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Abstract
Iron and copper are essential for all living organisms, and their balance is crucial as both deficiency and excess can cause 
health problems. Therefore, this study presents a colorimetric method for detecting Fe3⁺ and Cu2⁺ ions in aqueous samples 
using silver nanoparticles (AgNPs) synthesised from Ocimum sanctum (Tulasi) leaf extract (TLE). It is observed that AgNPs 
show optimum plasmonic properties at a precursor-leaf extract ratio of 1:5, reaction temperature of 60 °C and reaction time 
of 2 h. The AgNPs exhibit the face-centred cubic (fcc) structure and show a surface plasmon resonance peak at 413 nm, 
hydrodynamic size of 18 ± 5 nm, zeta potential of − 25.5 mV and particle size of 57 nm. FTIR spectra confirm the stabi-
lisation of AgNPs. It is worthy to note that, AgNPs exhibit selective detection of Fe3⁺ and Cu2⁺ over other metal ions and 
the detection mechanism is proposed based on the reduction potential values. The quantitative detection range for Fe3⁺ and 
Cu2⁺ are found to be 0–800 μM and 0–600 μM, with the detection limits of 9.1 µM and 19.5 µM, respectively. Additionally, 
AgNP-based paper sensors for Cu2⁺ detection show qualitative and quantitative colorimetric performance with a detection 
limit of 23.1 µM. These findings suggest that both AgNPs solution and AgNP-based paper sensors are the potential candi-
dates for metal ion detection.
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Introduction

Transition metals like Mn, Fe, Co, Cu and Zn are crucial 
in biological systems due to their roles in protein binding 
and enzymatic reactions that are essential for metabolism 
[1–4]. Iron (Fe) and copper (Cu) are especially important 
due to their involvement in various activities from cellu-
lar functions to oceanic biogeochemical cycles. Fe aids in 
electron transport, oxygen transport, energy metabolism, 
neurotransmission, DNA/RNA/protein synthesis and brain 
functions, whilst Cu is vital for mitochondrial respiration, 
brain development, blood vessel and tissue formation, neuro-
transmission and cancer cell destruction [5–8]. Proper intake 
and regulation of these ions are essential, as excess amounts 

can cause cellular damage, organ dysfunction, neurological 
diseases, movement disorders and cancer [4, 9]. Therefore, 
developing simple and cost-effective methods for selective 
detection of Fe and Cu in blood, tissues and environmental 
water samples is essential. This is challenging due to their 
complex biological roles, similar redox properties and the 
unique interferences in different environments.

There are number of detection methods for Fe and Cu 
content in aqueous samples including atomic absorption 
spectrometry, inductively coupled plasma-optical emis-
sion spectrometry, electrochemical methods like voltam-
metry and potentiometry, fluorescence quenching methods 
etc. [10, 11]. But these methods require specific laboratory 
conditions, sophisticated instruments and trained technical 
or procedural assistance to perform the detection. Notably, 
optical detection, particularly using paper-based colorimet-
ric sensors, stands out for several reasons. Unlike the tradi-
tional methods like electrochemical sensing, which often 
requires precise electrode preparation, stable power sources 
and careful calibration, colorimetric sensors offer straight-
forward visual interpretation without the need for complex 
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equipment. This ease of use makes them accessible to non-
specialists and suitable for field applications. In this context, 
metal nanoparticles (MNPs), due to their unique properties 
like surface plasmon resonance (SPR), high chemical and 
thermal stability, easy synthesis and storage, are widely 
investigated for the selective and sensitive detection of vari-
ous heavy metal ions [12–14]. Amongst MNPs, silver nano-
particles (AgNPs) are ideal for sensor fabrication due to their 
strong SPR absorption in the visible region, controllable size 
and tunable optical properties, enabling naked-eye detection 
with minimal precursor [15–18]. For instance, AgNPs are 
successfully employed as a sensor towards the colorimetric 
detection of Hg2+ ions and achieved a limit of detection of 
3.25 nM within a very short span of 3 min [19]. However, 
there are only few investigations where AgNPs are employed 
for the colorimetric detection of Fe3+ and Cu2+ ions [11, 
20, 21]. It is noteworthy that Doan et al. recently reported a 
selective and sensitive colorimetric detection of Fe3+ using 
AgNPs and achieved a detection limit of 1.5 μM [22]. With 
regard to paper sensors for Cu2+ detection, one of the appre-
ciable works is by Ratnarathorn et al., in which a detection 
limit of 7.8 nM was achieved by homocysteine and dithi-
othreitol modified AgNPs [23].

