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Abstract
In this manuscript, we have developed a model for a graphene-loaded surface plasmon polariton waveguide surrounded by 
uniaxial chiral and plasma layers. Electromagnetic wave theory is utilized to solve numerical problems. Graphene conduc-
tivity is modeled physically using the Kubo formula, described in the “Methodology” section. The characteristic equation 
is obtained by applying boundary conditions at x = 0 . Based on numerical calculations, we examine the impact of chemical 
potential, number of graphene layers, plasma frequency, collisional frequency, and chirality on normalized propagation con-
stants. Furthermore, the cutoff frequency for two different cases of the uniaxial chiral medium used for the different values of 
graphene and plasma parameters is revealed. The numerical results reflect that the presented study can be used to fabricate 
modulator plasmonic devices ranging from sensing and imaging to communication in the terahertz frequency regime.
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Introduction

The rapid advancement of semiconductors and integrated cir-
cuits in microelectronics offers a solid foundation for many 
applications, most notably in communication and information 
processing. Despite this, further innovation in the field of infor-
mation transmission is always constrained by the efficiency of 
electronic components because electrons are inherently capa-
ble of carrying less data. Photonics may offer an alternative 
solution to this problem, as photons can carry more informa-
tion and travel faster. Most recently, it has been demonstrated 
that the trade-off between capacity and size can be minimized 
quite effectively by making use of surface plasmon polaritons. 
The fundamental concept here is that electromagnetic waves, 
which are normally propagated within a dielectric waveguide, 
can propagate along the metal surface through surface plas-
mon-polariton (SPP) phenomena [1–6]. The subwavelength 
mode confinement of the surface plasmon polariton (SPP) 
mode makes plasmonic waveguides more flexible in size than 
dielectric waveguides. In this context, SPP has the potential 
to be a crucial technology for next-generation nanophotonic 
devices [7]. The major disadvantage of current plasmonic 
waveguides is that they have very serious propagation loss 

particularly if the mode confinement scales down to the sub-
wavelength range [8]. In general, all SPP modes have this fun-
damental drawback: stronger confinement causes the field to 
move closer to the metal, which leads to serious energy losses, 
resulting in a shorter propagation length [9]. To accomplish 
tight mode confinement through plasmonic waveguides with 
relatively low propagation losses, novel plasmonic waveguide 
structures are needed in the optic community. In the optical 
sector, there is an increasing demand for plasmonic materials 
to overcome these challenges [10].

Recently, graphene revolutionized the optical sector for 
developing photonic devices due to its extraordinary opti-
cal and electrical properties [11–16]. The zero-band gap 
structure of graphene has made it a promising alternative 
candidate for overcoming the deficiencies of metallic-based 
optoelectronic devices and an ideal candidate for developing 
broadband saturable absorbers. It has also been reported that 
graphene’s electron mobility reaches up to 200,000  cm2/Vs, 
which could enable the design of high-performance modula-
tors and photodetectors. Furthermore, graphene-based pho-
tonic devices have a remarkable potential for biochemical 
sensing applications due to their large surface area and high 
adsorption capacity. By tailoring the carrier density in gra-
phene, the adsorbed chemical molecules can also modify the 
optical traits of photonic devices [17, 18].
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Chiral material that exhibits nondirectional chirality is 
known as a UAC material [19]. Interestingly, the process of 
manufacturing uniaxial chiral mediums is very convenient 
and easy to do [20]. As a standard procedure, UAC materials 
are produced by the immersion of small chiral items (such as 
wire spirals) in an anisotropic medium [21]. Vapor deposi-
tion processes can be used to produce such a medium in a 
very straightforward manner [22]. UAC mediums are antici-
pated many fascinating features by virtue of their chirality 
coupled with anisotropy. In this manuscript, the numerical 
analysis of SPPs at UAC-metal-UAC in the visible spectrum 
is analyzed. Three cases of UAC medium are studied to dem-
onstrate the influence of chirality and core width on effective 
mode index as the function of wave frequency.

