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Abstract Proinflammatory cytokines and chemokines have
been implicated in the pathogenesis of several neurological
and neurodegenerative disorders. Prominent among such
factors is the pleiotropic cytokine, tumor necrosis factor
(TNF)-!. Under normal physiological conditions, TNF-!
orchestrates a diverse array of functions involved in
immune surveillance and defense, cellular homeostasis,
and protection against certain neurological insults. Howev-
er, paradoxical effects of this cytokine have been observed.
TNF-! is elicited in the brain following injury (ischemia,
trauma), infection (HIV, meningitis), neurodegeneration
(Alzheimer’s, Parkinson’s), and chemically induced neuro-
toxicity. The multifarious identity for this cytokine appears
to be influenced by several mechanisms. Among the most
prominent are the regulation of TNF!-induced NF-kB
activation by adapter proteins such as TRADD and TRAF,
and second, the heterogeneity of microglia and their
distribution pattern across brain regions. Here, we review
the differential role of TNF-! in response to brain injury,
with emphasis on neurodegeneration, and discuss the
possible mechanisms for such diverse and region-specific
effects.
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Abbreviations
3-NP 3-nitropropionic acid
6-OHDA 6-hydroxydopamine
Aβ amyloid beta peptide
AD Alzheimer’s disease
BBB blood–brain barrier
Bcl2 B-cell CLL/lymphoma 2
BCSFB blood–cerebrospinal fluid barrier
BRE brain and reproductive organ expressed gene
CER cerebellum
CNS central nervous system
CSF cerebrospinal fluid
CTX cortex
DD death domain
DENN differentially expressed in normal

versus neoplastic
EAE experimental allergic encephalomyelitis
FADD Fas-associated death domain
HIP Hippocampus
HIV human immunodeficiency virus
MADD mitogen-activated protein

kinase-activating death domain
MCAO middle cerebral artery occlusion
MDMA 3,4-methylenedioxymethamphetamine
METH methamphetamine
MHC major histocompatibility complex
MK-801 (+)-5-methyl-10,11-dihydro-5H-dibenzo

[a,d]cyclohepten-5,10-imine maleate
MnSOD manganese superoxide dismutase
MPTP 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine
MS multiple sclerosis
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NFkB nuclear factor kappa B
NIK nuclear factor kappa B

inducing kinase
NMDA N-methyl-D-aspartic acid
PD Parkinson’s disease
RIP receptor-interacting protein
TACE TNF-! converting enzyme
TNF tumor necrosis factor
TNFR tumor necrosis factor receptor
TNFR-
DKO

tumor necrosis factor receptor
double knockout

TRADD TNF receptor-associated death domain
TRAF TNF receptor-associated factor
TRIP TRAF-interacting protein

Introduction

In the central nervous system (CNS), the proinflammatory
cytokine TNF-! is considered the principal mediator of
neuroinflammation that elicits a cascade of cellular events
culminating in neuronal death. At the same time, TNF-!
affords neuroprotection in certain neurological conditions.
Thus, TNF-! appears to exhibit a dual role in the brain, and
such effects appear to vary across brain areas, thereby,
complicating the understanding of this double-edged
cytokine. Here, we review from literature, the neurotoxic
and neuroprotective roles of this proinflammatory cytokine,
survey the regional selectivity of its action, and discuss the
possible mechanisms by which TNF-! mediates its
conflicting effects in the CNS.

Proinflammatory responses in the brain

Brain immune and inflammatory responses occur as a
consequence of microglial activation. The magnitude of the
neuroinflammatory response elicited depends on the spec-
trum of inflammatory mediators that are produced by neural
cells in response to an insult. Cytokines, chemokines,
prostaglandins, free radicals, pentraxins, complement com-
ponents, anaphylotoxins, proteases, and adhesion molecules
are among the several factors that mediate neuroinflamma-
tion (McGeer and McGeer 2004; Minghetti 2005). Neural
injury can serve both as a cause and/or a consequence of
cytokine or chemokine signaling. Cytokines are a family of
low molecular weight, multifunctional pleiotrophic poly-
peptides that regulate cell activation, proliferation, and
differentiation. Chemokines (chemoattractant cytokines) are
low molecular weight (8–11 kDa) glycoproteins with
potent leukocyte activation and chemotactic activity. In
addition, they are known to play a role in cell cycle
regulation and differentiation. Both cytokines and chemo-

kines initiate and promulgate inflammatory reactions. The
actions of such proinflammatory mediators contribute to
manifestation of neurological (e.g., stroke), neurodegenerative
(e.g., Parkinson’s disease, Alzheimer’s disease), infectious
(e.g., HIV-1, bacterial or viral meningitis, cerebral malaria),
autoimmune disease (e.g., multiple sclerosis) and chemically
induced (MPTP, methamphetamine, kainic acid, 6-
hydroxydopamine) neurotoxic conditions (Francis et al.
1995; Bruce et al. 1996; Seilhean et al. 1997; Munoz-
Fernandez and Fresno 1998; Gartner and Liu 2002; Sriram
et al. 2002a; McGeer and McGeer 2004; Minghetti 2005;
Sriram et al. 2006a, b).

