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Abstract
A surface plasmonic refractive index (RI) sensor is proposed based on a square hole array and gold film coupling structure. 
This sensor enables high-sensitivity sensing with self-reference characteristics in gas and liquid environments. The reflec-
tance spectrum and electric fields are calculated using a finite-difference time-domain (FDTD) method. Meanwhile, the 
cases of rotating square-hole arrays and changing the incident light of the polarization direction are discussed, respectively. 
The results show that the varying polarization direction of the incident light does not affect the reflectance spectrum of the 
composite structure. Rotating the array of square holes further enhances the signal strength of the resonance modes excited 
by the proposed sensor. The sensor has two resonance modes with different functions: one for self-reference and the other for 
sensing. In the sensing mode, the sensor sensitivity is 1037 and 1063 nm/RIU in gas and liquid environments, respectively; 
whereas in self-reference mode, the sensitivity decreases to 0 and 21 nm/RIU in gas and liquid environments, respectively. 
The sensor has a maximum figure of merit (FOM) of 103  RIU-1. These characteristics realize a highly sensitive sensors with 
a high FOM and self-reference capabilities, which are advantageous for bioassay detection applications.
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Introduction

Surface plasmon resonance (SPR) sensors are gaining 
increased attention in the field of optical sensing owing 
to their high sensitivity and label-free detection capabili-
ties [1]. The unique optical properties of SPR enable the 
development of many nanodevices, such as optical switches 
[2, 3], meta-lens [4–6], sensors [7–11], surface-enhanced 
raman scattering [12, 13], lithography [14, 15], and perfect 
absorber [16, 17]. SPR sensors can overcome the diffraction 
limit and achieve higher precision detection than traditional 
optical sensors. Additionally, SPR is sensitive to changes in 
the refractive index (RI) of the material in the field-enhance-
ment region. The RI of the surrounding medium, which 

affects the propagation of surface plasmons, can be accu-
rately measured by analyzing the movement of the resonance 
angle [18] or wavelength [19, 20]. This property makes SPR 
sensors highly suitable for a wide range of applications, such 
as biomedical research [10, 21], environmental monitoring 
[22], food safety [23], and pharmaceutical analysis [24, 25]. 
Additionally, RI sensors have been widely studied for detect-
ing trace substances, amongst which RI sensors based on 
SPR with self-reference characteristics have the broadest 
application. Refractive index sensors based on SPR mainly 
include prism composite structures [26], grating composite 
structures [27–29] and metal-insulator-metal (MIM) wave-
guide structures [30–34]. Among them, the prism composite 
structure has the disadvantage of being large and unfavora-
ble for integration, while the MIM waveguide structure is 
unfavorable for realizing self-reference characteristics [35, 
36]. The grating composite structure has the advantages of 
integrability and the possibility of self-reference.

Self-reference is a unique characteristic that can realize 
a reference comparison in a system, thereby significantly 
reducing the interference of external factors on the system 
[26, 37–39]. Therefore, numerous research has focused 
on the design and preparation of SPR sensors with high 
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sensitivity and self-reference characteristics. Maji et al. pro-
posed a self-referential hybrid Tamm plasmon polariton sen-
sor that achieved a 200 nm/refractive index unit (RIU) sen-
sitivity for sensing in liquid environments [21]. Wang et al. 
proposed a composite structure of nano-elliptical cylindri-
cal arrays with gold films that can excite magnetic plasmon 
polariton (MPP) modes and localized surface plasmon (LSP) 
modes. The MPP mode and LSP mode achieved detection 
with a sensitivity of 52.09 nm/RIU and 522.76 nm/RIU for 
analytes (n = 1.0–1.6) [40]. Sun et al. proposed a multilayer 
dielectric nano-disk array with gold thin-film composite 
structure sensor to obtain the sensitivity and FOM of the 
sensing channel at 672 nm/RIU and 1050  RIU-1 in the ana-
lyte RI range of 1.33–1.38, respectively. The sensitivity of 
the reference mode was 46 nm/RIU [41]. These systems ben-
efit from self-referencing as the sensitivity of the referencing 
channel is extremely low. However, the sensing channel is 
still limited by either a low sensitivity, low FOM, or a small 
detection range of the RI of the analyte.