Plasma is the highly ionized state of gas comprising elec-
trons, ions, and neutral particles. Optic researchers have 
taken a keen interest in studying electromagnetic surface 
wave traits in a plasma medium. Numerous fields have taken 
advantage of the unexceptional response of electromagnetic 
waves in a plasma medium, including biochemical sensing, 
spectroscopy, light-trapping devices, optoelectronic devices, 
and communications. In the plasma medium, EM surface 
waves are affected by numerous factors such as collision fre-
quency, plasma frequency, and operating frequency. Electro-
magnetic waves in plasma are affected by these properties, 
which determine their absorption, reflection, and transmis-
sion attributes [23–26]. Compared to conventional dielec-
trics, plasma shows distinct characteristics. Among them is 
the plasma’s permittivity which can be controlled by alter-
ing the number density of electrons. Plasma also offers the 
advantage of reducing absorption losses in nanophotonic 
devices. The efficiency of nanophotonic devices is limited 
by absorption problems in traditional dielectrics, such as sili-
con and gallium arsenide. This loss can be minimalized by 
introducing plasma, since plasma acts as a low-loss medium, 
resulting in a lower absorption rate and a higher light trans-
mission rate [27]. Thus, the literature review motivated us 
to conduct the study of graphene-loaded SPP waveguides 
surrounded by uniaxial chiral and plasma layers.

Methodology

A planar graphene-loaded waveguide structure surrounded 
by UAC and plasma layer is shown in Fig. 1. Here, we pre-
sent the characteristic equation for the proposed waveguide 
structure. Let us consider the SPPs propagating along the 
z-axis while attenuating along the x-axis.

The EM waves in the UAC medium are described by the 
following constitutive relations.

Here, � represents the chirality parameter, and �0 and �0 
describe the permittivity and permeability of free space, 
respectively.

Here, q1 and q2 are the wavenumbers of the UAC medium. 
Other EM field components can be derived from [27, 28]:

Here,
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êz

)
K1e

−q1x +

(
−
j�∇t

q2
2

−
∇tkt�1

q2
2

êz
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Fig. 1  Schematic configuration of graphene-loaded SPP waveguide 
surrounded plasma uniaxial chiral and plasma layer
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According to Kubo formula, the graphene conductivity 
is given as follows:

where j, 𝜉n,ℏfd,𝜇c, 𝜏, T, e, and � represent the imaginary 
unit, energy, reduced Plank’s constant Fermi–Dirac distribu-
tion, chemical potential, relaxation time, temperature, charge 
on electron, and operating frequency, respectively.

The EM fields for the plasma medium are given below:

Here, kp is the wavenumber in a plasma medium 
kp =

√
�2 − �2�p�0 [29] and �p is the permittivity of iso-

tropic plasma medium �p = 1 −
�2
p

�2+i�v
. �p and v represent 

the plasma frequency and collisional frequency of plasma 
medium, respectively [30].
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The above boundary conditions are used to obtain the 
following characteristic equations:

Results

Here, the characteristics of Eq. (17) are used to elucidate the 
numerical results of graphene-loaded SPPs surrounded by UAC 
and plasma layers. Graphene supports the terahertz (THz) fre-
quency regime [6, 12, 31–33]. To investigate the properties of the 
proposed waveguide structure, two cases of UAC medium are 
analyzed. The THz spectral region is studied with respect to the 
normalized propagation constant (NPC) under different graphene 
and plasma parameters. The NPC is Re(�

k0
 ) where � is the propa-

gation constant and k0 is the wavenumber in free space.

