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Abstract
Herein, plasmonic characteristics of graphene filled waveguide surrounded by chiroferrite medium are analyzed in the THz 
frequency spectrum. Graphene conductivity is modelled using the Kobo formula, and impedance boundary conditions are 
employed to compute dispersion relation. The influence of constitutive variables of chiroferrite medium on the propaga-
tion behavior of SPP mode is examined. The propagation behavior of SPPs mode is studied by changing the constitutive 
parameters of chiroferrite medium and graphene features. From numerical results, it is revealed that effective mode index 
(EMI, phase velocity, graphene conductivity, and EM wave frequency) can be tailored by adjusting chirality, gyrotropy, and 
graphene features (chemical potential, number of graphene layers) in the THz frequency range. This work may have potential 
applications in plasmonic community to design the innovative optical sensors, plasmonic platforms, detectors, and surface 
waveguides in the THz frequency region and provide active control due to additional degree of freedom in graphene and 
anisotropy of chiral medium.
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Introduction

Over the last decade, surface plasmon polaritons (SPPs) have 
been the subject of research for their various unique features to 
design nanoscale electronic and photonic devices [1–8]. It is an 

emerging field of science and technology. Aside from sensing 
purposes [9–11], SPPs can also be used to control switches [12] 
and to build signal amplifiers and modulators [13–17]. In con-
trast to other conventional focusing techniques like dielectric 
lenses, a fundamental characteristic of SPPs is able to confining 
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electromagnetic fields to smaller scales, which distinguishes 
it from them [1, 18]. It is possible to greatly reduce the size 
of devices and systems by replacing free-space propagating 
electromagnetic (EM) waves with SPPs. When photons and 
electrons interact, the SPPs exhibit a larger wave vector than 
free space waves [19]. Metal-based structure plays an important 
role in determining the frequency range and propagation loss of 
SPPs modes [20]. Krokhin et al. studied the SPPs behavior in 
an anisotropic photonic crystal deposited on a thin metallic film 
to increase the efficiency of plasmonic devices [21]. Gric and 
Rafailov studied the SPPs propagation at metal free metamate-
rial with anisotropy of semiconductor to control the propagation 
length of SPPs [7]. Umair et al. presented the numerical analy-
sis of plasmon modes in metallic filled parallel plate waveguide 
(PPWG) to investigate the effect of tensorial permittivity on the 
characteristics of EM surface wave [22]. Bousbih et al. studied 
the plasmon mode at chiroplasma-metal interface in the THz 
frequency regime [23]. Guangcan Mi and Vien Van studied the 
numerical investigation of SPPs at chiral-metal planar structure 
[24]. The propagation range of metallic based plasmonic struc-
tures is generally limited by Joule losses [21]. Additionally, 
the metal-based structures have a higher propagation loss, a 
lower tunability, and a lower confinement [25]. Currently, the 
plasmonic community is seeking 2D optical materials with low 
propagation losses. The introduction of graphene material is 
intended to address these bottleneck problems.

An atom-thick layer of carbon atoms known as graphene 
has recently attracted attention in the fields of plasmonic 
community [26, 27]. It has been demonstrated that graphene 
supports the surface plasmons in the mid-infrared (MIR) and 
terahertz (THz) ranges of the EM spectrum [28–32]. In com-
parison with noble metals, graphene has unique and remark-
able optical properties including low losses, long propagation 
lengths, extreme confinement of light, and tunable conductiv-
ity [26, 28, 32]. Furthermore, the conductivity of graphene-
based structures can be tuned much more easily than those 
of metallic and photonic crystal structures. Graphene’s tun-
able conductivity allows the resonance characteristics to be 
altered without having to re-fabricate the device [33–36]. In 
graphene-based plasmonic devices, electrical gating is crucial 
for modulating the carrier concentration in the graphene lay-
ers, which alters graphene’s electronic properties. As a result 
of this ability to control carrier concentration, graphene is an 
extremely versatile material for wide variety of technologi-
cal applications, including transistors, sensors, and photonics 
[37]. Different authors used different geometries and different 
optical materials for the propagation of SPPs [24, 31, 38–43].

A substantial amount of literature has been devoted to elec-
tromagnetic propagation in chiral materials [44–47]. In the 
case of such an isotropic chiral material, the degree of chiral-
ity can be controlled only a limited extent once it has been 
created. Thus, it is imperative to develop methods for control-
ling chirality. The incorporation of certain forms of anisotropy 

enables the realization of such method. The composite chiro-
ferrite material is made of isotropic chiral and a nonreciprocal 
ferrite material in which chiral material is encapsulated in a 
magnetically biased ferrite [48]. The permeability tensor can 
be modified by adjusting the tensor values, thereby controlling 
the chirality of SPPs waves at CF-G-CF interface.