Nevertheless, approximately 70% of reported probes 
are chemically synthesised, raising environmental con-
cerns, especially when detecting analytes in food samples 
or body fluids due to potential chemical interactions [18, 
20, 24–26]. Green synthesis of AgNPs is an effective strat-
egy to address these challenges [27–29]. Ocimum sanctum, 
commonly known as Tulasi, apart from its highly acclaimed 
antimicrobial effect, is an efficient reducing and stabilising 
agent which is employed for the green synthesis of AgNPs 
[30, 31]. Tulasi leaves contain various compounds, notably 
polyphenols, which have a higher affinity for iron, a lower 
affinity for copper, and minimal affinity for other metals 
[32, 33]. The antimicrobial properties of Tulasi enhance the 
robustness of the sensing platform by preventing biological 
interferences. This unique combination makes Tulasi leaf 
extract highly effective for developing selective, efficient 
and contamination-resistant detection methods for iron and 
copper.

Therefore, this study introduces a novel approach for 
dual ion sensing using AgNPs synthesised with Tulasi leaf 
extract. The optimization of synthesis parameters ensures 
superior sensing performance in terms of both detection 
limit and range. Additionally, an innovative and sustain-
able concept is proposed through the fabrication of AgNP-
based paper sensors, which are flexible, easy to use, port-
able and cost-effective. Waste valorisation is explored by 
utilising paper waste from hole punches, thereby simpli-
fying the detection process and enhancing environmental 
sustainability. This method not only provides an efficient 
and eco-friendly solution but also leverages readily available 

materials, reducing costs and promoting green chemistry. 
Overall, this work represents a significant advancement in 
the field of metal ion detection, combining environmental 
benefits with practical applications.

Materials and Methods

Preparation of Tulasi Leaf Extract (TLE)

The Tulasi leaf extract (TLE) is prepared as follows. First, 
Tulasi leaves collected from the premises of Central Univer-
sity of Tamil Nadu, India, were washed and dried at room 
temperature. Then, 15 g of dried Tulasi leaves were weighed 
and immersed in 200 mL de-ionised (DI) water, stirred for 
3 h with 800 rpm at a temperature of 60 °C. The mixture 
was cooled to room temperature and filtered with Whatman 
filter paper. The filtered extract was stored in refrigerator 
for further use [34].

Preparation of Precursor Solution

0.1 M AgNO3 solution was prepared by dissolving 0.169 g of 
AgNO3 (≥ 99%, Fisher Scientific) salt in 10 mL of DI water 
by stirring at 1000 rpm for 15 min at room temperature.

Synthesis and Optimisation of AgNPs

The volume of precursor solution (P), i.e., AgNO3 to vol-
ume of Tulasi leaf extract (E) is varied for the optimization 
of AgNPs. For instance, 10 μL of 0.1 M AgNO3 solution 
and the same volume of TLE were dissolved in 20 mL DI 
water and stirred for 30 min with 500 rpm at room tem-
perature to prepare the AgNPs with precursor-extract (P-E) 
ratio of 1:1. The same procedure is repeated with 10 μL 
AgNO3 solution and varying the volume of TLE to 20, 30, 
40 and 50 μL to obtain the AgNPs with P-E ratios of 1:2, 
1:3, 1:4 and 1:5 respectively. To study the effect of reac-
tion time, AgNPs with P-E ratio of 1:5 was prepared under 
the above-mentioned conditions and the UV–visible spectra 
was taken at equal time intervals of 10 min. Furthermore, to 
study the effect of reaction temperature, the synthesis was 
repeated by varying the temperature from room temperature 
(RT = 30 °C) to 40, 50, 60, 70 and 80 °C. After 2 h of heat 
treatment, the UV–visible spectrum was taken for all the 
samples.

Characterisations

The Fourier transform infra-red (FTIR) spectra of TLE 
and the optimised AgNPs were taken using PerkinElmer 
spectrum 2 spectrometer in the wavenumber range 400 to 
4000  cm−1. Shimadzu UV-1800 spectrophotometer was 
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employed to measure the UV–visible absorbance of AgNPs 
in the range 200–900 nm. The dynamic light scattering 
(DLS) and zeta potential (ZP) measurements were per-
formed using Malvern Zeta Sizer Nano ZSP. The scanning 
electron microscopy (SEM) and energy dispersive X-ray 
spectrum (EDS) were obtained by JEOL-JSM-IT-200 and 
the X-ray diffraction pattern was obtained by Malvern Pana-
lytical Empyrean X-ray diffractometer.