Sources of proinflammatory factors in the brain

The CNS has for long been regarded as an immune
privileged organ, with the blood–brain barrier (BBB)
tightly regulating the influx of immune cells and mediators
from the vascular compartment to the brain parenchyma
(Perry 1998). However, recent studies have shown that
immune cells do migrate across the BBB and blood–
cerebrospinal fluid barrier (BCSFB), albeit at very low
levels, suggesting that immune surveillance can occur in the
brain (Engelhardt 2006). Under normal physiological
conditions, this immune cell entry is passive, due to the
lack of antigenic presentation from major histocompatibility
antigen (MHC) molecules. Furthermore, the unique CNS
microenvironment regulates immune responses and migra-
tion of immune cells into the brain. However, under
pathological conditions, immunocompetent cells can read-
ily migrate across the endothelial BBB and epithelial
BCSFB and enter the brain parenchyma.

This immune cell influx, during local infections and
neuropathological event, is thought to be elicited by glial
cells, especially the microglia. Mounting evidence indicate
that microglia, in addition to their phagocytic function, gain
antigen-presenting capabilities through expression of MHC
components (Aloisi 2001; Carson et al. 2006). Microglia
and astrocytes, the major glial cell types in the brain, become
“activated” or “reactive” in response to diverse insults of the
CNS (Table 1) and elicit a myriad of proinflammatory
cytokines, chemokines, and trophic factors to render neural
immunity (Raivich et al. 1996; Ransohoff et al. 1996; Stoll
and Jander 1999). Microglia function as the microsensors of
the brain and play an important role in detecting subtle
changes in the neuronal microenvironment (Kreutzberg
1996). Both microglia and astrocytes express and release
inflammatory mediators following brain injury, as seen in
neurological and neurodegenerative disorders (Dickson et al.
1993; McGeer and McGeer 1998; Masliah and LiCastro
2000; Vila et al. 2001), and following experimental brain
injury (Fan et al. 1996; Sriram et al. 2002a, 2006a, b).
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Table 1 Neuronal injury is associated with glial activation

CNS disease or injury conditions associated with microglial and astroglial activation

Disease/injury condition Brain area affected Reference

Neurologic conditions
Alzheimer’s disease Cerebellum, cortex Wierzba-Bobrowicz et al. 2002
Alzheimer’s disease Cortex Versijpt et al. 2003
Amyotrophic lateral sclerosis Cortex, hippocampus Wilson et al. 2001
Creutzfeldt-Jakob disease Cerebellum, cortex Gray et al. 1999
Creutzfeldt-Jakob disease Cortex Aoki et al. 1999
Multiple sclerosis Cortex Petzold et al. 2002
Parkinson’s disease Substantia nigra Banati et al. 1998
Parkinson’s disease Substantia nigra Hirsch et al. 2003

CNS Infections
Bacterial infection (pneumococcal) Hippocampus Gianinazzi et al. 2003
Bacterial infection (streptococcal) Cortex, hippocampus Bogdan et al. 1997
Viral infection (dengue) Cortex, hippocampus Sanchez-Burgos et al. 2004
Viral infection (HIV) Basal ganglia Persidsky et al. 2001
Viral infection (HIV) Cortex, basal ganglia Seilhean et al. 1997
Viral infection (HIV) Cortex, hippocampus Vanzani et al. 2006
Viral infection (Measle) Cortex, hippocampus Manchester et al. 1999
Viral infection (Rabies) Hippocampus, thalamus Marquette et al. 1996

Brain injury
Cerebellar stab injury Cerebellum Ajtai and Kalman 1998
Closed head injury Brain wide Engel et al. 1996
Cortical stab injury Cortex Krum et al. 2002
Cortical stab injury Cortex Isono et al. 2003
Facial nerve lesion Cortex Laskawi et al. 1997
Forebrain stab lesion Hippocampus Carbonell and Mandell 2003
Hippocampal stab wound Hippocampus Zhu et al. 2003
Mild focal brain ischemia Striatum Katchanov et al. 2003
Severe focal brain ischemia Cortex Cheung et al. 1999
Transient global ischemia Hippocampus Soltys et al. 2003
Transient MCAO Substantia nigra Dihne and Block 2001
Transient MCAO Cortex, hippocampus Butler et al. 2002

Toxic/chemical agents
3-nitropropionic acid Striatum Teunissen et al. 2001
3-nitropropionic acid Striatum Ryu et al. 2003
6-hydroxydopamine Striatum Rodrigues et al. 2001
6-hydroxydopamine Substantia nigra Depino et al. 2003
Kainic acid Hippocampus Sriram et al. 2002b
Kainic acid Hippocampus Chung and Han 2003
Kainic acid Hippocampus Benkovic et al. 2004, 2006
Lipopolysaccharide Substantia nigra Arimoto and Bing 2003
MDMA Striatum Johnson et al. 2002
Methamphetamine Striatum Asanuma et al. 2003
Methamphetamine Striatum Sriram et al. 2002b, 2006b
Methamphetamine Striatum Thomas et al. 2004
MPTP Striatum Sriram et al. 2002a, 2006a, b
MPTP Substantia nigra Cardenas and Bolin 2003
MPTP Substantia nigra McGeer et al. 2003
Quinolinic acid Striatum Schiefer et al. 1998
Quinolinic acid Striatum, Substantia nigra Dihne et al. 2001
Rotenone Striatum, Substantia nigra Sherer et al. 2003
Trimethyltin Hippocampus Fiedorowicz et al. 2001
Trimethyltin Hippocampus Little et al. 2002

Evidence for in vivo microglial and astroglial activation, following disease, injury or exposure to chemical agents is presented.
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Tumor necrosis factor (TNF)-!

