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Abstract
Despite the growing need for effective and environmentally friendly antimicrobial agents, the synthesis methods for such 
materials often involve toxic chemicals and complex procedures. There is a pressing need for a sustainable approach to 
synthesize nanoparticles with potent antibacterial properties. This study aims to address this gap by developing a green syn-
thesis method for silver nanoparticles (Ag NPs) using Amla extract. Powder X-ray diffraction (XRD), UV–Vis absorption 
spectroscopy, and Transmission Electron Microscopy (TEM) demonstrated that face-centered cubic Ag NPs with sizes in 
the range of 15–30 nm can be synthesized through an environmentally friendly process. Further, the formation mechanism 
of Ag NPs has been discussed in detail with the help of schematic diagrams. The Amla-derived Ag NPs have been further 
tested for their antibacterial activity against two different antibacterial strains: Escherichia coli (E. coli) and Staphylococ-
cus aureus (S. aureus) using the plate count method. The NPs showed excellent biocompatibility where approximately 90% 
of growth reduction have been found for both strains at 100 μg/mL of Ag NPs and growth time of 30 min. These outcomes 
exhibited that Ag NPs, as a kind of antibacterial material, had an incredible guarantee for application in a wide scope of 
biomedical applications.

Keywords Phyllanthus emblica (Amla) · Silver nanoparticles · Antibacterial activity Escherichia coli (E. coli) · 
Staphylococcus aureus (S. aureus)

Introduction

Microorganisms can quickly develop in our environment as 
they contaminate oceans, soil, and air. In a short while, a mul-
tistep process starts and forms a complex microbial community 

known as a biofilm. Biofilms can have more than 99% of bac-
teria attached to their surfaces. Moreover, bacterial biofilms 
are sheltered from antibiotics and phagocytosis, making them 
difficult to control clinically. This results in several diseases, 
including hygienic problems and chronic infections, due to bio-
film formation. Thus, antibacterial materials and agents play 
an essential role in controlling microorganisms. Thereby, we 
need an effective and non-toxic antibacterial agent that can 
resist microorganisms [1, 2].

In recent years, the synthesis of metallic nanoparticles 
(NPs) with tunable shapes and sizes has attracted much 
attention because of their significant applications in vari-
ous fields of science [3, 4]. Due to their very high surface-
to-volume ratio, these metallic NPs exhibit unique optical, 
electrochemical, catalytic, and biological properties [5, 6]. 
In particular, these metal NPs have been used in applications 
such as surface-enhanced Raman spectroscopy (SERS), gene 
delivery systems, and artificial implants [7–12]. Among 
metal NPs, silver nanoparticles (Ag NPs) are one of the 
most crucial and captivating nanomaterials in biomedical 
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applications. Ag NPs play a significant role in nanoscience 
and nanotechnology, especially in nanomedicine. Although 
several noble metals have been utilized for various purposes, 
Ag NPs have been focused on likely applications in cancer 
diagnosis and therapy. Moreover, Ag NPs have recently been 
used as a potent antibacterial agent in many bactericidal 
applications [13].

A variety of synthesis techniques have been developed 
to blend metal NPs, including chemical reduction, solvo-
thermal, sol–gel processes, and laser dissipation. However, 
these techniques have certain constraints, including the use 
of hazardous reductants or complex and costly instruments. 
Therefore, environmentally friendly nanoparticle synthe-
sis protocols have come into focus. Among the different 
microorganisms, prokaryotic microorganisms were first 
acknowledged to have potential in the biosynthesis of NPs. 
Beveridge and Murry were among the first to demonstrate 
the formation of octahedral gold particles with nanometric 
dimensions [14]. The silver-resistant bacterial strain Pseu-
domonas stutzeri AG259 accumulates silver nanoparticles 
along with some silver sulfide in the cell, with particle sizes 
ranging from 35 to 46 nm [15]. Several eukaryotes like 
fungi and yeast have also been explored for the synthesis 
of metal and metal oxide NPs [16–18]. Plant extracts have 
also demonstrated significant potential for the rapid syn-
thesis of metal NPs and are being used widely due to the 
better-understood mechanisms of NP synthesis with plant 
extracts compared to fungi, yeast, or microorganisms [19]. 
Various plant extracts, such as Chenopodium album leaf 
[20], Cinnamomum camphora [21], Ficus benghalensis [22], 
Hypericum perforatum [23], and many others [24–41], have 
generally been utilized for the synthesis of different metal-
lic NPs. The use of plant extracts is preferable to synthetic 
compounds because of their low cost, availability, and eco-
compatibility. Additionally, plant extracts allow for a faster 
and simpler procedure for  Ag+ reduction compared to con-
ventional chemical methods.