Sensing

Ten-millimolar stock solutions of Cu2+, Fe3+, K+, Mg2+, 
Sr2+, Mn2+, Ni2+, Sb3+, As3+, Hg2+, Fe2+, Co2+, Ba2+ and 
Ca2+ are prepared using the respective chloride, carbonate, 
sulphate and oxide compounds of the ions (≥ 98%, Merck, 
India). Two millilitres of AgNPs were taken in separate vials 
and to each vial, 0.1 mL of the stock solution is added and 
shaken well. A photograph is taken after 10 min of contact 
time and further UV–visible spectrum is recorded.

Ten-millimolar stock solutions of Fe3+ and Cu2+ are 
diluted to prepare various concentrations of both the ions 
from 10 to 800 μM. 1 mL of each concentration is mixed 
with 1 mL of AgNPs and the absorption spectra are taken. 
DLS and ZP measurements are done for specified concentra-
tions to analyse the trend in the hydrodynamic size and to 
support the mechanism.

Fabrication of Paper Sensors

White coloured paper discs from the hole punch were col-
lected and 20 of them were spread to a petri-dish to which 
2 mL of AgNPs were added. The paper punches were com-
pletely immersed in the AgNPs and were heated at 60 °C 
until get dried and cooled to room temperature naturally. 
Twenty microlitres of Cu2+ stock solutions with different 
concentrations were dropped onto the paper sensors one by 
one and then allowed them to dry naturally at room tempera-
ture for 4 h. The colour of each sensor was analysed using 
Adobe photoshop for quantification.

Results and Discussions

Effect of P‑E Ratio

Figure 1a shows the absorption spectra of the AgNPs syn-
thesised with varying amounts of leaf extract. It can be 
observed that the formation of AgNPs does not happen for 
P-E ratio of 1:1 at room temperature. This suggests that the 
amount of leaf extract is not sufficient for the reduction of 
Ag+ ions. As the amount of extract increases from 1:1 to 
1:2, 1:3 and 1:4, the intensity increases and a shoulder peak 
starts to appear in the range 400 nm to 450 nm, indicat-
ing the formation of AgNPs. When the precursor-extract 
ratio reaches to 1:5, a significant SPR peak around 450 nm 
is observed. As the ratio is increased to 1:6, along with 
the SPR peak at around 450 nm, another prominent peak 
appears at around 350 nm, which corresponds to the TLE. 
In addition, a gradual colour change from colourless to pale 
yellow and brownish yellow was observed as the ratio is 
increased as seen in Fig. 1b. Thus, the formation of AgNPs 
and increase in absorbance with the addition of leaf extract 
can be attributed to the inclusion of more and more reduc-
ing components like quercetin, flavonoids, terpenoids and 
phenolic compounds present in Tulasi which can actively 
participate in the reduction of Ag+ ions into AgNPs [35]. 
Hence, as TLE is increased, more ions are reduced and the 
intensity of SPR band increases. However, the presence of 
TLE peak at 1:6 ratio suggests that, there is an excess of 
leaf content. The prominent SPR peak at the P-E ratio of 
1:5 indicates that the amount of leaf is sufficient enough 
to reduce the ions present in the solution. Hence, to avoid 
excess amounts of leaf and its effects, 1:5 ratio was chosen 
as the optimum P-E ratio for further investigations.

Effect of Reaction Time

The UV–visible spectra of the AgNPs at regular inter-
vals of time during the synthesis is given in Fig. 2a. It is 
observed that initially, there were only two peaks at 273 nm 

Fig. 1   a Absorption spectra and 
b images of AgNPs synthesised 
with different P-E ratio
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and 325 nm which corresponds to Tulasi leaf extract. As 
time increases from 0 to 20 min., a small peak at 438 nm 
starts to appear which indicates the formation of AgNPs as 
AgNPs have their characteristic SPR absorption peak in the 
region 400–450 nm [30]. Furthermore, the height of this 
peak increases with time indicating that more and more Ag+ 
ions are getting reduced and stabilised by Tulasi leaf extract 
as time increases. The variation of relative SPR peak height 
and FWHM with time is shown in Fig. 2b. It is observed 
that more than 78% of the maximum absorbance is reached 
within the first 60 min, and as the time increases to 120 min., 
the absorbance gradually reaches the maximum value. This 
can be considered a merit of the synthesis method since 
green synthesis methods are usually reported as more time 
consuming as the typical reaction time can extend from 6 h 
to even 24 h [36]. The FWHM shows a rapid increase from 
0 to 100 nm within the first 40 min which can be consid-
ered the initial stage of formation of AgNPs. Then, there is 
only a slight increase in FWHM up to 12% until the process 
completes. This suggests that the homogeneity of the cluster 
size is preserved until the end of the process and the sharp 
peak obtained indicates the stability of the AgNPs. Moreover 

since there is no shift in the SPR position, it can be con-
firmed that there is no change in the size of the particles 
[37]. Hence, 2 h is chosen as the optimum reaction time.