TNF-! is synthesized as a 26-kDa membrane-bound
polypeptide precursor that is cleaved by proteolysis to a
17-kDa subunit. The synthesis and secretion of TNF-! is
regulated by TNF-! converting enzyme (TACE), a protein-
ase that is responsible for cleavage of TNF-! at the
membrane surface. Upon cleavage, TNF-! is released as a
bioactive homotrimer, which then exerts its effects in an
autocrine and/or paracrine fashion. The biological actions
of TNF-! are mediated through two distinct cell surface
receptors, TNFR1 (p55) and TNFR2 (p75), to which it
exhibits fairly equal affinity. Despite the fact that each TNF
receptor mediates distinct cellular responses, there is
considerable overlap of their signaling capabilities in
mediating biological effects (Hsu et al. 1996; Declercq
et al. 1998; Quintana et al. 2005). The differential patterns
of localization of TNF receptors on neuronal or glial cells,
their expression profile and activational state on these cells,
and the down-stream effectors that they activate, are
thought to play a critical role in determining if TNF-! will
have a protective or cytotoxic role (Dopp et al. 1997,
Sairanen et al. 2001, Fontaine et al. 2002; Dziewulska and
Mossakowski 2003, Akassoglou et al. 2003). TNF recep-
tors are members of the TNF superfamily and mediate
signals via recruitment and inhibition of adapter proteins.
Briefly, upon receptor activation, the adapter proteins,
TNFR-associated death protein (TRADD) and differentially
expressed normal versus neoplastic/MAPK activating death
domain (DENN/MADD) bind to TNFR through the death
domains (DD). Subsequently, Fas-associated death domain
(FADD), receptor-interacting protein (RIP) and/or TNFR-
associated factors (TRAFs) are recruited to promote physio-
logical actions (see recent reviews, Aggarwal 2003; Hehlgans
and Pfeffer 2005).

To delineate the beneficial and detrimental effects of
TNF-! in the brain and to better understand its mechanisms
of action, we review from literature the neurotoxic and
neuroprotective roles of this proinflammatory cytokine and
discuss the factors that may potentially influence its
divergent actions.

Neurotoxic effects of TNF-a

TNF-! can be potently induced following brain injury and
promote neuroinflammation and neurodegeneration. Ele-
vated levels of this cytokine have been associated with
the pathological effects of a variety of infectious, neuro-
logical, neurodegenerative, and neurotoxic conditions.
Infectious diseases of the CNS are of bacterial or viral
origin and affect the meninges (e.g., bacterial meningitis) or
the parenchyma (e.g., viral encephalitis), respectively.

Increased levels of TNF-! were detected in the CSF of
patients with meningitis of bacterial but not viral origin.
Elevated levels of TNF-! have been observed in the brain,
cerebrospinal fluid (CSF), and serum of patients with
Alzheimer’s disease (AD), Parkinson’s disease (PD),
multiple sclerosis (MS) and HIV-dementia, and following
brain injury and chemical-induced neurotoxicity (see
Table 2 for a listing of various studies documenting the
neurotoxic effects of TNF-!).

In patients with AD, amyloid plaques characterized by
in-filtered microglia were found to express high levels of
TNF-! (Dickson et al. 1993; Eikelenboom et al. 2000).
Late-onset AD is associated with three TNF polymor-
phisms: a-308 TNF promoter polymorphism, a-238 TNF
promoter polymorphism, and a microsatellite TNF-!, which
form a 2-1-2 haplotype (Collins et al. 2000). In experimen-
tal models of AD, β-amyloid triggers microglial activation
and elicits the expression of TNF-! (Meda et al. 1995).
Similarly, in a triple transgenic AD (3xTg-AD) mouse
model, characterized by amyloid and neurofibrillary tangle
deposition, neuroinflammatory responses occurred very
early in the injury process, resulting in accumulation of
TNF-! (Janelsins et al. 2005). These findings suggest the
involvement of TNF-!-mediated inflammation in the patho-
genesis of AD.

In patients with PD, significant increases in the expres-
sion of TNF-! have been reported in the caudate and
putamen of postmortem brain samples (Boka et al. 1994;
Mogi et al. 1994, Mogi et al. 1995). Unlike the association
of TNF haplotype with late-onset AD, polymorphism of
TNF gene in patients with PD has been associated with the
early onset of the disease. The frequency of the −1031C
allele, a high producer of TNF, increased significantly in
early onset PD patients, suggesting a toxic role for TNF in
PD (Nishimura et al. 2001). Increased expression of TNF-!
has also been observed in several experimental models of
PD (Mogi et al. 1999; Sriram et al. 2002a; Ferger et al.
2004; Sriram et al. 2006a, b).

TNF-! is implicated in the pathogenesis of MS. In-
creased levels of TNF-! protein were found in brain
lesions, CSF, and serum of patients with MS (Hauser
et al. 1990; Cannella and Raine 1995; Martino et al. 1997).
In experimental allergic encephalomyelitis (EAE) animal
models, increased TNF-! in the serum and CSF correlates
with the peak symptoms (Villarroya et al. 1997).