Phyllanthus emblica, commonly known as “Amla,” is 
a popular fruit tree originating in India and is considered 
beneficial for health due to the presence of various nutra-
ceuticals (calcium, vitamin C, lysine, minerals, phospho-
rus, etc.) and its ability to fight many human diseases [59]. 
Currently, it is cultivated in small agro-forest industries in 
many tropical and subtropical countries because of its use 
in many pharmaceutical products. However, the nutritional, 
pharmaceutical, and chemical features of Amla open the way 
to novel, interesting processes involving Emblica officinalis, 
allowing for its full potential to be exploited. To the best of 
our knowledge, Ag NPs derived from Amla extract have 
not been deeply investigated so far [42–44]. The low num-
ber of papers on this topic highlights the novelty of this 
work. The growing interest in Ag NPs as antibacterial agents 
is evidenced and justified by their immediate biomedical 

application and the green synthesis methodology. Notably, 
the general topic “silver nanoparticles” and “Streptococcus 
pyogenes” has grown from 2009 to 15 papers in 2020. How-
ever, the number of papers is still low, and novel results are 
required to enable practical applications of Amla-derived Ag 
NPs as antibacterial material.

This study addresses many current limitations in tack-
ling bacterial infections, such as antibiotic resistance, toxic-
ity, and biofilm formation. In this work, we used Emblica 
officinalis extract to prepare Ag NPs for use as an antibacte-
rial agent against two different bacterial strains, namely, E. 
coli (Gram-negative) and S. aureus (Gram-positive). The 
results demonstrate that an easy, green, and environmentally 
friendly fabrication process using Emblica extract produces 
an efficient antibacterial agent, even with low Emblica con-
centrations during the reduction process. A clarification on 
the reduction mechanism of silver ions and NPs formation 
is also provided, highlighting the broad-spectrum activity, 
high efficacy, and biocompatibility of Amla-derived Ag 
NPs. These findings suggest that Amla-derived Ag NPs 
have significant potential for various biomedical applica-
tions, including wound healing, medical device coatings, and 
drug delivery systems, offering a sustainable and effective 
solution for preventing and treating bacterial infections.

Materials

Silver nitrate  (AgNO3, ≥ 99.0% purity) was procured from 
sigma Aldrich. Luria- Bertani (LB) medium and Agar pow-
der, used for culture was supplied from HiMedia Labo-
ratories, India. Dried amla powder was purchased from 
local market. DI water is used for the synthesis of Ag NPs 
(18MΏ).

Methods

Synthesis

Silver nanoparticles (Ag NPs) were synthesized via a reac-
tion of  AgNO3 with Phyllanthus emblica (Amla) extract. 
Amla extract was prepared by simply dipping 5 mg of dried 
Amla powder for 24 h into 100 mL of double-distilled water. 
The solid content was filtered out, leaving the residual 
extract of dark brownish color. This extract was further used 
in consecutive steps for the synthesis of Ag NPs. In a typi-
cal synthesis method, first, an aqueous solution (50 mL) of 
 AgNO3 with molarity 0.1 M was prepared. After that, 50 mL 
of Amla extract was added to solution under vigorous stir-
ring. Further, after a few minutes, the reaction changed to 
faint brownish color, which indicates the formation of Ag 
NPs. Finally, the Ag NPs were collected by centrifugation, 
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washed several times, and redispersed in water. Similarly, by 
varying the concentration of Amla extract (25 mL, etc.) in 
the aqueous solution of  AgNO3 (same concentration 50 mL 
and 0.1 M), other samples were prepared.