Effect of Reaction Temperature

Figure 3a shows the absorption spectra of AgNPs syn-
thesised at different temperatures with a P-E ratio of 1:5 
and Fig. 3b shows the variation of SPR intensity, SPR 
position and FWHM with temperature. More and more 
intense and sharper SPR peaks are obtained as the reaction 
temperature is increased from 30 to 80 °C. SPR position 
shows a blue shift up to 60 °C and then shifts to longer 
wavelength at higher temperatures. These observations can 
be explained on the basis of dependence of nucleation and 
growth rate on higher reaction temperatures [38]. A high 
reaction temperature increases the rate of nucleation and 
hence smaller particles are formed. This introduces the 
blue shift in SPR position. Furthermore, as temperature 
rises the number of smaller particles increases due to 
increased reduction rate. Subsequently the uniformity of 
size distribution is achieved which results in higher SPR 

Fig. 2   The effect of reaction 
time on a absorption spectra of 
AgNPs and b FWHM and rela-
tive SPR peak height

Fig. 3   a Absorption spectra of 
AgNPs and b SPR position, 
FWHM and relative SPR height 
with varying reaction tempera-
ture
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intensity and lower FWHM respectively [35]. But at a 
higher temperature, the growth rate is also higher. This 
increases the cluster size, and hence, after 60 °C, there 
is a red shift of SPR position even though the intensity is 
increased due to higher reduction rate [39]. It is clear that, 
beyond 60 °C, the changes in the FWHM and SPR posi-
tion are very low which indicates that there is only slight 
variation in the size of the particles beyond 60 °C, but the 
number of uniform-sized particles is increased. Consider-
ing the stability of smaller particles and energy minimiza-
tion, 60 °C is chosen as the optimum reaction temperature 
and this is in good agreement with the literature [40].

FTIR Spectroscopy

To confirm the stabilisation of AgNPs by TLE, the FTIR 
spectroscopy was performed. Figure 4 shows the FTIR 
spectra of TLE and the optimised AgNPs. Three major 
peaks observed in the leaf extract are at 1634, 2120 and 
around 3300 cm−1 which correspond to the C = O stretch-
ing of amide groups, stretching of alkynes and stretching 
of O–H groups respectively. These arise from the phenolic 
and alcoholic contents of the flavonoids, terpenoids and the 
amides of proteins present in the leaf extract [41]. There 
is no significant variations taken place in the IR bands of 
leaf extract after the synthesis of AgNPs. The presence of 
these unaltered structures containing negative charge in the 
AgNPs ensures the stability of the colloid and the results are 
in good agreement with the previous literature [42].

Microstructure of AgNPs

The X-ray diffraction (XRD) pattern of optimised AgNPs 
is shown in Fig. 5a and all the reflections were indexed 
according to JCPDS file no: 00–004-0783. The presence 
of (110), (220), (311) and (222) planes indicates the face-
centred cubic lattice of AgNPs. The SEM image of the 
AgNPs is shown in Fig. 5b. An enlarged view of the same 
image and the size distribution of the AgNPs are shown 
in the inset of Fig. 5b. The average size was obtained as 
57 nm which strongly aligns with the optical properties 
of the AgNPs. In a recent investigation by Jaffar et al., 
it was reported that the green synthesised AgNPs of size 
around 50 nm exhibit SPR absorbance at around 420 nm. 
This supports the results presented in this work [43]. The 
energy dispersive X-ray spectrum (EDS) as shown in 
Fig. 5c confirms the formation of AgNPs with the presence  
of peak at around 3.0 keV. The presence of carbon and 
oxygen could be obtained from TLE which contain plenty 
of organic functional groups like flavonoids, terpenoids 
etc. having both these elements [33].

Dynamic Light Scattering (DLS) Spectroscopy

Figure 6 shows the size measurement of the synthesised 
AgNPs using DLS spectroscopy. The number versus diam-
eter curve shows the distribution centred at 18 ± 5 nm. The 
polydispersity index (PDI) of the sample is obtained as 
0.409, which indicates the monodispersed AgNPs in the 
colloid. There is a profound dependence of size of the NPs 
on the position of SPR spectrum. The results obtained in this 
work are in good agreement with the reported synthesis of 
AgNPs using Tulasi leaf extract [42].