In HIV-dementia, TNF-! is a predictor of neurotoxicity,
and significant levels of this cytokine were found in the
brains of HIV-seropositive patients with AIDS dementia,
but not in non-demented patients (Wesselingh et al. 1993,
Wesselingh et al. 1997). Scid mice inoculated with HIV-
infected human macrophages develop HIV infection and
express TNF-! (Tyor et al. 1993). Increased TNF-!
expression in perivascular macrophages, microglia, and
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endothelial cells was detected in midfrontal cortex, subcor-
tical and deep white matter, and basal ganglia of patients
with AIDS dementia complex (Seilhean et al. 1997).
Recent comprehensive reviews discuss at length the role
of TNF-! in HIV-dementia (Saha and Pahan 2003; Brabers
and Nottet 2006).

In ischemic brain injury, TNF-! may play a critical role
in the injury process. High levels of this cytokine have been
reported in ischemic stroke models (Tarkowski et al. 1999,
Vila et al. 2000; Intiso et al. 2004). In experimental models
of ischemia, TNF-! was induced very early in the injury
process and in a region-specific fashion (Liu et al. 1994;
Saito et al. 1996). Saito et al. (1996) demonstrated that
following transient global ischemia, TNF-! was selectively
induced in the striatum and hippocampus but not in other
brain areas. Furthermore, the expression of TNF-! follow-
ing ischemic brain injury appeared to occur first in neurons,
and a delayed expression of this cytokine was localized to
glial cells (Meistrell et al. 1997; Buttini et al. 1996). Barone
et al. (1997) have reported that following permanent middle
cerebral artery occlusion (MCAO), the induction of TNF-!

was associated with exacerbation of neurological deficits
and infarct size, implicating this cytokine as a key player in
ischemic brain injury.

TNF-! is also involved in traumatic brain injury. High
levels of TNF-! have been reported in serum and CSF of
patients with head injury (Goodman et al. 1990; Ross et al.
1994). In experimental models of traumatic brain injury,
such as the fluid percussion injury (Taupin et al. 1993, Fan
et al. 1996; Kita et al. 1997) and weight-drop contusion
injury (Holmin et al. 1997), elevated levels of several
cytokines including TNF-! were found. Similarly, in
experimental closed head injury, activation of the comple-
ment component and increased expression of TNF-! has
been reported (Shohami et al. 1994; Stahel et al. 2000).

Confirmation for the neurotoxic role of TNF-! comes
from studies carried out to neutralize or antagonize the
actions of TNF-!. Neutralizing antibodies against TNF-!
were shown to be protective against cerebral ischemia
(Lavine et al. 1998). Pretreatment with monoclonal anti-
bodies to TNF-! reduced infarct volume and improved the
neurological outcome. Similarly, neutralizing TNF-! activ-

Table 2 Evidence for a neurotoxic role of TNF-!: studies that suggest expression of TNF-! is harmful and initiates neurotoxicity and/or
neurodegeneration

Evidence for a neurotoxic role of TNF-!

