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Abstract
One notable issue related to terahertz radiation generation is the tuneability of the source. In this manuscript, we study the 
properties of plasmons that arise when a beam passes through the gap between the plates. These metallic plates are sepa-
rated by an air gap. A fast-moving electron beam can propagate in the gap between metallic plates without any divergence 
due to the minimum value of SPs electric field at the center of structure. As the electron beam is moving through the gap, it 
resonantly excites the SPs by the Cherenkov interaction between electron beam and SPs, at metal- air interfaces. These THz 
surface plasmons are transformed into THz radiation. The frequency of generated THz radiation can be tuned with varying 
the gap between the metallic plates and the electron beam energy. The proposed structure will open the possibility to design 
a compact source for coherent and tuneable THz radiation generation in broad spectrum regime, which will be useful for 
medical diagnostics, photonics devices, etc.
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Introduction

Terahertz (THz) radiation frequency lies in the range of 
0.1–10 THz and known as THz Gap [1, 2]. THz radiation 
is novel type radiation and has several unique properties 
like as quantum and electronic properties of materials, 
non-ionizing properties, easily penetrates through most 
polymeric materials and which are often opaque at visible 
frequencies and also easily absorb in water. Since more than 
two decades, the Terahertz radiation generation and detec-
tion became a fascinating and forefront research area due to 
large number of diversified applications [2–10]. THz radia-
tion also used as an important tool for studying the benign 
and malignant brain tumours [11, 12]. Strong field THz 
radiation is also used to explore the new phenomena includ-
ing high harmonics generation, and relativistic charged par-
ticle acceleration at very high energy (THz-based compact 
particle accelerators-THz radiation has strong electric field 

gradient which are beneficial for ultrashort compact and 
x-ray sources) [13, 14].

Currently, there are many schemes of high-power 
THz radiation generation with high field, among them 
high-power laser interaction with solids (metal/semi-
conductors/dielectrics) and plasmas are widely used 
[15–17]. Another alternative and important scheme 
for terahertz radiation generation is based on electron 
beam. A high energy electron beam moves through a 
magnetic wiggler/undulator or two different dielectrics 
materials; it generates the synchrotron/transition THz 
radiation [18–20]. In current applications, the confined 
and guided electromagnetic modes are required; these 
modes are known surface plasma waves (SPWs) or sur-
face plasmons (SPs) [21–23]. These modes are collec-
tive oscillations of electrons that propagate at interfaces 
of conductor or plasma and confined near the interface 
of different media, their amplitude attenuates in per-
pendicular direction of propagation. These highly con-
fined modes or SPs have large number of applications 
including extraordinary transmission, THz plasmonics, 
plasmonic laser, plasmonic sensors, high harmonics gen-
eration, magnetoplasmonics (ultrafast switch), surface-
enhanced Raman scattering (SERS), and laser ablation 
of materials for thin film deposition [24–28].
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An electron beam or laser beam is widely used for resonant 
excitation of THz- SPs in various structures including in thin 
metallic films, graphene, and structured surfaces. The resonant 
frequency of these SPs can be tuned by the thickness of the 
film and changing the scale of structured surfaces [29–32]. The 
alternative approach for electron beam propagation without 
any divergence is based on conductor-dielectric-conductor or 
conductor-free space-conductor structure. The SPs have nega-
tive refraction at optical frequency in metal-dielectric-metal 
structure; this structure can control the propagations of sur-
face plasmons, which can manipulate the light at nanoscale 
[33] and also shows the omnidirectional resonance, at the 
SPs frequency of the conductor–dielectric interface [34]. A 
slab-symmetric structure is also used for relativistic electron 
acceleration and Cherenkov THz radiation generation [35]. 
The microwave pulse shortening occurs in Cherenkov devices 
based on slow-wave structures; this is due to the transformation 
of kinetic energy of relativistic electrons beam into microwave 
energy [36]. The high-power microwave (HPM) sources based 
on plasma filled backward oscillators have high efficiency as 
compared to other backward oscillators, because the plasma in 
an HPM source is the charge neutralizing effect of positively 
charged plasma on electron beams [37]. Metallic mesostruc-
tured or periodic structures of very thin wires also support the 
SP modes in infrared or GHz frequency range [38].

In this manuscript, we study the properties of plasmons in 
THz frequency range that arise when a beam passes through 
the gap between two metallic plates. The structure supports 
the field of guided electromagnetic modes or SPs and have 
minimum value at the middle of the gap, so the electron beam 
passing through this air gap, experiences a converging force 
and this electron beam can propagate without any divergence 
through this gap. These SPs have lower phase velocity than 
the free space velocity of photon, so SPs can be excited by a 
moving relativistic electron beam via Cherenkov interaction. 
A relativistic electron beam moving through this air gap, it 
resonantly excites the SPs in THz frequency and these THz-
SPs are transformed into Coherent THz radiation, when they 
passing over a periodic structure. In “Mode Structure and Dis-
persion Relation of Surface Plasmons” section, we derived 
the modes’ structure and dispersion relation; in “Terahertz 
Surface Plasmons Excitation by a Relativistic Electron Beam” 
section, the excitation and the growth rate of THz SPs are dis-
cussed; and in “Conclusion” section, the result is discussed.