Zeta Potential

Figure 7 shows the zeta potential of AgNPs synthesised at 
optimum conditions. The whole distribution curve appears 
in the negative potential quadrant, extends to − 50 mV and 
is centred at − 25.5 mV. Gumustas et al. reported that the 
zeta potential magnitude less than 5 mV for a colloid can 
lead to agglomeration [44]. The zeta potential magnitude 
of as-synthesised AgNPs is several folds greater than the 
threshold value which ensures a high stability of the syn-
thesised NPs. The sharp negative value indicates that the 
AgNPs are effectively capped by the negatively charged 
species like hydroxyl and carboxylic acid groups present in 
the leaf extract. The electrostatic repulsion arising from this 
negative surface potential enables the AgNPs to counter the 
van der Waals forces and thereby, to prevent agglomeration. 
Moreover, the zeta potential value obtained in this work is Fig. 4   FTIR spectra of TLE and AgNPs
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better when compared to that of previously reported green 
synthesised AgNPs [45–47].

Detection of Fe3+ and Cu2+ Ions

Figure 8 shows the photographs AgNPs treated with the 
stock solutions of different ions along with the blank solu- 
tion. It can be clearly observed with naked eyes that there 

is a colour change only for AgNPs treated with the solution  
containing Fe3+ and Cu2+ ions. The solutions containing  
all other ions do not alter the colour, brownish red, of 
the blank solution placed at the right end whereas Fe3+ 
changes it to pale yellow and Cu2+ turns it colourless. 
This can be used to qualitatively detect Fe3+ and Cu2+ ions 
selectively from other ions present in aqueous samples.

Fig. 5   a XRD pattern, b SEM 
image with enlarged view and 
size distribution (insets), and c 
EDS of AgNPs

Fig. 6   Number distribution of 
AgNPs as a function of their 
diameter
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Spectroscopic Analysis

To quantify the efficiency of detection, the absorption spectra 
of all these solutions are recorded and shown in Fig. 9. It is 
clear that the solutions having all ions but Fe3+ and Cu2+ show 
no variation in the absorption spectra from that of AgNPs. The 
characteristic features of SPR band like intensity, position and 
FWHM are not affected by the ions which suggests that the 
stability of AgNPs are not lost due to the introduction of these 
ions. However, AgNPs treated with Fe3+ (AgNP-Fe) and Cu2+ 
(AgNP-Cu) shows a remarkable variation in the absorbance. 
Both the AgNP-Fe and AgNP-Cu show no absorption peak 
in the SPR range of AgNPs which reveals that the stability of 
AgNPs is completely lost due to the introduction of these ions.

This can be explained using the relative reduction potentials 
of the ions. The standard reduction potentials (in volts) of the 
reactions involving the above mentioned ions are shown below 
[48, 49]

(1)Ag+ + e− ↔ Ag; 0.79

(2)As3+ + 3e− ↔ As; 0.247

(3)Ba2+ + 2e− ↔ Ba; 2.91

(4)Ca2+ + 2e− ↔ Ca; − 2.87

(5)Co2+ + 2e− ↔ Co; 0.277

(6)Cu
2+

+ e
−
↔ Cu

+; 0.57

(7)Fe2+ + 2e− ↔ Fe; − 0.44

(8)Fe3+ + e− ↔ Fe2+; 0.77

(9)Hg2+ + 2e− ↔ Hg; 0.85

Fig. 7   Zeta potential of AgNPs

Fig. 8   Images of AgNP solu-
tions treated with different 
metal ions

Fig. 9   Absorption spectra of AgNP solutions treated with different 
metal ions
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(10)Mn2+ + 2e− ↔ Mn; − 1.18

(11)Na+ + e− ↔ Na; − 2.71

(12)K+
+ e− ↔ K; − 2.93

(13)Mg2+ + 2e− ↔ Mg; − 2.70

(14)Ni2+ + 2e− ↔ Ni; − 0.26

(15)Sr2+ + 2e− ↔ Sr; − 2.90

(16)Sb + 3H+
+ 3e− ↔ SbH3; − 0.51

Considering the reduction potentials of the half reactions, 
the cell potentials of Ag with each of the above ions are 
calculated and presented in Table 1 [50].