To address these limitations, we propose a plasmonic RI 
sensor based on a square hole array and a gold film coupling 
structure. This design provides a self-reference character-
istic with high anti-interference and improves sensitivity. 
The sensor has two resonance modes with different func-
tions: one for self-reference (propagating along the inter-
face between the gold film and the silicon dioxide substrate) 
and the other for sensing (propagating along the interface 
between gold nano-square hole arrays and analyte). The 
nano-square hole and gold film composite structure has a 
wider sensing range to detect gas and liquid analytes than 
most other systems discussed in the literature. Moreover, the 
rotating square aperture arrays and the rotation of the polari-
zation direction of the incident light are discussed. Rotat-
ing the direction of the square hole array is beneficial for 
enhancing the signal intensities of the reference and sensing 
channels. Rotating the polarization direction of the incident 

light had no effect on the reflection spectra that is excited 
by the composite structure, indicating that the composite 
structure had little restraint on the polarization direction of 
the incident light. Moreover, the simple design of the sensor 
structure facilitated large-area processing.

Structure Design and Theoretical 
Foundations

The three-dimensional (3D) schematic and planar projection of 
the nano-square hole array and gold film composite structure 
are shown in Fig. 1. The composite structure mainly consists 
of a silicon dioxide substrate, gold film, and gold square hole 
arrays. The analytes were placed above the nano-square hole 
and gold film composite structure. The structural parameters 
of the sensor include the square hole length a, the depth h, 
the simulation period P, the gold film thickness d, the angle 
α between the length of the square hole (labeled by the blue 
dotted line in Fig. 1(b)) and the x-axis, and the angle β between 
the direction of polarization of the incident light and the x-axis. 
The reflectance spectrum and electric field distributions of the 
composite structure were simulated using the finite-difference 
time-domain (FDTD) method. The schematic x-y plane of the 
composite structure is shown in Fig. 1(b), where z = 20 nm is 
the plane of the lower surface of the gold film. In the simu-
lation, the mesh size was set to 8 × 8 × 8 nm, the number of 
monitoring points was set to 10000, the incident light was a 
plane wave with the initial polarization along x-direction. The 
red dotted box represents the selected simulation unit. The x- 
and y-directions were subject to periodic boundary conditions, 
and the z-direction used a perfectly matched layer (PML). The 
main operational principle is as follows: the square hole array 
acts as a two-dimensional (2D) grating for optical momentum 
compensation to excite the SPR and the position of the field 
enhancement is regulated in the square hole. This enables the 

Fig. 1  (a) Three-dimensional 
schematic and (b) planar projec-
tion of the square hole array 
gold film coupling structure
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excitation of two independent propagating surface plasmon 
resonances (PSPRs) at the top and bottom of the gold film, 
facilitating self-referential sensing for detecting the RI of the 
analyte. The steps to fabricate of this sensor are simple, and 
large-scale fabrication can be achieved through electron beam 
evaporation and lithography. First, a gold film of thickness d 
is deposited on the substrate surface by electron beam evapo-
ration. Then, negative photoresist is spin-coated on the gold 
film surface. Subsequently, the complementary structure of 
the proposed composite structure is etched through exposure 
and development steps. Next, a gold layer of thickness h is 
deposited on the surface of the complementary structure using 
electron beam evaporation. Finally, the proposed composite 
structure is obtained by removing the photoresist. In practi-
cal refractive index sensing detection: First, the analyte is 
placed on the upper surface of the composite structure. Then, 
for detection, the incident light is irradiated perpendicularly 
on the upper surface of the composite structure through the 
beam splitter. Finally, the reflected light from the surface of 
the composite structure is reflected through the beam splitter 
and measured by a spectrometer [19].

The square-hole array was used as a 2D grating to satisfy 
the wave vector matching condition for exciting the SPR as 
follows:

where klight, kgranting, and kSPR correspond to the wave vector 
of the incident light, grating compensation and excited SPR, 
respectively.

Two PSPR modes were excited in this study: one that 
occurred at the gold film-analyte interface and the other at the 
gold film-substrate interface. The SPR is mainly excited at the 
interface between the metal and the medium. The dielectric 
constant of the metal is closely related to the wavelength of 
the incident light. This relationship can be accurately described 
using the Drude model [9]. Therefore, the PSPR mode at the 
gold film-analyte interface follows the relationship:

where θ is the incident angle of incident light, n and m are 
diffraction orders, the simulation period (P), and εm is the 
dielectric constant of the metal. Equation (2) can be further 
simplified as follows

where λres is the resonance wavelength of PSPR mode. 
According to Eq. (3), the resonance wavelength of the PSPR 
can be calculated. The resonance wavelength of PSPR is 
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tuned by the simulation period (P), the dielectric constant 
of the metal (εm), the diffraction order (n and m), and the RI 
of the analyte (na), but is insensitive to the size of the metal 
nanoparticles. Based on this principle, the reliability of the 
PSPR mode simulations can be accurately assessed.