Disease/injury condition Model Species Finding Reference

Alzheimer’s disease – Human ↑ TNF in plasma Bruunsgaard et al. 1999
Alzheimer’s disease – Human TNF haplotype associated Collins et al. 2000
HIV-dementia – Human ↑ TNF in cortex Achim et al. 1993
HIV-dementia – Human TNF polymorphism Quasney et al. 2001
Multiple sclerosis – Human ↑ TNF in brain lesions Cannella and Raine 1995
Multiple Sclerosis – Human ↑ TNF in CSF Matusevicius et al. 1996
Parkinson’s disease – Human ↑ TNF in CSF Mogi et al. 1994
Parkinson’s disease – Human ↑ TNF in serum Dobbs et al. 1999
Parkinson’s disease – Human ↑ TNF in substantia nigra Boka et al. 1994
Parkinson’s disease – Human TNF polymorphism Nishimura et al. 2001
Stroke – Human ↑ TNF in CSF, plasma Vila et al. 2000
Stroke – Human ↑ TNF in serum Intiso et al. 2004
Traumatic brain injury – Human ↑ TNF in CSF, serum Shiozaki et al. 2005
Bacterial meningitis Pneumococcal Rat ↑ TNF in CSF Gianinazzi et al. 2003
Bacterial meningitis Pneumococcal Rat ↑ TNF in hippocampus Gerber et al. 2004
Bacterial meningitis Streptococcal B Rat ↑TNF in hippocampus, cortex Bogdan et al. 1997
Dopaminergic neurotoxicity METH Mouse ↑ TNF in striatum Sriram et al. 2006b
Dopaminergic neurotoxicity METH Rat ↑ TNF in frontal cortex Flora et al. 2002
Excitotoxicity Kainic acid Rat ↑ TNF in hippocampus de Bock et al. 1996
Head injury (diffuse axonal injury) Fluid-percussion Rat ↑ TNF in cortex, brain stem Kita et al. 1997
Ischemia Global — ↑ TNF most brain areas Sairanen et al. 2001
Ischemia MCAO Rat ↑ TNF in cortex Botchkina et al. 1997
Multiple Sclerosis EAE Rat ↑ TNF in spinal cord Villarroya et al. 1997
Parkinson’s disease 6-OHDA Rat ↑ TNF in striatum, nigra Mogi et al. 1999
Parkinson’s disease MPTP Mouse ↑ TNF in striatum Sriram et al. 2002a, 2006a, b
Traumatic brain injury Fluid-percussion Rat ↑ TNF in cortex Knoblach et al. 1999
Viral encephalopathy Dengue 2 virus Mouse ↑ TNF in hippocampus, cortex Sanchez-Burgos et al. 2004
Viral infection Rabies virus Rat ↑ TNF in hippocampus, cortex Marquette et al. 1996
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ity with a recombinant type I soluble TNF receptor (TNF-
binding protein, TNFbp), protected against microvascular
perfusion impairment and ischemic injury induced by
permanent MCAO (Dawson et al. 1996). Intrastriatal co-
injections of TNFbp with N-methyl-D-aspartic acid (NMDA)
reduced striatal injury, while intrahippocampal co-injections
exacerbated excitotoxic damage (Galasso et al. 2000). Neu-
tralizing soluble TNF with a dominant-negative TNF
compound XENP345 was shown to protect against dopami-
nergic neurotoxicity (McCoy et al. 2006). XENP345, a
PEGylated form of the TNF variant A145R/I97T, reduced
retrograde nigral degeneration elicited by striatal injection of
the dopaminergic neurotoxicant, 6-hydroxydopamine. Phar-
macological intervention with MK-801, a noncompetitive
NMDA receptor antagonist or dexamethasone was shown to
exert neuroprotection against permanent MCAO. Both these
agents blocked TNF-! production by 70% and reduced
infarct size by nearly 50%, suggesting that despite their
action at distinct cellular levels, these agents can modulate
cerebral injury mediated by TNF-!. The immunosuppressant
drug, FK506, is neuroprotective in experimental models of
cerebral ischemia. FK506-mediated neuroprotection was
shown to be associated with a selective decrease in the
levels of TNF-! and IL-1β in glial cells. Thus, the mech-
anism of action of FK-506 seems to occur through mod-
ulation of glial response and inflammation (Zawadzka and
Kaminska 2005). Pentoxifylline, a phosphodiesterase inhib-
itor and Dexanabinol (HU-211), a synthetic cannabinoid,
have been shown to improve the outcome of experimental
closed head injury mediated by TNF-!, especially when
administered within the early time window of brain injury
(Shohami et al. 1997). Similar to pentoxifylline, the specific
type IV phosphodiesterase inhibitor rolipram, protected
against striatal excitotoxic injury induced by quinolinic
acid (Block et al. 2001). While anti-TNF strategies have
been fairly successful in experimental models, their transla-
tion to clinical conditions has been hampered by high rate of
severe side effects and/or failure to demonstrate significant
survival benefit.

The mechanisms by which TNF-! appears to mediate its
toxic effects (Skias et al. 1987; Benveniste et al. 1989;
Shrikant et al. 1994; Chao and Hu 1994; Rosenberg et al.
1995; Probert and Selmaj 1997; Lucas et al. 1997; Koller
1997; Christov et al. 2004; Brabers and Nottet 2006)
include (1) endothelial cell stimulation and alteration of
blood–brain barrier integrity, thus, promoting immune cell
adhesion and infiltration into the injured brain, (2)
stimulation of apoptosis of brain microvascular endothelial
cells, (3) activation of microglial cells, thereby, triggering a
“vicious cycle” of oxidative outburst and inflammatory
cytokine release, (4) modulation of the expression of MHC
class components on neurons and astrocytes, thereby,
rendering the astrocytes vulnerable to cytotoxic T-cells,
(5) potentiation of glutamate-mediated toxicity by prevent-
ing glutamate uptake, (6) increase in vasogenic brain
edema, (7) modulation of ion currents and intracellular
calcium homeostasis, (8) regulation of membrane potential
and long-term potentiation. Thus, TNF-! appears to be a
central mediator of neuroinflammation and brain injury.

Neuroprotective effects of TNF-a

While several lines of evidence point towards a neurotoxic
role for TNF-! in the CNS, this cytokine does not appear to
be strictly neurotoxic. Besides its key role in maintaining
CNS homeostasis, TNF-! is known to influence survival,
differentiation, proliferation, and growth. These features high-
light a potential protective role for this cytokine. Indeed,
this cytokine has been shown to afford protection against
brain injury (Table 3). TNF-! has been shown to promote
reparative remyelination in an experimental model of
demyelination (Plant et al. 2005). In this case, TNF-!
appears to promote the survival of oligodendroglia, thereby,
facilitating remyelination. TNF-! protects against the neu-
ronal cell death induced by β-amyloid peptide (Barger et al.
1995; Goodman and Mattson 1996; Kaltschmidt et al.
1999). The protective mechanism was attributed to the role

Table 3 Evidence for a neurotrophic role of TNF-!: studies that suggest expression of TNF-! is beneficial and protects neurons against insults

Evidence for a neuroprotective role of TNF-!