The reactions having positive cell potentials takes place 
spontaneously. As the negative magnitude of cell potential 
increases, more external energy is needed for the reaction 
to take place. Analysing Table 1, it is clear that no other 
ions except Fe3+ and Cu2+ have the ability to oxidise Ag 
spontaneously since their cell potentials with Ag are highly 
negative. On the other hand, Fe3+ and Cu2+ having a slight 
negative potential value can oxidise Ag at an expense of 
very feeble external energy. Zou et al. reported that the pres-
ence of chloride ions can reduce the potential of metal ions 
in aqueous solutions. The decrease in reduction potential 
of ions like Fe3+ and Cu2+ is much larger when compared 
with other noble metal ions like Ag+ or Au+ [51]. Similarly, 
oxidation of Ag by Fe3+ and Cu2+ takes place due to the 
presence of chloride ions provided by the salt solution as 
a result of decrease in the reduction potential of Ag/Ag+. 
This collapse the stability of AgNPs and makes the solution 
colourless.

Quantitative Detection of Fe3+

Figure 10a shows the absorption spectra of AgNPs treated 
with varying amounts of Fe3+ ion solutions. It is observed 
that there is a decrease in the intensity of SPR peak with 
increase in the concentration of Fe3+ (CF). For the initial 
concentrations, there is a gradual decrease in the SPR inten-
sity, and as the CF exceeds 200 μM, there is a sudden fall in 
the SPR intensity. The SPR position shows negligible vari-
ations up to 200 μM, and for higher CF, there is a red shift. 
Figure 10b shows the relative variation of change in absorb-
ance (ΔA = A0 − A) with respect to the initial absorbance (A0) 
as a function of CF. Though the plot is non-linear in the 
entire concentration range, ΔA/A0 varies linearly with CF in 

Table 1   Cell potentials of 
different metals with Ag

System Cell potential (V)

Ag-As3+  − 2.12
Ag-Ba2+  − 4.49
Ag-Ca2+  − 4.45
Ag-Co2+  − 1.857
Ag-Cu2+  − 0.22
Ag-Fe2+  − 2.02
Ag-Fe3+  − 0.02
Ag-Hg  − 0.73
Ag-K+  − 3.72
Ag-Mn2+  − 2.76
Ag-Mg2+  − 4.28
Ag-Na+  − 3.50
Ag-Ni2+  − 1.84
Ag-Sb3+  − 2.88
Ag-Sr2+  − 4.48

Fig. 10   a Absorption spectra 
of AgNPs treated with different 
concentrations of Fe3+ in μM 
and b relative change in absorb-
ance as a function of CF (Linear 
fit of the experimental data for 
lower concentrations is included 
in the inset)
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the lower concentration range which is enlarged and shown 
in the inset. A linear fit satisfying Eq. (17) was obtained 
with R2 = 0.99 which indicates a smooth convergence of the 
experimental data.

The limit of detection (LOD) is calculated using the 
expression (18)

And, the limit of quantification (LOQ) is calculated using 
the expression (19)

where σ is the standard deviation and s is the slope of the 
linear fit. The calculated value of LOD is 9.1 µM and LOQ 
is 26.6 µM which is significantly better compared with the 
previous sensing probes [52–54].

The practical application of the AgNP sensor was verified 
by testing real samples such as drinking water, tap water and 
pond water spiked with known concentration of Fe.3+ and 
the results are shown in Fig. 11

All the samples are spiked with 20 µM of Fe3+ which 
is represented by the black coloured bar in Fig. 11. It is 
observed that the sensor quantifies the presence of Fe3+ in all 
the three samples precisely as shown by the red coloured bar.  
The detected amount of Fe3+ is less than the actual amount. 
Furthermore, to verify the selectivity of the sensor, the same 
concentration of Ca2+ is added to each of the samples as 
interfering ion. In this case, the detected amount of Fe3+ 

(17)ΔA∕A0 = 0.003CF + 0.013

(18)LOD = 3.3�∕s

(19)LOQ = 10�∕s

by the sensor is more than the actual amount. These false 
positive and negative values are shown by optical sensors in 
several situations where there is an interference due to other 
ions. For instance, colorimetric detection of Pb2+ in real 
samples by label-free gold nanoparticles shows a recovery of 
96–103% [55]. Therefore, it can be concluded that AgNPs- 
based sensor detects approximately actual concentration of 
the analyte in all the samples even in presence of interfering 
ion. This proves the remarkable efficiency of the sensor for 
practical applications.