The field enhancement region of the PSPR mode propa-
gating along the undersurface of the gold film is the substrate 
environment. Therefore, Eq. (3) is modified to establish the 
following relationship:

where �′
res

 represents the resonance wavelength, n' and m' are 
diffraction orders, and ns is the RI of the substrate.

Results and Discussion

Figure 2 shows the reflectance spectrum of the proposed 
sensor in a liquid environment and the electric field distribu-
tion for Modes 1 and 2. The results indicate that the sensor 
operates well in a liquid environment. Here the parameters 
of the square-hole array composite structure are: a = 700 nm, 
h = 50 nm, d = 30 nm, P = 1050 nm, α = 45° and β = 0°. The 
reflectance spectrum in Fig. 2(a), indicates that Modes 1 and 2 
are (1, 0)-order PSPR modes propagating along the undersur-
face of the gold film and the upper surface of the nano-square 
hole array, respectively. The reflectivity at the resonance wave-
length is 0.59 for Mode 1 and 0.02 for Mode 2, which presents 
low reflectivity with a strong detection signal. Figure 2(b–e) 
exhibit the electric field distributions of Modes 1 and 2 at RI 
of 1.33 for the analyte. In Fig. 2(b) and (d), Mode 1 is mainly 
caused by the PSPR, which occurs at the interface between the 
gold film and the silicon dioxide substrate, propagates along 
the bottom surface of the gold film, and continuously decay 
in the -z-direction. Mode 1 has a strong electric field enhance-
ment effect in the substrate, but not in the analyte environ-
ment. Therefore, the results suggest that Mode 1 is insensitive 
to changes in analyte RI and has a self-referential function. 
Similarly, the analysis of Fig. 2(c) and (e) shows that Mode 2 
is a PSPR that occurs and propagates along the upper surface 
of the gold nano-square-hole array. The field-enhanced region 
of Mode 2 occurs mainly in the analyte environments and con-
tinuously decays in intensity along the z-direction thereby sug-
gesting that Mode 2 strongly interacts with the analyte environ-
ment [42]. This phenomenon indicates that Mode 2 is sensitive 
to changes in the analyte RI and can be used as a sensing mode. 
The analysis of the electric field distribution, indicates that the 
composite structure has self-reference characteristic. Moreo-
ver, the sensing performance for the composite structure is 
discussed in detail later in this paper.
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The parameters were optimized to further explain the 
plasmonic effects excited by the sensor. As shown in Fig. 3, 
the reflectance spectrum of the composite structures was 
investigated by varying the angle (α) of the square aperture 
array and the polarization direction of the incident light. 
In Fig. 3(a), the reflectivity at the dip of Modes 1 and 2 
decreases slightly as α changes from 0° to 45° in 5° incre-
mental steps. Here, α = 45° was considered as the optical 
value. In Fig. 3(b), the reflectance spectrum of the sensor 
is almost constant as β changes. This indicates that the sen-
sor has almost no condition for the polarization direction 

of the incident light, which is beneficial for practical appli-
cations. Both SPR modes excited by the proposed sensor 
are PSPR modes, which are insensitive to variations in 
geometric parameters of individual nano-square holes. Fur-
thermore, based on the arrangement, the proposed structure 
belongs to a square dot array arrangement. Therefore, for 
the PSPR mode, from a physical perspective, the change 
in the polarization direction of the incident light does not 
affect the reflectance spectrum of the composite structure. 
The sensing modes are mainly caused by the PSPR modes 
that propagate along the upper surface of the gold film and 

Fig. 2  (a) The reflectance spectrum of the proposed sensor in a liquid 
environment. (b–e) Electric field distribution at the resonance wave-
length. (b) Mode 1 at x–z cross-section with y = 0 nm, (c) Mode 2 at 

x-z cross-section with y = 0 nm, (d) Mode 1 at x-y cross-section with 
z = 20 nm, and (e) Mode 2 at x-y cross-section with z = 50 nm
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Fig. 3  Reflectance spectrum of composite structures at different values of (a) α and (b) β 



Plasmonics 

decay in the z-direction. The self-reference mode is mainly 
caused by the PSPR mode that propagates along the lower 
surface of the gold film and decays in the -z direction. The 
excitation sensing mode only needs to satisfy the momentum 
matching condition, and the incident light is directly incident 
on the upper surface of the composite structure. However, 
for the self-reference mode, the energy of the incident light 
needs to penetrate the gold film and be coupled to the lower 
surface of the gold film. This results in the signal strength 
of the sensing mode usually higher than that of the self-
reference mode [41].