Disease/injury condition Model Cell/Brain area examined Mechanism of protection Reference

Alzheimer’s disease Aβ HIP neurons ↑ NF-.B, Regulates Ca2+ Barger et al. 1995
Alzheimer’s disease Aβ HIP neurons ↑ NF-.B, ↑MnSOD Mattson et al. 1997
Alzheimer’s disease Aβ CER neurons ↑ NF-.B Kaltschmidt et al. 1999
Alzheimer’s disease Aβ Human neuronal cells ↑ Bcl-2 Tarkowski et al. 1999
Alzheimer’s disease Aβ SH-SY5Y cells ↑ NF-.B, ↑ MnSOD Sompol et al. 2006
Excitotoxicity Glutamate HIP neurons Ceramide→ antioxidant defense Goodman and Mattson 1996
Excitotoxicity NMDA CTX & HIP neurons Regulates Ca2+ Cheng et al. 1994
Excitotoxicity NMDA CTX neurons ↑ K+ A-current density Houzen et al. 1997
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of TNF-! in regulating peroxide formation, calcium
accumulation, activation of NF-kB, and antioxidant path-
ways. In another study (Houzen et al. 1997), cerebral cortical
neurons were protected against NMDA-induced neurotoxicity
by TNF-mediated mechanisms. Here, TNF-! regulated
the voltage-gated membrane currents, particularly the out-
ward potassium current density (A-current). Thus, an increase
of A-current density induced by TNF-! contributed to
neuroprotection.

Preconditioning with TNF-! also appears to be neuro-
protective in ischemic cerebral injury. Intracisternal admin-
istration of TNF-! significantly reduced infarct size and
decreased microglial activation in a MCAO model of
cerebral ischemia (Nawashiro et al. 1997). TNF-!-induced
preconditioning mediated through ceramide, protected
neurons against ischemic injury (Ginis et al. 2002). These
findings suggest that TNF-! is involved in development of
ischemic tolerance.

TNF-! plays a neuroprotective role against excitotoxic
injury in the hippocampus (Cheng et al. 1994; Bruce et al.
1996; Gary et al. 1998). Excitotoxic death of cortical
neurons mediated by NMDA was abolished by TNF-!
(Carlson et al. 1998). Co-injections of TNF-! and NMDA
into the hippocampus reduced excitotoxic injury; however,
intrastriatal co-injections did not alter the severity of injury
(Liu et al. 1999). TNF-! also mediates neuroprotection in
response to acute nitric oxide excitotoxicity (Turrin and
Rivest 2006). Whereas elevated levels of TNF-! are
associated with neuroprotection against excitotoxic damage
in hippocampus, a lack of enhanced expression of TNF-! in
hippocampus is associated with significant chemically
induced damage to this structure (Little et al. 2002).

The emergence of knockout and transgenic technologies
has revolutionized the approach towards understanding the
functional role of genes. In this regard, the availability of
transgenic mice lacking TNF, TNFR1, or TNFR2 genes has
greatly facilitated research towards understanding the role
of this proinflammatory cytokine in the brain. Mice deficient
in both TNF receptors were found to be more susceptible to
hippocampal excitotoxic and ischemic injury (Bruce et al.
1996; Gary et al. 1998). Similarly, exacerbation of damage
and altered NF-kB activation was observed in TNF-
deficient mice after traumatic brain injury (Sullivan et al.
1999). Mice lacking TNF receptors exhibited increased oxida-
tive stress and striatal lesion size following 3-nitropropionic
acid (3-NP) administration (Bruce-Keller et al. 1999). On
the other hand, we have previously shown that mice lacking
both TNF receptors, but not individual receptors, were
protected against the dopaminergic neurotoxicity of 1-
methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP; Sriram
et al. 2002a). These paradoxical findings suggested that
TNF-! was capable of mediating differential effects in
specific brain areas. Indeed, we recently demonstrated that

TNF-! plays a region-specific role in the brain (Sriram et al.
2006a). While deficiency of TNF receptors blocked MPTP
neurotoxicity in the striatum, the lack of these receptors
rendered the hippocampus, an otherwise nontarget region for
MPTP effects, vulnerable to injury. Thus, TNF-! serves to
promote neurodegeneration in striatum, while affording
protection against neurodegeneration in the hippocampus
(Fig. 1, depicts the region-specific actions of TNF-! in a
neurotoxic/neurodegenerative scenario). While knockout
and transgenic technologies aid understanding of the gene
function, there is limited knowledge of compensatory
mechanisms associated with genetically modified animals.
More recent approaches such as conditional knockouts and
manipulation of genes via inducible promoters may perhaps
provide a better understanding of the gene function in the future.

The mechanisms by which TNF-! appears to mediate its
neuroprotective effects (Grassi et al. 1994; Barger et al.
1995; Mattson et al. 1995; Bizette et al. 1996; Goodman
and Mattson 1996) include (1) activation of astroglia and
stimulating neurotrophic factor release, (2) activation of
repair processes of peripheral nerves and cerebral micro-
vasculature, (3) stimulation of synaptic currents and
thereby mediating neuronal plasticity, (4) activation of
NF-.B pathway, (5) induction of anti-apoptotic factors
such as Bcl-2, (6) ceramide-mediated induction of antiox-
idant defense pathways, (7) regulation of extracellular
calcium and the calcium binding protein calbindin-D28K.

Factors influencing the divergent actions of TNF-a

Based on the extensive evidence reviewed above in relation
to the neurotoxic and neuroprotective roles for TNF-!,
sufficient data exist to indicate that this cytokine has
paradoxical functions that can result in simultaneous
stimulation of cell survival and death pathways. How the
balance between these divergent roles is maintained
determines the ultimate role for this cytokine.