Quantitative Detection of Cu2+

The absorption spectra of AgNPs treated with varying con-
centrations of Cu2+ ions are depicted in Fig. 12a. A gradual 
decrease in the absorbance can be observed as the concentra-
tion of Cu2+ (CC) increases from 20 to 600 μM. As the CC 
is increased to 800 μM, the complete disappearance of SPR 
band takes place which attributes to the loss of stability of 
AgNPs. There are negligible variations in the SPR position 
up to the CC of 400 μM, and on further increasing the CC, 
there is a red shift followed the disappearance of SPR band. 
The red shift also suggests the increase in particle size due 
to decreasing stability of AgNPs. Evaluating the relative 
change in SPR absorbance of each of these solutions from 
Fig. 12b, it is clear that the plot converges to a linear fit in 
the mentioned concentration range. The linear fit follows 
Eq. (20) with an R2 value of 0.99;

The LOD for Cu2+ detection was obtained as 19.5 µM and 
the LOQ as 52.9 µM.

Mechanism

The mechanism of sensing can be explained considering 
two parameters; one being the affinity of capping agents 
towards Fe3+ and Cu2+ ions and the other is the oxidising 
ability of these ions in the solution. By the introduction of 
Fe3+ and Cu2+ ions in the AgNP solution, the SPR intensity 
is decreased. This indicates the reduction of the particular 
sized AgNPs in the solution. This could be due to the desta-
bilisation of AgNPs since the negatively charged capping 
agents of leaf extracts show more affinity towards the posi-
tively charged Fe3+ and Cu2+ ions and thus leaves Ag0 to 
bind with the newly introduced ions. As the concentration 
of ions increases, the destabilisation rate increases and hence 
the SPR intensity decreases more and more. When the CF 
and CC exceeds a certain limit, say, 300 μM and 600 μM 
respectively, the ions can easily access the AgNPs and oxi-
dises them to form Ag+ ions. This eliminates the AgNPs in 

(20)ΔA∕A0 = 0.001Cc − 0.012

Fig. 11   Comparison of detected concentration of Fe3+ in real samples
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the solution and is reflected in the absorption spectra with 
the disappearance of SPR peak.

To substantiate the mechanism, the hydrodynamic size of 
AgNPs at different concentrations of the analytes and zeta 
potential of AgNPs before and after the addition of analytes 
were measured and presented as supplementary information 
Figs. S1, S2, S3 and S4 respectively. From Figs. S1 and S2, 
it can be observed that, the uniformity of the hydrodynamic 
size of AgNPs is lost as the CF or CC is increased. Further-
more, the spectra shifts towards higher diameters indicating 
the destabilisation and aggregation of AgNPs that resulted 
in bigger particles. This is in correlation with the right shift 
of SPR peak position observed in the UV–visible analysis as 
shown in Fig. 10a. Furthermore, Figs. S3 and S4 show the 
zeta potentials measured at CF = 300 μM and CC = 600 μM. 
It is clear that the stability of AgNPs is completely lost at 
these concentrations since the ZP values spike at 0 mV. 
The ZP values suggest that the negatively charged capping 
agents present in the leaf extract which were surrounding the 
AgNPs are no more present surrounding the NPs and hence 
the negative ZP value is vanished. Thus, the above results 
explicitly explain the mechanism optical sensing by AgNPs.

The comparison of changes in absorbance of AgNPs with 
the introduction of Fe3+ and Cu2+ ions is shown in Fig. 13. It 
is clear that the absorbance value decreases non-linearly by 
the introduction of Fe3+ and linearly by the introduction of 
Cu2+. The polyphenols present in Tulasi leaves exhibit high 
affinity towards Fe3+, and hence, there is a sudden increase 
in the relative change in absorbance of AgNPs in the initial 
stage [32]. Furthermore, the difference in the trends of the 
relative change in absorbance for Fe3+ and Cu2+ can also be 
attributed to two more factors, one being the higher charge 
in Fe3+, and the second being the lower negative value of 
cell potential. The higher charge in Fe3+ compared to Cu2+ 
increases the electrostatic affinity of negatively charged cap-
ping agents towards Fe3+ resulting in faster destabilisation of 

AgNPs. Besides, the lower negative value of Ag/Fe3+ system 
when compared to Ag/Cu2+ system indicates that AgNPs 
are more vulnerable to oxidation by Fe3+ than Cu2+. Con-
sequently, the relative absorbance changes of both the ions 
follow two kinetics and hence the difference in the nature 
of the plots.