Characterizations

XRD analysis of resulting samples was carried out with an 
X Pert Pro X-ray diffractometer (PAN analyst BV the Neth-
erlands with a build in graphite monochromatometer) with 
Cu Kα radiation (λ = 1.54056 A°). The samples for XRD 
were prepared by placing one drop of reaction mixture on a 
circular disk (5-mm diameter) and allowing it to dry. Trans-
mission election microscopic (TEM) images were captured 
on JEOL microscope at an accelerating voltage 200 keV. 
The UV–Visible spectroscopic measurements were car-
ried out with the Perkin Elmer Lambda 750S UV–Visible 
spectrometer.

Antibacterial Study

Study of antibacterial activity of Ag NPs was performed on 
two bacterial strains, viz. E. coli and S. aureus (all clinical 
strains). The component of Luria–Bertani (LB) medium was 
used in growing and maintaining the bacterial culture. The 
effect of Ag NPs on bacteria was investigated by culturing 
the organism on LB plates  (105 colony-forming units per 
plate), along with Ag NPs with different concentrations, i.e., 
20, 40, 60, 80, and 100 μg/mL of the media. Plates without 
Ag NPs were taken as control. Plates were incubated for 
24 h at 37 °C, and the colonies were controlled for achiev-
ing results. The counts of three plates corresponding to a 
particular sample were averaged to obtain the result. The 
growth of bacteria in the liquid broth was studied in LB 
media; inoculation was given from fresh colonies on agar 
plates into 50 mL of media. The media containing  105 cells/
mL was adjusted for the 0th minute of reading (Spectropho-
tometer Bio-Rad Smart plus). Readings were taken at an 
interval of 15 min at 600 nm.

Results and Discussion

Structural and Morphological Characterization 
of Ag NPs

Figure 1 shows a simplified pictorial illustration of the pro-
cess employed to synthesize Ag NPs. After adding Amla 
extract to a 0.1 M aqueous solution of  AgNO3, the mixture 
changed to a brownish color within 4–5 min of reaction. 
The change in color of the reaction mixture indicates the 
formation of Ag NPs.

Figure 2 shows the powder X-ray diffraction pattern 
(XRD) pattern of the Ag NPs prepared at a concentration 
of 1:1  (AgNO3: Amla extract). The diffraction pattern, 
recorded in the 2θ range 10–80°, shows four strong Bragg’s 
diffraction around 2θ values of 38.45°, 46.35°, 64.75°, and 
78.05° corresponding to the (1 1 1), (2 0 0), (2 2 0), and (3 
1 1) planes, respectively. According to this analysis, we can 
conclude that the sample has an FCC structure. Moreover, 
corresponding to the observed diffraction planes the inter-
planar spacing also calculated and found to be 2.33,1.95, 
1.43 and 1.22 Å for (1 1 1), (2 0 0), (2 2 0), and (3 1 1) 
planes, respectively. A strong increase in crystallinity can 
be observed for the 1:1  (AgNO3: Amla extract) value. The 
reason for this observation can be found in the larger crystal-
lite size of 1:1  (AgNO3: Amla extract) samples that provide 
enhanced number of parallel planes for the XRD diffrac-
tion. The average crystalline size has been estimated by the 
Debye–Scherrer formula:

where λ (= 1.54 Å) is the wavelength of X-rays, β is the full 
width of half maxima (FWHM) in radians, and θ is Bragg’s 
angle. The FWHM for the plane (111) at 2θ value of 38.45° 
is found to be 0.293 and 0.518 for 1Ag:0.5A and 1Ag:1A 
ratios, respectively. Thus, average crystalline sizes of about 
17 nm and 30 nm have been calculated, respectively. These 
results agree with literature reports on the synthesis of Ag 

L = (0.9 × �)∕(� × cos�)

Fig. 1  Schematic illustration of the procedure used to synthesize of 
colloidal Ag NPs from  AgNO3 solution
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NPs using various plant extracts [19, 45, 46], where it is 
explicitly demonstrated the dependence of particles size on 
the mixing ratio of  AgNO3 solution and plant extract. As the 
amount of extract is reduced, the particle size gets smaller 
and smaller.