While basal physiological levels of TNF-! are not
necessarily indicative of a neuroprotective versus a neuro-
toxic function (Cheng et al. 1994; Mattson et al. 1995; Uno
et al. 1997), differences in the levels and activational state
of the TNF receptors and related downstream effectors may
serve to confer differences in its role. The type 1 (TNFR1,
p55) and type 2 (TNFR2, p75) TNF receptors are members
of the TNF receptor superfamily, which includes other
prominent receptors like Fas, lymphotoxin β receptor, p75
nerve growth factor receptor, and CD40, among others.
These receptors share substantial homology, but function in
a mechanistically diverse fashion (Sprang 1990, Tartaglia
et al. 1991). Constitutive expression of TNF receptors is
reported to occur in neurons and blood vessels; however,
these receptors are expressed on glial cells (microglia and
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astroglia) and macrophages following brain injury. While
TNFR2 appears to be predominantly expressed by macro-
phages, microglia exhibit a differential pattern of immu-
nostaining for both TNF receptors (Dziewulska and
Mossakowski 2003). Thus, the differential patterns of
expression of TNF receptors on neuronal and glial cells
are thought to play a critical role in determining if TNF-!
will have a protective or cytotoxic role (Dopp et al. 1997,
Sairanen et al. 2001, Fontaine et al. 2002; Dziewulska and
Mossakowski 2003, Akassoglou et al. 2003). Upon
activation, the TNF receptors interact with an array of
intracellular adapter proteins to mediate downstream cell
signaling. TNFR1 associates with TRADD, a death domain
protein that transduces signals through FADD and FADD-
like interleukin-1beta-converting enzyme (FLICE), and
activates intracellular proteases of the caspase family.
TNFR1 and TNFR2 also associate with TRAFs, which
mediate activation of the nuclear factor kappa B (NF-kB)
family of transcription factors. Specifically, TRAF2 medi-
ates NF-kB activation via NF-kB inducing kinase (NIK),
which leads to IkB degradation and release of NF-kB.
Activation of NF-kB promotes gene expression that can
elicit either neurotoxic or neuroprotective effects. Evidence
for this dual role comes from studies that show that TNF-!-
mediated induction of NF-kB is associated with neuronal
survival (Barger et al. 1995; Kaltschmidt et al. 1999;
Albensi and Mattson 2000) or the inability of TNF-! to

induce NF-.B is associated with increased neurotoxicity
(Botchkina et al. 1999; Sriram et al. 2006a). One possible
reason for the diverse role exhibited by TNF-! could be
attributed to the differences in the activation of NF-kB,
which is tightly regulated at the level of TRAF2. Three
regulatory proteins (TRAF-interacting proteins), I-TRAF,
TRIP, and A20, bind to TRAF2 and inhibit its ability to
activate NF-kB. In addition to regulation of NF-kB by
TRAF2, in the brain, NF-kB is also regulated by a novel
stress response gene, brain, and reproductive organ
expressed (BRE). BRE appears to be activated specifically
by TNFR1 and inhibits NF-kB activation (Gu et al. 1998).
Thus, the efficiency of NF-kB activation in neuronal and/or
glial cells depends on the duration of NF-kB activation and
the differential activity of the regulatory proteins, which
eventually determine the neurotoxic or neurotrophic out-
come elicited by TNF-!. Indeed, such differences in the
expression of NF-kB have been known to occur in the CNS
(Joseph et al. 1996; Galasso et al. 2000). TNF-! is a key
player in the pathogenesis of dopaminergic neurodegenera-
tion and is up-regulated in the striatum following MPTP
and methamphetamine (Sriram et al. 2002a, Sriram et al.
2006a, b). Despite an early and large increase in the striatal
expression of TNF-!, activation of NF-kB was not
detectable. These findings were consistent with an earlier
observation (Teismann et al. 2001) and suggest that the lack
of NF-kB activation may result in increased neurotoxicity

Fig. 1. Schematic diagram de-
picting a region-specific role for
TNF-! in the brain: neuronal
injury is associated with release
of “mysterious injury factors”
that activate microglia and/or
astroglia. There is heterogeneity
in the distribution, morphology,
and activation of microglia
across brain areas. Striatal do-
paminergic neurotoxicity is as-
sociated with microglial
activation and elaboration of
microglia-derived cytokines like
TNF-!. TNF-! elicits dopami-
nergic nerve terminal degenera-
tion by signaling through the
TNF receptors localized on do-
paminergic nerve terminals. De-
ficiency of TNF receptors
suppresses microglial activation,
and as a consequence, the do-
paminergic neurotoxicity. Para-
doxically, lack of TNF receptors
renders the hippocampus vul-
nerable to neuronal degenera-
tion. Thus, TNF-! plays a dual
role in brain: neurotoxic in the
striatum and neurotrophic in the
hippocampus.
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(Botchkina et al. 1999). Thus, TNF-! elicits a neurotoxic
response in the striatum. Conversely, activation of NF-kB
by TNF-! in the hippocampus was neuroprotective
(Tamatani et al. 1999). From these findings, a multifarious
identity emerges for TNF-! that is influenced not only by
regulation of TNF signaling, but also by regional differ-
ences in its cellular expression across brain regions.