Mathematical Formulation

Consider the propagation of SPPs in z direction as depicted 
in Fig. 1.

Here are the constitutive relationships for chiroferrite 
medium.

In the chiroferrite medium:

The rest of field components can be obtained from [49]. 
Based on the source-free Maxwell equations, coupled wave 
equations are presented below.

The coefficients for Eqs. 6 and 7 are
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Fig.1   Geometry for graphene loaded chiroferrite waveguide
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where

The conductivity of graphene is described as follows:
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Using Eqs. 26 and 27, the following characteristic is 
obtained:

Numerical Results

In this section, numerical results have been carried out to 
obtain the deeper understanding the features of SPPs at the 
CF-G-CF planar interface. Combining both optical mate-
rials, i.e., (graphene and chiroferrite), enables us to gain 
a deeper understanding of the engineerable properties of 
SPPs. Monolayer graphene is sandwiched between chiro-
ferrite layers as depicted in Fig. 1. To understand the plas-
monic features of plasmon mode at a CF-G-CF interface, 
dispersion relation is plotted between EMI and wave fre-
quency in THz regime under the different graphene as well 
as chiroferrite parameters. In this context, Maxwell’s equa-
tions for planar structure are used to derive the dispersion 
relation. In our calculation, we have set numerical param-
eters as �c=0.5  eV, T = 300K  , �c = 0.2 , � = 12ps , and 
�
2
= 0.52�

0
 . The EMI spectra for different magnitude of 

graphene’s chemical potential and graphene layers are dis-
played in Fig. 2a and b, respectively. According to Fig. 2a, 
to achieve the plasmonic properties, chemical potential 
extends from �c = 0.3eV  to �c = 0.6eV  indicated by black, 
green, red, and blue peaks. The rise in chemical potential 
shifts the characteristics peaks towards higher frequency 
spectrum. In addition, as chemical potential increases, 
the frequency band starts to narrow. The squeezing of the 
frequency band gap with an increasing amount of chemi-
cal potential provides an additional degree of freedom for 
modulating EM surface waves. Moreover, lower chemical 
potential leads to higher EMI as reported [6, 43, 50, 51]. 
Because when the concentration of graphene carriers is 
low enough, both the valence band and the conduction 
band overlap at the Dirac point in the Brillouin zone. Upon 
reaching this point, the relationship between energy and 
momentum becomes linear, resulting in distinct electronic 
properties for plasmonic community. Linear dispersion is a 
key component of nanoscale devices that facilitates strong 
coupling between light and matter, as well as efficient 
energy transfer. The carrier concentration of graphene 
can be modified by electrostatic gating or chemical doping 
[31, 42, 52], thereby allowing dynamic control of plasmon 
response enabled the advanced technological applications 
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for plasmonic sector. Figure 2b illustrates the EMI under 
different graphene layers. According to a recent study, only 
2.3% of the incident light is absorbed by single layer of 
graphene [37, 53]. It can be noted that EMI reduces with 
the number of layers of graphene. Based on the numerical 
analysis, it is clearly manifest that single-layer graphene 
(N = 1) exhibits lower energy losses than multilayered 
graphene as reported in [53–56]. Furthermore, numeri-
cal analysis shows that multilayer graphene causes to 
shifts the characteristic peak toward the high frequency 
region. The influence of chirality on EMI is graphically 
depicted in Fig. 3a under different chirality range �c = 0.2 , 
�c = 0.3 , �c = 0.4 , and �c = 0.5 . Figure 3a illustrates how 
EMI decreases with the increment of chirality parameter. 
As chirality increases, wave frequency decreases, and dis-
persion curves reflect lower EMI [23]. Thus, the frequency 
and EMI of the CF-G-CF structure can be controlled by 
adjusting the chirality values. It is of peculiar of interest 
to note that the slope of dispersion curve is smaller for 
higher chirality values. To illustrate the effect of gyrotropy 
on the behavior of SPPs, Fig. 4b illustrates the influence 

of gyrotropy on EMI as a function of wave frequency. It 
is obvious that as gyrotropy increases, frequency band 
broadened, and dispersion curves reflect higher EMI. 
Recently, Razzaz et al. presented the numerical analysis 
of EM surface wave in graphene filled waveguide bounded 
by magnetic material [56]. In our proposed structure, the 
introduction of chirality in the ferrite medium provides an 
additional degree of freedom. It is important to note that 
when a wave interacts with a gyrotropic medium, its veloc-
ity is altered, affecting its speed of propagation. Changing 
the direction of the polarization plane reduces propagation 
losses and allows the wave to interact more effectively 
with the material. These extraordinary features of ferrite 
mediums with increased gyrotropy are widely used in 
optics community to fabricate nano plasmonic devices. 
The choice of an appropriate gyrotropy of medium is cru-
cial for the design of nanophotonic devices based on chi-
roferrite-graphene in a specific frequency band. Figure 4a 
depicts the effects of chemical potential on phase velocity. 
As chemical potential increases, the dispersion curves shift 
from low to high frequency region. Thus, it is concluded 