Figure 3 depicts UV–Visible absorption spectra of Ag 
NPs measured at two concentrations, i.e.,  AgNO3: Amla 
extract = 1:0.5 and 1:1, respectively. The curves show a 
broad absorbance around 428 nm for sample 1Ag:0.5A and 
at 440 nm for 1Ag:1A sample attributed to surface Plasmon 
resonance (SPR) [47–49]. Ag NPs have very close conduc-
tion and valence band in which electrons are supposed to 
move freely. When the sample is illuminated with electro-
magnetic light of specific wavelength, these free electrons 
give rise to a SPR absorption band, arising due to the col-
lective oscillation of conduction electrons of Ag NPs in 
resonance with the light wave. The absorption band of Ag 
NPs is depends on various parameters such as nanoparticle 
size, chemical surrounding and dielectric medium. Depend-
ing on this absorption band, the size of the NPs ranging 
from 10 to 100 nm can be estimated. Furthermore, using the 

UV–vis spectroscopy, the stability of Ag NPs as prepared 
from biological method has been checked and found similar 
characteristic after the 12 months. Thus, we can conclude 
that as prepared Ag NPs using Amla extract is highly stable.

The redshift observed at the high concentration of Amla 
extract clearly indicates the correspondent increase in the size 
of Ag NPs, in agreement with literature [48] and our XRD 
results. Also, the peak centered at 440 nm has higher FWHM 
for 1Ag:1A sample, suggesting the formation of poly dispersed 
NPs in 1Ag:1A and mainly of spherical shaped particles in 
1Ag:0.5A condition. As demonstrated by Mie’s theory [49], the 
presence of only one SPR band can be indicative of a spherical 
shape, while the detection of other bands suggests the formation 
of other shapes (for example triangular nanoplates, disks) of 
metal NPs. Accordingly, the second absorption band at around 
350 nm with no significant shift with Amla concentration can 
be attributed to the presence of other morphologies of Ag NPs 
[50], as confirmed by direct measurements of Ag NPs size by 
TEM analysis.

In Fig. 4a–d, TEM images of Ag NPs at two different 
magnifications and two different concentrations of Amla 
extract are reported. The analysis of the TEM micrographs 
evidences that NPs are spherical and well dispersed over 
the grid. At high concentration of reducing agent (1:1/
AgNO3: Amla extract), the average size of spherical NPs 
has been estimated in the range of 25–30 nm, and many 
polydispersed NPs in the form of nanotriangles or prisms 
are noted (Fig. 4a, b). As shown in Fig. 4c, d, by reducing 
the concentration of Amla (1:0.5), the size of the spherical 
Ag NPs becomes smaller down to about 15–20 nm, and less 
nanotriangles are detected. The analysis of histogram plots 
(Fig. 4e, f) shows that average particle size increases with 

Fig. 2  XRD pattern of Ag NPs at different concentrations of  AgNO3 
and Amla extract

Fig. 3  UV–Vis absorption spectra of Silver (Ag) NPs with different 
concentrations of Amla extract
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the decrease of the ratio of Amla extract with respect to 
 AgNO3. These results clearly shown that here Amla act as 
a reducing as well as a stabilizing agent in the synthesis of 

Ag NPs. Further, the sizes obtained from TEM analysis were 
well matched with absorbance spectra (Fig. 3) and XRD 
results (Fig. 2) and with literature data of both samples [51].

