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Abstract
In this manuscript, characteristics of photon–plasmon coupling in uniaxial chiral-filled slab waveguide bounded by graphene 
layers are analyzed. We have explored some novel features of surface plasmon polaritons (SPPs) owing to the interaction between 
uniaxial chiral and graphene layers. The influence of graphene’s features and chirality on the SPPs behavior are examined. The 
tunability of proposed waveguide structure is shown to study the effect of chirality, chemical potential, relaxation time, and sepa-
ration distance between the plates on the normalized propagation constant versus operating frequency. Furthermore, the influ-
ence of chemical potential and separation distance between graphene layers on attenuation are also analyzed. This integration of 
graphene layers provides an extra degree of freedom to the fabricate graphene-based nanophotonic devices in the optics sector.

Introduction

Speed and data transmission rates are reaching their fun-
damental limits for semiconductor devices and modern 
electronic integrated devices. One of the most promising 

solutions might be to use light in electronic circuits rather 
than electrons. Due diffraction limit of light, it may not be 
feasible to fabricate nanophotonic devices if the size of the 
device is smaller than the wavelength of light. An effective 
method for circumventing the diffraction limit is the use 
of surface plasmon polaritons (SPPs) and electromagnetic 
waves (dielectric medium) coupled to charge oscillations 
(metal). SPPs can be localized in nanoscale regions with 
wavelengths substantially shorter than light wavelengths 
[1–4]. At metal-dielectric interface, electromagnetic surface 
wave shows attenuation as its move away from the interface. 
Due to these extraordinary features, SPPs play a vital role 
in enabling photonic devices and signal processing devices 
to be manufactured at a sub-wavelength scale [5]. Tera-
hertz (THz) radiation has been attracting increasing interest 
over the past few decades. By virtue of the unique nature 
of THz waves, several novel applications may be enabled, 
including THz spectroscopy, sensing, imaging, and com-
munication [6–11]. There are several plasmonic materials 
with common wavelengths such as Au, Ag, and Al that can 
produce SPPs at wavelengths below the mid-infrared (IR) 
region of the electromagnetic spectrum. In plasmonics sec-
tor, it is very necessary to confine the THz EM wave to 
a scale of a few nanometers to achieve the desired results. 
In contrast, metals do not have the capacity to effectively 
support surface waves at microwave and THz frequencies 
[12, 13]. Graphene, ultrathin, two-dimensional, hexagonal 
structure with its honeycomb lattice has recently received a 
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considerable amount of attention from the academic com-
munity due to its remarkable electronic transport properties 
and potential applications in the optics sector [14]. In com-
parison to other plasmonic materials, these properties are 
very useful for the advancement of sensor technology. In 
addition to high carrier mobility, rapid photoresponse, and a 
wide range of optical spectrum coverage from the ultraviolet 
to the THz ranges [15]. A new platform for terahertz (THz) 
plasmonics has emerged thanks to graphene’s unique elec-
tronic and optical traits [16]. The charge carriers in graphene 
are highly unusual response and behave as Dirac fermions 
[17]. This peculiar trait has a profound influence on the 
energy spectrum of landau levels produced in the presence 
of a magnetic field. Electrical gating allows for tuning gra-
phene’s absorption of incident light [18–21]. Furthermore, 
graphene exhibits extraordinary thermal conductivity (5000 
w/m−1  K−1) which is very useful in fabricating and designing 
nanophotonic devices [22]. Additionally, electrostatic gat-
ing or magnetostatic gating can be used to tune graphene’s 
transport properties and electrical conductivity [23]. Variety 
of methods were investigated to explore the characteristics  
of SPPs by several authors [24–29]. In this context, Guang-
can Mi and Vien Van presented the numerical analysis of 
SPPs at chiral-metal planar interface to analyze the effective 
mode index, propagation length, and fields profile for chiral 
sensing applications [30]. Heydari and Samiei numerically 
investigate the SPP characteristics at metal-chiral-metal 
parallel plate waveguide structure to fabricate nanophotonic 
devices. Umair et al. analyzed the numerical analysis of EM 
surface waves at chiral-plasma interface [31]. In the case of 
an isotropic chiral material, the degree of chirality can only 
be controlled to a very limited extent. To overcome this chal-
lenge, uniaxial chiral (UAC) material is used. UAC material, 
in contrast to other optical materials, possess more constitu-
tive parameters, as explained in Eq. (1), providing a degree 
of freedom in controlling SPPs. A further characteristic of 
UAC material is that it exhibits both positive and negative 
permittivity at the same time. In comparison with conven-
tional optical materials, UAC material offer the potential 
for new advances in surface-wave research and development 
due to the controllable nonhomogeneity of the material. The 
literature survey motivated us to study the characteristics 
of photon–plasmon coupling in uniaxial chiral-filled slab 
waveguide bounded by graphene layers.