Case I

In this case, we have set the parameters as follows: 
�t = �z = �0  ,  �t = −2.3�0  ,  �z = −0.1�0  ,  � = 1.1 , 
� = 4 × 106Hz , �p = 1THz , T = 300K  , �c = 0.2eV , and 
� = 2ps . To investigate the influence of chemical potential, 
a number of graphene layers on NPC by using Eq. 17 are 
analyzed in Fig. 2a,b. The operating frequency increases 
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Fig. 2  Effect of the chemical 
potential and number of gra-
phene layers on NPC for case I
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from 0 to 12 THz. In Fig. 2a, chemical potential varies from 
�c = 0.2–0.4eV  as shown in red, black, and blue character-
istic curves. It can be noted that the variation in NPC sig-
nificantly varies with chemical potential. Lower values of 
chemical potential lead to higher NPC as reported in [6, 12, 
31–36]. Due to the increasing chemical potential, the energy 
levels of the graphene lattice become more crowded, result-
ing in increased scattering and a slower propagation rate. 
Furthermore, the energy gap between graphene’s conduction 
and valence bands increases with increasing chemical poten-
tial. As a result of this energy gap, electrons change their 
behavior, causing disturbances such as photons and elec-
trons to propagate more slowly. In Fig. 2b, the impact of the 
number of graphene layers on NPC versus wave frequency 
is analyzed by using the characteristics of Eq. 17. In a recent 
study, it was demonstrated that a single layer of graphene 
absorbs only 2.3% of the incident light [37]. The NPC begins 
to decrease as the number of graphene layers increases [12, 
33, 38, 39]. Due to the stronger interactions between elec-
trons in graphene layers, the scattering of electrons in the 
graphene layer also becomes stronger, resulting in reduced 
transmission through the graphene layer. Consequently, 
a reduction in transmission results in a decrease in wave 
velocity and a decrease in the NPC. Further analyses of the 
influence of plasma parameters on the NPC are depicted in 
Fig. 3a,b. In Fig. 3a, the variation in NPC under the different 
plasma frequencies is analyzed in the THz wave frequency 
range. As plasma frequency increases, the cutoff frequency 
and NPC both increase. A higher plasma frequency leads 
to an increase in the number of excited plasma particles, 
thereby producing a stronger coupling with the wave. Thus, 
there is a greater effective wave velocity, resulting in a larger 
NPC. In isotropic plasma, plasma frequency plays a vital 
role in the development of plasmonic-based devices. Fur-
thermore, plasma electrons oscillate at certain frequencies in 
resonance with the external electromagnetic field, leading to 
significant enhancements in the scattering properties. Thus, 

it is possible to design and fabricate plasmonic devices with 
diverse functionality by exploiting this resonance phenom-
enon. Figure 3b depicts the impact of collisional frequency 
on NPC in a certain wave frequency band. In this context, 
wave frequency extends from 0 to 12 THz. It can be clearly 
seen that higher collisional frequency values reflect lower 
NPC as reported in [27, 30]. When the particles collide with 
each other at a higher collisional frequency, they can transfer 
energy to the wave, effectively dampening it. Consequently, 
this damping effect reduces the amplitude and slows down 
the propagation of the EM surface wave. Figure 4 depicts the 
impact of chirality on the NPC. Obviously, lower chirality 
values lead to higher NPC.

Fig. 3  Effect of the plasma 
frequency and collisional fre-
quency on NPC for case I

Fig. 4  Effect of the chemical potential and number of graphene layers 
on NPC for case I
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Case II

In this case, we have set the parameters as follows: �t = �z = �0 , 
�t = −2.3�0 , �z = 0.1�0 , � = 1.1 , � = 4 × 106Hz , �p = 1THz , 
T = 300K , �c = 0.2eV , and � = 2ps . Figure 5a presents the 
variation in NPC under the different chemical potentials. The 
characteristic curves are observed to exhibit unphysical regions 
with increasing wave frequencies, and this is of no practical 
importance to the plasmonic industry. Furthermore, as chemical 
potential grows, the wave frequency band becomes narrow and 
characteristics curves shift toward the low-frequency region. 
Moreover, higher chemical potential leads to lower NPC as 
reported in [40, 41]. With increased chemical potential, gra-
phene’s valence and conduction bands become more distant 
from each other, resulting in the formation of an energy gap. 
In addition, this energy gap alters electron behavior, which 
impacts the propagation speed of wave-like disturbances, 
such as photons and electrons. The variation in NPC versus 