Fig. 4  TEM images of Ag NPs at different concentrations of  AgNO3: Amla extract: a, b 1:1 and c, d 1:0.5. (e, f) Corresponding histogram plots 
of nanoparticle size distribution
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Mechanism of Ag NPs Formation

The mechanism of nanoparticle formation consists of three 
main steps: (i) reduction of ions, (ii) nanoparticle nucleation 
and growth, and (iii) nanoparticle stabilization.

Notwithstanding the mechanism of bioreduction and 
capping of metal ions by plant extracts is not completely 
clarified in literature [52–56], the reduction ability of Amla 
extract can be certainly ascribed to the high content of 
phenolic compounds, namely, gallic acid, methyl gallate, 
3–6-di-O-galloyl-glucose, mucic acid gallates, flavonoids 
(as quercetin), and acid ascorbic that have been identified in 
many papers [57–59]. In addition, another antioxidant phe-
nolic compound, Hamamelitannin, has been extracted for the  
first time from Phyllanthus emblica very recently [60]. The 
functional groups of these phytomolecules are recognized 
not only to be responsible of metal ion reduction but also to  
stabilize and make biocompatible the resulting Ag NPs. The 
capability of natural polyphenol compounds to reduce silver 
ions has been recently confirmed by Ferraris et al. in a work 
on bioactive glasses [61]. It is known that the mechanis-
tic aspects of the chemical reduction reaction by plant/fruit 
extracts are difficult to understand due to the complexity of 
the biological systems, and thus, it remains a big challenge 
that requires more detailed studies [62, 63]. On the base 
of these considerations, a probable mechanism of Amla-
derived Ag NPs formation is here discussed with the attempt 

to unify and discuss the fragmental information reported in 
literature on the base of experimental results.

According to some authors [64, 65], the process of silver 
ion reduction (first step) is strictly correlated to the keto-enol 
tautomerism [66] of the polyphenol constituents. All these 
compounds possess many hydroxyl groups in their aromatic 
rings, as illustrated in Fig. 5, where the chemical structure 
of the main constituents identified in Amla extract [57] is 
reported. As shown in Fig. 5, silver cation is presumably 
attracted by oxygen of the O–H groups forming interme-
diate single charged complex that then transforms into the 
keto-form of the polyphenol compound releasing Ag ions, 
hydrogen ions, and electrons [67]. Then, the reduction of 
 Ag+ by direct acceptation of electrons (Eq. 1 in Fig. 6a) or 
via molecular hydrogen produced by  H+ reduction (Eq. 2 in 
Fig. 6b) takes place [67].

Since our results confirm that NPs are formed in short 
times (4–5 min), the mechanism of nanoparticle formation can 
be plausibly ascribed to autocatalytic reduction—nucleation,  
nucleation—growth, Ostwald ripening, and coalescence 
in agreement with literature [68]. We have schema- 
tized this process in Fig. 6b. The initially formed silver metal 
atoms undergo to autocatalytic reduction. Silver atom and 
silver ion form  Ag2

+ clusters that react each other forming 
 Ag4

2+ ions, and finally  Ag4
2+ clusters interact with polyphe-

nol compounds giving Ag/polyphenol complexes [69]. Then, 
these complexes interact each other forming a small metal 

Fig. 5  Chemical structure of the most important reducing constituents extracted in fruits of Emblica officinalis (Amla) [57]
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(primary) nanoparticle by chemical reduction. This mecha-
nism is supported by experimental data suggesting that 
polyphenols are involved not only in bioreduction but also 
in the nucleation of nanoparticle formation and subsequent 
aggregation thanks to their ability to adsorb on the silver 
surface [64]. After that, a process of primary NPs thicken-
ing occurs by coalescence and Ostwald ripening. Particles 
increase their size more, and more until the stabilization 
process takes place.