Fig. 2   The influence of chemi-
cal potential and number of 
graphene layers on EMI versus 
EM wave frequency

Fig. 3   The influence of chirality 
and gyrotropy on EMI versus 
EM wave frequency
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that the phase velocity and frequency band of the proposed 
structure can be adjusted through the tuning of graphene’s 
chemical potential. The effect of number of graphene lay-
ers on phase velocity of EM surface waves with respect to 
EM frequency is graphically demonstrated in Fig. 4b. It is 
observed that multilayer graphene support high frequency 
as compared with monolayer graphene. To analyze, the 
variation in phase velocity for different values of chirality 
and gyrotropy is shown in Fig. 5a and b, respectively. Fig-
ure 5a illustrates how phase velocity varies with chirality. 
Obviously, as magnitude of chirality increases, EM waves 
frequency increases and bandgap starts squeezing. Fur-
thermore, it is of peculiar of interest to note that highest 
slope of variation is observed for lowest chirality value, 
i.e., �c = 0.2 . In Fig. 5b, we demonstrate the impact of 
varying gyrotropy of chiroferrite medium on the phase 
velocity. In this regard, frequency range is taken from 1 
to 6 THz. As gyrotropy increase, the EM wave frequency 
decreases, but bandgap becomes broadened. Figure 6a and 

b describes the impact of chemical potential and EM wave 
frequency on EMI versus graphene conductivity, respec-
tively, by using dispersion relation 27. It is possible to 
tune the chemical potential of a compound by doping it 
or applying external fields to it as reported in [39, 41, 
42]. According to Fig. 6a, as chemical potential rises, gra-
phene conductivity decreases. It is important to note that 
graphene’s carrier density increases in proportion to its 
chemical potential. Increasing carrier density may result 
in more scattering events. As a result of these scattering 
events, charge carriers have a lower mobility, which results 
in a lower conductivity.

Impact of different EM wave frequencies on EMI versus 
graphene conductivity is presented in Fig. 6b. It is clearly 
manifest that as EM wave frequency increases, graphene con-
ductivity decreases. Increasing EM wave frequency hinders 
the dynamic response of charge carriers, increases scatter-
ing, and causes energy to be absorbed by interband transi-
tions and other processes, reducing graphene’s conductivity. 

Fig. 4   The impact of chemical 
potential and number of gra-
phene layers on phase velocity 
versus EM wave frequency

Fig. 5   The impact of chirality 
and gyrotropy on phase velocity 
versus EM wave frequency
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The effect of chirality and gyrotropy on EMI versus graphene 
conductivity by using dispersion relation 27. The influence of 
chirality on EMI versus graphene conductivity is plotted in 
Fig. 7a. Clearly, the conductivity of graphene decreases with 
increasing chirality. Furthermore, slope of dispersion curve is 
smaller for higher chirality value. It is important to note that 
graphene’s electronic properties are highly dependent on its 
surroundings medium. The effect of gyrotropy on EMI versus 
graphene conductivity is shown in Fig. 7b. As gyrotropy of 
chiroferrite medium increases, the dispersion curves shifted 
towards higher conductivity. Since, gyrotropic nature of the 
chiroferrite medium generates magneto-optical effects, such 
as the Faraday effect, which causes light’s polarization plane 
to rotate. As a result of these effects, the charge carriers in 
graphene are aligned, resulting in reduced resistive losses and 
increased graphene conductivity.

Concluding Remarks

This study focuses on the features of electromagnetic sur-
face waves generation at the CF-G-CF planar interface. It is 
demonstrated that the propagation characteristics associated 
with surface waves are strongly influenced by the chiroferrite 
and graphene parameters. These characteristics of the CF-
G-CF structure are EMI, phase velocity, and characteristics 
curve. Additionally, frequency fluctuations offer flexibility in 
modifying and altering the propagation of surface waves for 
the proposed structure. The calculated numerical results of 
this research work may be useful in plasmonic community to 
design the innovative optical sensors, plasmonic platforms, 
detectors, and surface waveguides in the THz frequency 
region and provide active control due to additional degree 
of freedom in graphene and anisotropy of chiral medium.

Fig. 6   The influence of chemi-
cal potential and EM wave fre-
quency on EMI versus graphene 
conductivity

Fig. 7   The influence of chirality 
and gyrotropy on EMI versus 
graphene conductivity
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