frequency for different numbers of graphene layers is depicted 
in Fig. 5b. The cutoff frequency decreases with increasing lay-
ers of graphene. Furthermore, it is important to note that with 
an increasing number of graphene layers, the frequency band 
becomes narrow and characteristics curves are shifted towards 
lower NPC. Multilayer graphene exhibits this behavior due to 
the reduced mobility of carriers. Additionally, in graphene, elec-
tron and hole mobility decreases because of increased scatter-
ing and interactions with the lattice. Consequently, the wave’s 
amplitude decreases, resulting in a decrease in the NPC. It is 
imperative to understand the NPC to tailor graphene’s proper-
ties for various applications, including electronics, photonics, 
and nanophotonics. The variation in NPC for various plasma 
frequencies is depicted in Fig. 6a. As plasma frequency grows, 
NPC starts increasing and characteristics curves are shifted 
towards a high-frequency region as reported in [42]. Due to 
the increasing plasma frequency, the charged particles become 
more mobile and responsive to the EM waves. Consequently, 

Fig. 5  Influence of the chemical 
potential and number of gra-
phene layers on NPC for case II

Fig. 6  Influence of the plasma frequency and collisional frequency on NPC for case II
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the effective refractive index increases and the propagation con-
stant increases as well. It is important to select the appropriate 
plasma frequency of an isotropic plasma to design and develop 
plasmonic devices. The variation in NPC for different colli-
sional frequencies is analyzed in Fig. 6b. In this context, the EM 
wave frequency band increases from 0 to 5 THz and collisional 
frequency increases from � = 2 × 106Hz to � = 4 × 106Hz as 
indicated by red, black, and blue characteristic curves. It can 
be noted that the unphysical region vanished after the 1.2 THz 
frequency regime. In response to an increase in collisional fre-
quency, both cutoff frequency and NPC increase. As the col-
lisional frequency of an isotropic plasma increases, charged 
particles interact more intensely and frequently with each other. 
Furthermore, collisions between plasma particles occur more 
frequently, resulting in the exchange of energy and momentum. 
As a result of this transfer process, the wave’s phase velocity 
is affected resulting in an increase in NPC. The influence of 
chirality versus EM wave frequency on the NPC is depicted in 
Fig. 7. Interestingly, higher chirality values are associated with 
higher NPCs and higher EM wave frequencies. Based on the 
results of the analysis above, the chirality parameter strongly 
depends upon the frequency of the EM waves. Furthermore, the 
EM wave frequency band starts squeezing for a higher chirality 
value. Additionally, NPC increases with the increase of the chi-
rality parameter as reported in [33, 43, 44]. Consequently, NPC 
can be modulated by varying the chirality parameter.

Conclusion

The theoretical model was developed for a graphene-loaded 
waveguide structure surrounded by uniaxial chiral and plasma 
layers. For two types of uniaxial chiral medium, NPC param-
eters can be tuned by tuning graphene properties, including 
the chemical potential and the number of graphene layers, in 
addition to plasma properties, such as the plasma frequency, 
collisional frequency, and chirality parameters. It is concluded 
that case I support high frequency as compared to case II. The 
plasma frequency of isotropic plasma plays a crucial role in 
enabling the development of plasmonic-based devices. When 
plasma electrons oscillate at certain frequencies in resonance 
with the external electromagnetic field, their scattering prop-
erties are significantly enhanced. This resonance phenomenon 
can be exploited to design and fabricate plasmonic devices 
with various functionalities. The numerical results reflect 
that the presented study can be used to fabricate modulator 
plasmonic devices ranging from sensing and imaging to com-
munication in the THz frequency regime.
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