Methodology

Figure 1 presents the schematic of graphene-UAC-graphene 
waveguide structure. UAC is sandwiched between graphene 
layers. �t , �t , and �z , �z are components of UAC material.  
Consider SPP wave propagating along z-axis. The monolayer 
conductivity of graphene is characterized by Kubo formalism.

For region 1, EM fields are given below:

where �,�0 , and �0 represent the operating frequency, per-
meability, and permittivity of free space.

For region 2, EM fields are:
For UAC, the constitutive relations are given below:

  

Other field components for region 2 can be derived from 
[32].
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Fig. 1  Uniaxial chiral sandwiched slab waveguide surrounded by gra-
phene layers
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In above equations, A1 , A2 , A3 , A4 , A5 , A6 , A7 , and A8 are 
unknown amplitude constant. �m is the wavenumber of 
region 1 and region 3, �m =

√
�2 − k0

2 and k0 = �
√
�0�0.

To obtain the characteristic equation, the following 
boundary conditions are applied graphene-UAC-graphene 
waveguide structure.

where � is the graphene conductivity taken from [6].
The following dispersion relation is obtained by using 

Eqs. 14 and 15.

Results

In this section, the plasmonic properties of graphene-
UAC-graphene waveguide structure have been explored. 
The SPP characteristics of photon–plasmon coupling in 
UAC filled slab waveguide bounded by graphene layers 
are theoretically studied by using characteristic Eq. (16). 
To describe the anisotropy of uniaxial chiral medium, 
�t,�z , �1 = 1 , �t , �z, and � are defined in next section. The 
normalized propagation constant (NPC) and attenuation 
versus operating frequency are analyzed for two types of 
UAC media.

Case I

In this case, we have set the UAC and graphene parameters 
as follows: �t = �z = �0 , �1 = 1 , �t = 0.2�0 , �z = 0.3�0 , 
� = 0.3 , � = 0.8 ps , �c = 0.010 eV  , and T = 300 K  . The 
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influence of chirality and chemical potential on NPC 
versus operating frequency are shown in Fig. 2a and b 
respectively. In Fig. 2a, the variation in NPC under differ-
ent chirality values are analyzed by using characteristic 
Eq. (16). Chirality values, i.e., � = 0.2 , � = 0.4 , and � = 0.6 
as indicated by black, red, and green peaks respectively. 
Obviously, operating frequency decreases with the incre-
ment of chirality, Furthermore, it is of peculiar of inter-
est to note that NPC starts decreasing with the decrease 
of chirality value as reported in [33, 34]. Additionally, 
characteristic peaks level-off at lower operating frequen-
cies mean at some higher frequencies unphysical region 
vanishes. Moreover, frequency band shows broadening as 
chirality increases from lower to higher value. The vari-
ation in NPC under different graphene’s chemical poten-
tials are studied in Fig. 2b. Graphene chemical potential 
increases from, i.e., �c = 0.010 eV  , �c = 0.020 eV  , and 
�c = 0.030 eV  , by keeping all other parameters which 
remains constant. Chemical potential can be tailored by 
gate voltage as reported in [6]. The operating frequency 
tends to increase with the increase of chemical potential. 

Additionally, the influence of chemical potential is more 
dominant at higher operating frequencies. Furthermore, 
NPC tends to decrease with the increment of chemical 
potential as reported in [6, 10, 35]. It is of peculiar inter-
est to note that propagation band gap starts decreasing 
with increasing chemical potential. As chemical poten-
tial of graphene increases, energy levels shifted, resulting 
in shorter wavelengths and an increase in effective mass 
of charge carrier and consequently NPC decreases. The 
graphene’s chemical potential plays very crucial role in 
the field of plasmonics to fabricate graphene-based nano 
plasmonic devices. Figure 3a and b represents the NPC 
variations as a function of operating frequency for various 
values of relaxation time and chemical distance between 
the plates respectively. It can be observed from Fig. 3a 
that as the relaxation time of the graphene increases, the 
NPC decreases [11, 17, 33] and characteristic peaks are 
moving from low to high frequency region. Furthermore, 
as NPC increases, the operating frequency also increases. 
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Obviously, at higher frequencies, unphysical region van-
ishes. It is noteworthy that the graphene’s relaxation 
time of graphene depends on both the phenomenologi-
cal scattering rate and the quality of the graphene itself 
[36]. When the relaxation time increases, the relaxation 
process is slowed down, thus resulting in a reduction in 
energy transfer and a slower propagation of SPP wave for 
proposed waveguide structure. To effectively study the 
geometrical parameter on the proposed waveguide struc-
ture, Fig. 3b is plotted under the different plate separation 
i, d = 3nm, d = 4nm, and d = 5nm. Tailoring separation 
distance between the plates will result in modifications 
to both the phase velocity dispersion and the group veloc-
ity dispersion of SPPs [37]. It is seen from figure that 
separation distance between the plates increases, NPC 
decreases and characteristic peaks are shifted from low 
to high frequency regime. Additionally, propagation band 
gap starts squeezing with the increment of separation dis-
tance between the plates in the proposed frequency range.