Figure 4 shows the reflectance spectrum of the optimiza-
tion process for the side length a, depth h of the square holes 
in the composite structure, and thickness d of the gold film. 
Figure 4(a) shows that the resonance wavelengths of Modes 
1 and 2 remain unchanged as a increases; indicating that 
the two modes are insensitive to changes in this parameter. 

However, significant effect was observed on the signal inten-
sity obtained for a = 700 nm. In Fig. 4(b), the optimization of 
the square hole depth was obtained for h = 50 nm, based on 
the trade-off between the resonance wavelength of Modes 1 
and 2. As Mode 1 was the referencing mode, the resonance 
wavelength of Mode 2 cannot approach to that of Mode 1. 
As the RI of the analyte increases, Mode 2 experiences a 
red-shift. If the resonance of Mode 2 is similar to that of 
Mode 1, the resonance wavelength of Mode 1 is affected, 
altering the sensitivity of Mode 1 and limiting the sensing 
range of the sensor. Therefore, this factor must to be con-
sidered during the parameter optimization. At h = 50 nm, 
the reflectivity of Mode 2 at the dip was extremely low, at 
approximately 0. For Fig. 4(c), as d increased, the reflectiv-
ity at the resonance wavelength for Mode 1 increased, Mode 
2 decreased, and the full width at half maximum (FWHM) 
for both modes decreased. The resonance wavelengths and 
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Fig. 4  Reflectance spectrum for different values of (a) the side length a of the square hole, (b) the depth h of the square hole, and (c) the gold 
film thickness d 
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FWHM of Modes 1 and 2 were considered, resulting in 
d = 30 nm. Figure 4 shows that the resonance wavelengths 
of Modes 1 and 2 are insensitive to changes in a, h, and d, 
which further confirms that Modes 1 and 2 are PSPRs. The 
PSPR is sensitive to changes in the period of the composite 
structure, whereas the LSPR is sensitive to changes in the 
size and shape of the nanoparticles [20]. Based on the above 
analysis of parameter optimization, a = 700 nm, h = 50 nm, 
and d = 30 nm were obtained.

Next, we examined the effect of the period (P) of the 
square hole array composite structure on the reflectance 
spectrum. The theoretical resonance wavelengths of Modes 
1 and 2 excited by the composite structure were calculated 
according to the theoretical equations (Eqs. (3) and (4)). 
Figure 5(a) shows the reflectance spectrum as the period 
changes from 1000 to 1250 nm in steps of 50 nm. As the 
period increases, the resonance wavelengths of Modes 1 and 
2 show a significant linear red-shift, which is characteristic 
of PSPR. In general, the closer the resonance wavelength of 
the PSPR (as the sensing mode) is to the deep infrared band, 
the higher the sensitivity of this mode. When P = 1050 nm, 
the resonance wavelength of Mode 1 was less than 0.6, 
which resulted in a trade-off value of P = 1050 nm.

In addition, the comparison between the simulation 
results (shown in Fig. 5(a)) and the theoretical analysis 
results is shown in Fig. 5(b). The results of simulation cal-
culations and theoretical analyses of Modes 1 and 2 were 
basically fitted, confirming the reliability of sensor. Theo-
retical analysis implies that Modes 1 and 2 are (1,0) modes 
((n,m) = (n',m') = (1,0)).

The sensing performance of the proposed sensors and 
self-referencing characteristics were investigated based 
on the above analysis. Two crucial-parameters for sensing 

performance. One of the parameters are sensitivity (S) and 
FOM. The expressions for these two parameters are as follows:

where sensitivity (S) quantifies the sensing capability of the 
sensor, and the FOM quantifies the sensing accuracy.

The sensing performance of the composite structure 
was investigated based on optimal parameters. Figure 6 
shows the sensing performance of the sensor in a liq-
uid environment, where Fig. 6(a) shows the reflectance 
spectrum of the sensor in a liquid environment, with dif-
ferent colors corresponding to different reflectivity. As 
the refractive index increased, Modes 1 and 2 exhibited 
well linear sensitivities, and the resonance wavelengths 
of the self-reference mode (Mode 1) remained almost 
constant, whereas that of the sensing mode (Mode 2) is 
significantly red-shifted. The electric field enhancement 
region of Mode 1 is located mainly in the substrate envi-
ronment, while the substrate material remains unchanged. 
Therefore, the resonance wavelength of Mode 1 remains 
almost constant when the refractive index of the analyte 
changes. In contrast, the electric field enhancement region 
of Mode 2 is located mainly in the analyte environment 
and is extremely sensitive to changes in the analyte. Mode 
2 undergoes a significant linear redshift as the refractive 
index of the analyte increases. Meanwhile, the FWHMs 
of Modes 1 and 2 were nearly constant. The FWHMs of 
Modes 1 and 2 were 8.9 and 12.7 nm in the liquid envi-
ronment, respectively. Figure 6(b) shows the relationship 
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Fig. 5  (a) Reflectance spectrum of the sensor at different simulation periods. (b) Comparison between the simulation and theoretical analysis for 
PSPRs
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between the resonance wavelengths of the two modes 
and the RI of the different liquid analytes. The sensitiv-
ity of Mode 1 in the liquid environment was 21 nm/RIU, 
whereas the sensitivity and FOM of Mode 2 in the liquid 
environment were 1063 nm/RIU and 83  RIU-1, respec-
tively. These results demonstrate the high sensitivity and 
self-reference characteristics of the proposed sensor in 
liquid environment.