In the brain, TNF-! is predominantly produced by
microglia. Microglia are localized in the vicinity of neurons
and play an important role in host defense, sharing many
phenotypic features with hematogenic macrophages. As the
primary immune cell in the CNS, they play a dual role in
cellular responses to neuronal injury: a pathogenic role that
initiates inflammation and exacerbates degeneration and a
neuroprotective role (Stoll and Jander 1999; Gonzalez-
Scarano and Baltuch 1999; Streit et al. 1999). Under
normal physiological environment, microglia reside in a
quiescent state exhibiting a ramified morphology (ramified
or resting microglia). In response to local injury, the
ramified microglia retract their processes and acquire an
amoeboid (activated microglia) or rounded (phagocytic
microglia) shape. Reactive microglia express several
immunological surface proteins, such as, complement type
receptors (e.g., OX-42), major histocompatibility complex
class II antigens (e.g., OX-6), and cytoplasmic/lysosomal
antigens (e.g., ED-1, ED-2). The expression of these
markers differs based on the type and extent of injury and
their topographical distribution in the brain. Although
microglia are abundant in the brain, the distribution and
morphological heterogeneity of these cells vary across brain
regions (Lawson et al. 1990). The hippocampus, basal
ganglia, and substantia nigra are densely populated with
microglia; moderate levels are found in cortex, thalamus,
and hypothalamus, while less dense areas include the
cerebellum and brain stem. The morphology of the microglia
varies with their distribution, and they appear as (1) round
with thick and short processes, typically localized in areas
devoid of blood brain barrier, (2) longitudinally branched,
as seen in fiber tracts, and (3) radially branched, distributed
throughout the neuropil. Thus, the susceptibility of various
brain regions to neurotoxic insults may be attributed to
regional differences in microglial distribution and number,
the microglial phenotype (morphology), and the repertoire
of proinflammatory cytokines and chemokines they express.
Marked differences in the regional expression of microglia-
derived cytokines are apparent. The basal expression of
proinflammatory mediators, TNF-!, MCP-1, and IL-1!
were significantly higher in the hippocampus compared to
striatum (Ren et al. 1999; Sriram et al. 2006a). Such
regional variations in microglial distribution, morphology,
and gene expression, influence cross talk with their imme-
diate neuro-astroglial microenvironment, their response to
external stimuli, and the timing and threshold of TNF-!

release. A combination of these interactions ultimately define
a neurotoxic or neurotrophic role for this cytokine.

One implication of such regional selectivity and dual role
for microglia-derived TNF-! in the brain is that anti-TNF
therapies currently in practice to treat certain auto-immune
and inflammatory conditions may have negative conse-
quences on the nervous system. It is therefore critical that a
comprehensive screening of anti-TNF therapies across brain
regions is performed to determine any adverse effects and
evaluate the efficacy of such treatments. Overall, one has to
demonstrate caution in extrapolating the results of preclin-
ical anti-TNF studies into clinical practice.

Summary

Neurotoxicity and neurodegeneration are consequences of a
shift in the subtle balance between neuronal survival and
death, which is mediated by proinflammatory cytokines
such as TNF-!. Enhanced expression of TNF-! can be
observed in a variety of brain insults in association with
other neuroinflammatory processes. Simultaneously, TNF-!
possesses the ability to activate neuroprotective mecha-
nisms. Thus, a double-edged role for this cytokine in the
CNS has been documented. In reviewing the literature, a
multifarious identity emerges for TNF-! that is influenced
not only by the signaling pathways it activates, but also by
regional differences in microglial distribution and morphol-
ogy, the cells that predominantly produce this cytokine.
Thus, the extent of microglial activation in specific brain
regions, the timing and threshold of TNF-! expression, and
the conditions that stimulate regulation of TNF signaling,
eventually determine whether TNF-! plays a neurotoxic or
neurotrophic role in the CNS.

Emerging concepts

Although it remains a relatively unexplored research arena,
glial activation biology and drug–immune interactions may
contribute to adverse neural outcomes associated with self-
administration of drugs of abuse and the progression of
HIV infection (Berman et al. 2006). In this context, drugs
of abuse can encompass compounds as diverse as opioids
and amphetamines. Methamphetamine and the HIV-1 pro-
tein Tat interact to exacerbate dopaminergic neurotoxicity
(Theodore et al. 2006). It is suggested that Tat-induced
expression of TNF-! may predispose striatal dopaminergic
nerve terminals to subsequent damage by methamphet-
amine. Altered immune responses reflect stimulation of
innate immune responses following the loss of adaptive
immune response (Berman et al. 2006). Glial activation
events that reflect stimulation of innate immunity can

148 J Neuroimmune Pharmacol (2007) 2:140–153



involve microglia and astrocytes at known targets of a given
drug of abuse, e.g., the basal ganglia, but more generally,
may reflect alterations at the BBB that effect enhanced entry
of peripheral immune components into the brain parenchy-
ma. Chief among proinflammatory mediators implicated in
these adverse effects of drug abuse is TNF-! (see Thomas
and Kuhn 2005; Sriram et al. 2006b). Of course, many other
immune and nonimmune effectors may play a role in chronic
adverse outcomes associated with drug abuse, but it is
becoming clear that drug–neuron–glial–immune interactions
up- and downstream of TNF-! are involved.
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