The variation in attenuation or propagation loss for dif-
ferent values of chemical potential and separation distance 

between graphene layers are depicted in Fig. 4a and b respec-
tively. By varying graphene’s chemical potential and the sep-
aration distance between graphene layers, one can observe 
that the attenuation and operating frequency of the proposed 
waveguide structure can be modulated considerably.

Case II

In this case, we have set the UAC and graphene param-
eter values as follows: �t = �z = �0 , �1 = 1 , �t = −0.6�0 , 
�z = 0.4�0 ,  � = 0.3 ,  � = 0.8 ps ,  �c = 0.010 eV  ,  and 
T = 300 K . Figure 5a and b depict the numerical results of 
NPC versus operating frequency for the various values of 
chirality and chemical potentials.

One can observe from Fig. 5a that as chirality increases 
the operating frequency decreases, but propagation band gap 
broadened. Furthermore, highest NPC could be achieved 
at higher chirality values as reported in [28]. The slope of 
variation is smaller for lower chirality value. The pertain-
ing values of chirality are strongly dependent on the nature 
and structure of the organic, inorganic, and biochemical 

Fig. 2  The variation in NPC at 
different values of chirality and 
chemical potential for graphene-
UAC-graphene waveguide 
structure

Fig. 3  The variation in NPC 
for various values of relaxation 
time and separation distance 
between graphene layers for 
graphene-UAC-graphene wave-
guide structure



Plasmonics 

molecules as reported in [34–37]. To study the tunability of 
photon–plasmon coupling features of proposed waveguide 
structure by varying chemical potentials, i.e., μc = 0.010 eV, 
μc = 0.020 eV, and μc = 0.030 eV kept, all other parameter 
values remain constant; Fig. 5b is analyzed. It is seen from 
Fig. 5b that NPC increases by decreasing graphene’s chemi-
cal potential [38, 39] and unphysical region occurs at some 
lower frequency that has no practical importance in optics 
community as reported in [40]. The former tunability trait 
suggests that SPP wave can be engineered by graphene’s 
chemical potential. Increasing chemical potential increases 
Fermi level, which in turn increases carrier density. Increas-
ing carrier density results in a decrease in propagation 

constant. Figure 6a illustrates the influence of relaxation 
time on NPC as the function of operating frequency along 
graphene-uniaxial chiral-graphene waveguide structure.

As relaxation time increases, operating frequency also 
increases, but NPC tends to decrease as reported in [39]. 
Furthermore, it is important to note that characteristic 
peaks are level-off at some lower frequencies that exhibit 
unphysical region. It is vital to note that, as relaxation time 
increases, frequency band starts squeezing and characteristic 
peaks are shifted towards high frequency region. As gra-
phene’s relaxation time increases, its quasiparticles acquire 
less energy and momentum, which results in a decrease 
in the normalized propagation constant. The separation 

Fig. 4  The variation in attenuation at different values of chemical potential and separation distance between graphene layers for graphene-UAC-
graphene waveguide structure

Fig. 5  The variation in NPC at 
different values of chirality and 
chemical potential for graphene-
UAC-graphene waveguide 
structure
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distance between graphene layers has a strongly effect the 
characteristics of SPPs due to the coupling effect [10]. The 
variation in NPC under the different values of separation 
distance between graphene layers is illustrated in Fig. 6b. As 
separation distance between the graphene layers is changed, 
the phase velocity dispersion and the group velocity disper-
sion of the SPPs changed, as well as the field confinement 

making it a highly promising platform for sensing applica-
tions. The influence of chemical potential and separation 
distance between graphene layers are analyzed in Fig. 7a 
and b respectively. Based on the above analysis, it is shown 
that graphene’s chemical potential and separation distance 
between graphene layers can significantly influence attenu-
ation and operating frequency of the proposed waveguide.

Fig. 6  The variation in NPC 
for various values of relaxation 
time and separation distance 
between graphene layers for 
graphene-UAC-graphene wave-
guide structure

Fig. 7  The variation in attenuation at different values of chemical potential and separation distance between graphene layers for graphene-UAC-
graphene waveguide structure
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Conclusion

We have illustrated the plasmonic characteristics of pho-
ton–plasmon coupling in UAC sandwiched waveguide struc-
ture bounded by graphene layers. Graphene conductivity is 
modeled with Kubo formalism and boundary conditions are 
employed to obtain the characteristics equation. The charac-
teristic equation is plotted to explore the behavior of proposed 
waveguide structure. We found that chirality, chemical poten-
tial, relaxation time, and separation distance between graphene  
layers can be used to modulate the SPPs. Furthermore, chemi-
cal potential and separation distance between graphene layers can  
also be used to tune the SPPs. This study can be used to the fab-
ricate graphene-based nanophotonic devices in the optics sector.
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