The sensor’s performance in a gas environment was fur-
ther investigated to broaden its application range. First, 
Fig. 7 shows the reflectance spectrum of the sensor in a 
gas environment alongside the electric field distributions 
for Modes 1 and 2. Identical to the liquid environment, 
the composite structure can excite two PSPR modes in 
gas environments. For Fig. 7(b) and (d), Mode 1 is mainly 
caused by the PSPR, which occurs at the interface between 
the gold film and the silicon dioxide substrate. This mode, 
propagates along the underside of the gold film, and decays 
continuously along the -z-direction. For Fig. 7(c) and (e), 
Mode 2 is a PSPR that occurs and propagates along the 
interface between the gold nano-square hole arrays and 
analyte. The field enhancement region of Mode 2 occurs 
mainly at the top of the gold nano-square hole array and 
continuously decays in the z-direction. This demonstrates 

that the sensor still exhibits self-reference characteristics 
in a gas environment.

This analysis provides ample evidence that the sensor 
exhibits self-reference characteristic. The sensing perfor-
mance for gas environments is discussed in Fig. 8. Fig-
ure 8(a) shows the reflectance spectrum of the sensor in 
gas environments with different colors corresponding to 
different reflectivity. Modes 1 and 2 exhibited excellent lin-
ear sensitivities with increased RI. Figure 8(b) shows the 
relationship between the resonance wavelengths of the two 
modes and the RI of the different gas analytes. Similar to the 
analysis in Fig. 6, the sensitivity of Mode 1 was 0 nm/RIU. 
The FWHMs of Modes 1 and 2 were 7.7 nm and 10.3 nm in 
the gas environment, respectively. The sensitivity and FOM 
for Mode 2 in the gas environment were 1037 nm/RIU and 
103  RIU-1. These results further illustrate that the sensor can 
perform well in gas and liquid environments.

The performance of the proposed sensor was compared 
with that of similar sensors previously reported and listed in 
Table 1 [43–46]. The proposed sensor allows for refractive 
index sensing with high sensitivity and FOM. In addition, 
the sensor exhibited excellent self-reference performance. 
A comprehensive comparison shows that our sensor outper-
forms the aforementioned studies.

Fig. 6  (a) Reflectance spectrum 
of the proposed sensors in liquid 
environments. Different colors 
correspond to different reflectiv-
ity. (b) Relationship between 
resonance wavelength and RI of 
liquid analytes
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Fig. 7  (a) Reflectance spec-
trum of the proposed sensors 
in a gas environment. (b–e) 
Electric field distribution at 
the resonance wavelength. (b) 
Mode 1 at x-z cross-section 
with y = 0 nm, (c) Mode 2 at x-z 
cross-section with y = 0 nm, (d) 
Mode 1 at x-y cross-section with 
z = 20 nm, and (e) Mode 2 at x-y 
cross-section with z = 50 nm
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Conclusion

We propose a self-referential plasmonic sensor based on a 
square hole array and gold film composite structure. Its sens-
ing performance and field-enhancement phenomena were 
analyzed using the FDTD method. The sensor can excite the 
PSPR mode on the top and bottom surfaces of the gold film. 
The PSPR mode excited on the lower surface of the gold film 
exhibited excellent self-reference performance, while the 
PSPR mode excited on the upper surface of the gold nano-
square-hole array exhibited excellent sensing performance. 
The composite structure does not require the specification of 
the polarization direction of the incident light. At the opti-
mized parameters (a = 700 nm, h = 50 nm, d = 30 nm, and 
P = 1050 nm), the sensor achieved high-sensitivity sensing 
at 1037 and 1063 nm/RIU in gas and liquid environments, 
respectively. This type of sensor can be widely used for bio-
chemical detection.
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