are
central to the AD process. More importantly, a more recent
cohort study by Szekely et al. (2008) found that NSAID use
reduced the risk of preferentially AD versus vascular
dementia but only in those individuals with an APOE ε4
allele. This data indicates, as has been reiterated from the
many microglial-related findings reviewed above, that the
heterogeneity of the inflammatory response in AD and its
mechanistic contribution to disease has yet to be fully
resolved. As the human Aβ vaccination strategies have
suggested, it may not ultimately be necessary to fully
understand the subtleties of microglial behavior in AD for
a beneficial therapeutic strategy to arise. However, should
these overall immunomodulatory efforts fail to produce a
beneficial outcome for disease therapy, a specific, targeted
strategy for altering microglial behavior could be proposed
when further biology of these cells is resolved during normal
aging and disease.
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