Performance of AgNP‑based Paper Sensors

The collected paper punches were successfully covered 
with AgNPs and images of the papers before and after 
fabrication is given in Fig. 14a and b. It can be seen that 

Fig. 12   a Absorption spectra 
of AgNPs treated with differ-
ent concentrations of Cu2+ in 
μM and b relative change in 
absorbance with as a function 
of CC showing the linear fit in 
the entire concentration range 
excluding 800 μM

Fig. 13   Comparison of relative change in absorbance of AgNPs with 
the introduction of Fe3+ and Cu2+ ions
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value products which are tiny, simple paper sensors are 
developed out of the waste from the hole punch. These 
sensors are very easy to carry, store and handle as evident 
from Fig. 14c showing the sensors being stored in a small 
vial of 2 mL by volume. Figure 14e depicts the visual 
readout efficiency of the sensors as the concentration of 
Cu2+ varies. It can be easily detected by naked eyes that 
a significant colour change occurs for the sensors with 
increasing CC. The colour changes from the reddish brown 

of blank solution to pale yellow and finally turns white. 
The colour change can be better illustrated by the colour 
space of dimensions lightness (L*), chroma (a*) and hue 
(b*). The values are in general called as LAB values and 
were obtained from the Adobe photoshop application. The 
colour change of any sample from that of the reference 
can be quantified in terms of ΔE parameter which can be 
expressed as follows [56];

The values of ΔE parameters of the samples are plot-
ted and shown in Fig. 14d. It is evident from the graph 
that a pronounced and gradual variation is exhibited by 
the sensors in response to the increase in CC which is in 
agreement with the UV–visible spectra of Cu2+ detection. 
A linear fit for the plot is obtained satisfying the following 
expression with R2 value of 0.99;

The calculated LOD is 23.1 µM and LOQ is 76 µM. 
The sensitivity of the probes in both the solution from and 
paper is appreciable when considering the fact that the 
maximum permissible level of Cu2+ ions in drinking water, 
according to the World Health Organisation (WHO), is 
31.4 µM (2 mg/L) [57]. Therefore the sensors exhibit a 
marked reliability with which they can be used to quan-
titatively measure the Cu2+ content in aqueous samples.

A comparison table for revealing the merit of this work 
with already existing sensing probes for Fe3+ and Cu2+ is 
given in Table 2.

In short, simple, facile and cost-effective sensors are 
developed by incorporating the benefits of green syn-
thesis and waste valorisation without compromising the 
efficiency.

(21)
ΔE =

√

(L∗ − L∗
Blank

)
2
+ (a∗ − a∗

Blank
)
2
+ (b∗ − b∗

Blank
)
2

(22)ΔE = 0.0267CC − 0.15205

Fig. 14   a The collected paper punches, b fabricated paper sensors, c 
paper sensors stored in a vial, d variation of ΔE parameter as a func-
tion of CC for sensing with the obtained linear fit and e the photo-
graphs of paper sensors treated with the Cu2+ solutions of mentioned 
concentrations (in μM)

Table 2   Comparison table of 
present work with previously 
reported works

Synthesis method LOD Range of detection References

AgNP for Fe3+detection
  Chemical - 2.4–69 μM [58]

   Chemical 125.00 μM 2.5–150 μM [52]
   Chemical 17.00 µM 0–10 μM [53]
   Green, S. arvensis leaf extract 1.00 mM - [54]
  Green, Tulasi leaf extract 9.10 µM 0–800 μM This work

AgNP for Cu2+ detection
   Chemical 0.5 μM 0.1–10 μM [49]
   Chemical 100 nM 1–100 μM [59]
   Chemical 0.1 µM 0.01–100 µM [60]
   Chemical 4.3 µM 6.25–100 µM [25]
  Green, Tulasi leaf extract 19.5 µM 0–600 µM This work
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Conclusion

In this work, a potential sensor probe is developed using 
TLE-mediated AgNPs for the detection of Fe3+ and Cu2+ 
ions. The as-synthesised AgNPs exhibit sharp and high SPR 
absorption at 413 nm and the size of the AgNPs was found to 
be 18 ± 5 nm. The FTIR spectra evidences for the competent 
stabilisation of AgNPs by TLE which is reflected in the high 
ZP value of -25.5 mV. A naked eye detection of Fe3+ and 
Cu2+ from other metal ions was qualitatively achieved along 
with the spectroscopic evidences. Quantification of Fe3+ was 
made possible within a wide nonlinear range of 0–800 μM 
and the detection limit extends up to 9.1 µM, whereas in the 
case of Cu2+, the LOD is obtained as 19.5 µM in the lin-
ear range of 0–600 μM. The explained sensing mechanism 
of aggregation and reduction potentials is substantiated by 
experimental and theoretical evidences effectively. In addi-
tion, an extraordinarily simple paper sensors were developed 
for the detection of Cu2+ ions and successively quantified the 
colorimetric response using LAB values and ΔE parameter 
with a LOD of 23.1 µM. The work presents a novel, eco-
nomic and eco-friendly sensor probe which has very high 
sensitivity and selectivity towards the analytes tested and can 
be considered a tiny step towards waste valorisation.
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