The stability of the formed Ag nanoparticle is attributed 
to presence of -OH and = O groups or π-electrons in poly-
phenols that behave as electrostatic inhibitors of particles 
coalescence and aggregation by forming a coating around 
the particle [70–74]. For example, it is reported that querce-
tin, contained in Amla extract, possess great chelating abil-
ity, thanks to the simultaneous action of carbonyl, hydroxyl, 
and the catechol groups that bond with metal particle [64]. 
Other experimental data confirm that phenolic compounds, 

Fig. 6  Schematic illustration of a the hypothesized mechanism of chemical reduction of  Ag+ ions to Ag metal atoms, b process of NPs nuclea-
tion and growth, and c chelation of Ag NPs by polyphenols that prevent agglomeration
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such as mucic acid-1,4-lactone-3-O-gallate, ellagic acid, and 
isocorilagin in methanolic extracts from Amla could chelate 
ferrous ion [73]. Since Ag NPs have a negative zeta potential 
value in their pure form [67], a possible mechanism of silver 
particle capping should involve for the main part the interac-
tions between hydrogen atom of the -OH groups and silver 
metal [75], as schematized in Fig. 6c.

In order to have a good dispersion of Ag NPs, additives 
are often added to the synthesis solution to hinder particle 
growth and agglomeration by electrostatic and steric stabili-
zation effects [76]. According to the stabilization allowed by 
polyphenols, that show the double functionality of reduction 
and stabilizing agent, the addition of stabilizing additives 
in the initial solution of synthesis is not necessary. In our 
results, the formation of stabilized nanoparticle is confirmed 
by TEM analysis that show a quite narrow distribution of 
particle sizes at both the investigated ratios (Fig. 4).

Antibacterial Activity

Figure 7 is the optical image of petri plates used to study 
the growth of two different bacterial strains, namely, E. coli 
and S. aureus, respectively, at three different concentrations 
showing different stages of bacterial growth. Figure 7a is a 
set of three photographs showing the effect of silver nano-
particles on E. coli at different concentrations. The first plate 
shows the growth of bacterial in the medium when there was 
no Ag NPs used (control). In this plate, we can see an enor-
mous number of bacterial colonies, grown over the medium 
uniformly. The second and third images of this set are the 
images of plates when 40 and 80 μg/mL concentrations of 
Ag NPs were used. Here we can see that the growth of bacte-
rial colonies has been restrained significantly for 40 μg/mL 
concentration of Ag NPs, whereas for 80 μg/mL concentra-
tion, there is almost no growth in colony of bacteria. Similar 

results were found for S. aureus which is shown in Fig. 7b. 
The first plate is again a control plate which shows high 
growth of Bacteria. Bacterial colony growth gets severely 
affected as we keep on increasing the concentration of Ag 
NPs as evident from the images. Since at 80 μg/mL concen-
tration of Ag NPs effectively siege the growth on bacteria, 
photographs containing higher concentration of Ag NPs 
have not been shown in Fig. 7. A separate experiment to 
study the effect of pure amla extract on the growth of bacte-
rial strains (E. coli) was done. It was found that pure amla 
extract offer almost no bacterial growth inhibition (shown 
in plate photograph 7c).

The dynamics of bacterial growth was observed in liquid 
LB media. For control, we have used LB-media containing 
no Ag NPs. We further mixed different concentrations of Ag 
NPs such as 20, 40, 60, 80, and 100 μg/mL in LB-media and 
then checked bacterial growth in the two different strains. It 
is well known [77, 78] that smaller size particles offer more 
surface area and thus enhanced number of active sites as 
compared to their larger counterpart, thus NPs, synthesized 
with ratio  AgNO3: Amla extract 1:0.5, were used for the 
antibacterial activity studies.

