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Abstract
Resonant excitation of terahertz surface plasmons by optical rectification over rippled graphene surface, deposited on SiO

2
 

using a mode conversion of amplitude modulated p-polarized laser beam. A pump surface plasmons exert a ponderomotive 
force on the free electrons of the graphene surface and impart a linear oscillatory velocity at the modulation frequency. The 
current density develops by coupling the linear oscillatory velocity with modulated electron density and resonantly excites the 
terahertz surface plasmons at the modulation frequency. The amplitude of terahertz surface plasmons can be tunable by Fermi 
energy of graphene surface E

F
 . There is a possibility that the current study will be used to utilize THz detectors and sensors.
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Introduction

Terahertz (THz) technology has garnered significant aca-
demic attention in recent years owing to its expanding range 
of applications in fields such as sensing [1–3], medical 
imaging [4, 5], and communications [6, 7]. THz radiation is 
generated by various processes, such as the nonlinear mix-
ing of two lasers [8, 9], optical rectification (OR) [10, 11], 
laser (or electron beam)-plasma interaction [12, 13], and 
photoconductive antennas [14, 15].

There is presently a significant focus on the investigation 
of graphene’s potential applications, driven by its remark-
able electronic, mechanical, and optical characteristics [16]. 
In particular, the development of graphene-based devices 
in the terahertz (THz) regime has garnered attention due to 
recent discoveries regarding the tunability of surface plas-
mons (SPs) supported by graphene sheets. This tunability 
can be achieved by adjusting the external gate voltage or 
through chemical doping [17, 18]. THz SPs generation over 
a rippled graphene surface studied using linear mode con-
version and second harmonic by Srivastav and Panwar [19, 
20]. Li et al. [21] investigated harmonic THz SPs generation 

by electron beam over a uniform graphene surface. Bhasin 
and Tripathi [22] reported excitation of THz SPs on metal-
lic surfaces by OR. Bhasin and Tripathi [23] investigated 
THz radiation generation by OR in magnetized rippled den-
sity plasma using an x-mode laser. Also, Singh et al. [24] 
theoretically studied the excitation of THz radiation by OR 
in transversely magnetized rippled density plasma using 
a hyperbolic-secant laser pulse. Generation of THz radia-
tion over carbon nanotubes can be achieved using various 
laser profiles, such as self-focusing lasers and cross-focused 
Gaussian lasers, both in the presence and absence of a mag-
netic field [25–30]. Unadkat and Kumar [31] reported the 
generation of sub-THz radiation by an electron beam within 
the drift space of a plasma-assisted slow wave structure 
using particle-in-cell simulation.

 This paper presents an analytical and numerical study of 
the excitation of THz SPs over a rippled graphene surface 
using a modulated amplitude of a p-polarized laser beam by 
OR (see Fig. 1). The excitation of SPs may be accomplished 
by the utilization of an amplitude-modulated p-polarized 
laser, obliquely incident at an angle on the interface between 
graphene and free space. This objective may be accom-
plished through two methods: the attenuated total reflection 
configuration or by directly irradiating the laser onto a rip-
pled graphene surface that possesses a certain wave number. 
SPs wave, which is modulated amplitude exerts a pondero-
motive force on free electrons in graphene. This pondero-
motive force imparts oscillatory velocity to free electrons at 
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the modulation frequency. The current density is produced 
by coupling oscillatory velocity with modulated electron 
density and resonant excitation of THz SPs at the modula-
tion frequency. The linear current density is represented in 
“Linear Current Density” section. The expression of THz 
SPs is represented in “Terahertz Graphene Surface Plasmons 
Amplitude” section. Results and discussion in “Results and 
Discussion” section and conclusion in “Conclusion” section.

Linear Current Density

The electric field of SPs wave is given as follows [22]:
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ductivity of graphene, e is electron charge and ℏ is Plank 
constant, E
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 is Fermi energy of graphene, � is collision fre-

quency, kz is propagation constant of SPs wave in direction 
of ẑ , � is modulation index, Ω is modulation frequency and 
vg is group velocity of SPs wave.
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The SPs electric field imparts oscillatory velocity v⃗𝜔 
to the electrons of the graphene surface, may be written 
as follows:

where m∗
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Fermi velocity.
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Considering the ponderomotive force at modulation 
frequency Ω can be written as follows:
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Fig. 1   (Color Online) Schematic diagram of THz SPs generation by linear mode conversion of amplitude modulated laser (p-polarized)
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Now, the oscillatory velocity components of free elec-
trons at modulation frequency Ω is given as follows:

and

where ṽx
Ω
= iFPx∕(Ω + i𝜈).

The oscillatory velocity couples with modulated elec-
tron density to produce current density J⃗Ω at modulation 
frequency Ω and it is given as follows:

Terahertz Graphene Surface  
Plasmons Amplitude

By using Maxwell’s equation, Ω modulation frequency SPs 
wave field can be expressed as follows:

and
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The wave equation may be written as follows:
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The SPs electric field can be represented as follows:
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provides the extra wave number for phase matching 
condition.

Figure 2 represents the variation of q with THz frequency 
� for different values of graphene Fermi energy EF = 0.35 eV 
(green line), EF = 0.40 eV (blue dashed line) and EF = 0.45 eV 
(red dotted line) at Ω = 1 THz.

If the current density J⃗Ω is present, then the electric and mag-
netic fields of the THz SPs wave can be expressed as follows:

Solving Eqs. (10) and (11) with Eq. (16), and using Eq. 
(13), we get
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Fig. 2   (Color Online) Variation of ripple wave number of q with THz 
frequency � for three values of graphene Fermi energy EF = 0.35 eV 
(green line), EF = 0.40 eV (blue dashed line) and EF = 0.45 eV (red 
dotted line)
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Solving Eq. (20), one may obtained

Let �∕�t = −iΩ , we obtain

Equation (22) represents the THz SPs amplitude ratio 
∣ a∕A

0
∣ . It depends upon the ripple height h, modulation 

index � , and Fermi energy of graphene surface E
F
.

Results and Discussion

The ripple wave number q increases with an increase in Fermi 
energy of graphene surface EF at particular values of THz 
frequency � . Also, the Ripple wave number q increases with 
an increase in THz frequency � at particular values of Fermi 
energy of graphene surface EF . Ripple wave number q gives 
the extra wave number to resonantly excite the THz SPs wave. 
THz SPs amplitude ratio ∣ a∕A

0
∣ verses THz frequency � is 

plotted in Fig. 3 for three values of graphene Fermi energy 
EF = 0.35 eV (green line), EF = 0.40 eV (red dashed line) and 
EF = 0.45 eV (blue dotted line) at � = 0.3 , h = 50�m , Ω = 2 
THz and �

SiO
2
= 3.9 . THz SPs amplitude increases with a 

decrease in THz frequency � . Also, it increases with a decrease 
in Fermi energy of graphene surface E

F
.
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Conclusion

In the present paper, theoretically and numerically 
examined the generation of THz SPs over a rippled gra-
phene surface through OR of an amplitude-modulated 
p-polarized laser. The generation of THz SPs was exam-
ined within the frequency range of 1 to 3 THz, with the 
Fermi energy of graphene EF vary from 0.35 to 0.45 eV. 
The amplitude of THz SPs was found to increase as the 
THz frequency and Fermi energy of graphene decreased. 
Additionally, the amplitude of THz SPs increased with 
an increase in the modulation index, ripple height, and 
laser amplitude. This work explores the potential use of 
the Fermi energy of graphene to control the excitation of 
THz waves at specific frequencies, thereby enabling the 
development of THz devices [33–35].
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