At a 15-min interval, we took readings for bacterial growth. 
At all concentrations of Ag NPs, we found a decrease in the 
growth of each bacterium over the time. As shown in Fig. 8, at 
greater nanoparticle concentrations, the rate of growth suppres-
sion is substantially faster. In comparison to Gram-negative  
bacteria, the growth suppression of Gram-positive bacteria 
was rather minor. The log phase of the gram-negative bacteria 
growth curve is quite low at increasing nanoparticle concen-
trations, and we started seeing growth inhibition after 15 to 
30 min after inoculation. Gram-negative bacteria’s log phase 
began to be influenced at 20 μg/mL nanoparticle concentra-
tion, but Gram-positive bacteria’s log phase began at 60 μg/
mL. As a result, Gram-positive bacteria’s growth was mildly 

Fig. 7  Digital photographs of 
Ag NPs (0 to 80 μg/mL) on the 
growth of bacterial strains: a E. 
coli, b S. aureus, and c pure 
Amla extract on the growth of 
bacterial strain (E. coli)
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inhibited, whereas Gram-negative bacteria were more sensitive 
to the produced Ag NPs.

This significant antimicrobial activity of Ag NPs can 
be explained from some important physiological mecha-
nisms related to Ag NPs. Since Ag NPs are positively 
charged particles, they can firmly attach to the negatively 
charged cell wall and membrane of bacteria [32]. Fur-
ther, they may cause damage by penetrating the intracel-
lular structures and bimolecular machinery of the cell 
[79]. After infiltration, they can cause further damage by 
interacting with the sulfur (S) and phosphorus (P) con-
taining compounds (DNA/proteins) because of the high 
attraction of silver towards S and P. Moreover, it is found 
that both states of Ag, i.e.,  Ag+ and  Ag0, donate a sig-
nificant contribution to the bactericidal activity, and it is 
anticipated that the Ag ions prevent protein synthesis and 
DNA replication. Furthermore, the reactive oxygen spe-
cies (ROS) and free radicals generated from Ag NPs also 
caused toxicity in the bacterial culture [80]. A table for 

the comparative study of various nanoparticles and their 
biomedical application is given below (Table 1).

Conclusions

In conclusion, Ag NPs have been synthesized via a simple, envi-
ronmentally friendly, and low-cost method using Amla extract as 
a reducing agent. TEM image analysis depicted polydispersity 
of Ag NPs with an average diameter in the range of 15–30 nm 
depending on the mixing ratio of  AgNO3 solution with Amla 
extract. The mechanism of silver reduction and NPs nucleation 
and growth has been explained in accordance with the literature 
data and experimental results. Antibacterial tests demonstrated 
that Amla-derived AgNPs prepared through a green process has 
significant antibacterial activity against both stains E. coli and 
S. aureus. This result encourages further studies on these green 
nanomaterials as potentially suitable candidates for development 
of antibacterial films for different purposes.

Fig. 8  Dynamic growth curves 
of different bacteria in LB 
media at different amounts of 
Ag NPs (0 to 100 μg/mL). a E. 
coli and b S. aureus 

Table 1  Different types of metal oxide nanoparticles, plants used for their synthesis, and their biomedical applications

S. No Metal oxide nanoparticles Plant used for the synthesis Biomedical applications References

1 Gold (Au) NPs Leaf, bark, stem, root, etc Cancer theranostics [81]

2 Copper oxide (CuO) NPs Giant milkweed Wound dressing [82]

3 Iron (Fe) NPs Phoenix dactylifera Antibacterial activities [83]

4 Copper (Cu) NPs Celastrus paniculatus Willd. leaf extract Photocatalytic and antifungal [84]

5 Titanium dioxide  (TiO2) NPs Caricaceae (papaya) shell extracts Antifungal [85]

6 Zinc (Zn) NPs Sea-Lavender (Limonium pruinosum L. 
Chaz.) extract

Antiskin cancer, antimicrobial, and antioxidant [86]

7 Magnesium (Mg) NPs Rosa floribunda charisma extract Antioxidant, antiaging, and antibiofilm [87]

8 ZnO/CuO nanocomposites Calotropis gigantea leaf extract Wound dressing [88]

9 ZnO/CuO nanocomposites Calotropis gigantea leaf extract Skin pathogens [89]

10 Alginate (ALG) NPs Honey Drug delivery [90]
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