Mode Structure and Dispersion Relation 
of Surface Plasmons

Consider a symmetrical structure (metal-air-metal) of two 
parallel metallic (gold) plates, which are separated by finite 
air gap; this structure supports the surface plasma waves 

(SPWs) or surface plasmons (SPs) that are propagating on 
the metal-air interface, which is shown in Fig. 1. The dis-
persion relation and modes structure of SPs are obtained by 
using the following Maxwell’s equations,

where the total effective permittivity of metal is given by 
��
eff

= �eff = �L − �2
p
∕�2 for x < -a and x > a, and ��

eff
= 1 for 

-a < x < a. From Eqs. (1) and (2), one may get 
∇2 �⃗E − ∇

(

∇. �⃗E
)

+
𝜔2

c2
𝜀eff �⃗E = 0 , and taking the divergence of 

this equation in media, using the Gauss’s law in these two 
media, i.e., 𝜀�

eff
∇. �⃗E = 0 i.e. ∇. �⃗E = 0 , this gives equation of 

surface plasmons

In terms of x and z components, the wave Eq. (3) can 
be written as 𝜕

2Ez

𝜕x2
+

𝜕2Ez

𝜕z2
+

𝜔2

c2
𝜀�
eff
�⃗Ez = 0 , and differential 

operator is replaced like as �
2

�z2
→ −k2

z
 , one may get

where �2 = �2
I
= k2

z
−

�2

c2
�eff  for x > a and x < -a and 

�2 = �2
II
= k2

z
−

�2

c2
 for -a < x < a. The modes of different 

components of mode structure of SPs in different medium 
can be obtained by solving the Eq. (4) in these different 
media. In medium x < -a, the solutions of Eq. (4) for z and 
x components (using ∇. �⃗E = 0, for x component of electric 
field) can be written as

(1)∇ × �⃗E = −
𝜕 �⃗B

𝜕t
= +i𝜔𝜇0

���⃗H,

(2)∇ × ��⃗H = �⃗J + 𝜀0
𝜕 �⃗E

𝜕t
= 𝜎 �⃗E + 𝜀0

(

−i𝜔�⃗E
)

= i𝜔𝜀�
eff
�⃗E,

(3)∇2 �⃗E +
𝜔2

c2
𝜀�
eff
�⃗E = 0.

(4)
�2Ez

�x2
− �2Ez = 0,

(5)
Ez = AIexp

(

�Ix
)

exp
[

−i
(

�t − kzz
)]

,

Ex = −AI

ikz

�I
exp

(

�Ix
)

exp
[

−i
(

�t − kzz
)]

.

x=a

x=-a

Fig. 1  SPs modes propagation in metal-air-metal symmetrical structure



Plasmonics 

In medium -a < x < a (air gap), the solutions of Eq. (4) 
can for z and x components (using ∇. �⃗E = 0, for x compo-
nent of electric field) be written as

In Medium x > a, the solutions of Eq. (4) can for z and 
x components (using ∇. �⃗E = 0, for x component of electric 
field) be written as

At boundaries x = -a and x = a, Eqs. (5)–(7) demand that

For symmetrical mode ( Ez is symmetric about x = 0), i.e., 
A�
II
= AII and AIII = AI , hence Eq. (9) gives the dispersion 

relation of SPs propagating in metal-air-metal symmetrical 
structure, i.e.,

(6)

Ez =
(

AIIexp
(

�IIx
)

+ A�
II
exp

(

�IIx
))

exp
[

−i
(

�t − kzz
)]

,

Ex = −
ikz

�II

[

AIIexp
(

�IIx
)

+ A�
II
exp

(

−�IIx
)]

exp
[

−i
(

�t − kzz
)]

.

(7)
Ez = AIIIexp

(

−�IIIx
)

exp
[

−i
(

�t − kzz
)]

,

Ex = AIII

ikz

�I
exp

(

−�IIIx
)

exp
[

−i
(

�t − kzz
)]

.

(8)
AIexp

(

−�Ia
)

= AIIexp
(

−�IIa
)

+ A�
II
exp

(

�IIa
)

,

�m
�II
�I

AI = AIIexp
(

−�IIa
)

+ A�
II
exp

(

�IIa
)

,

(9)
AIIexp

(

�IIa
)

+ exp
(

−�IIa
)

A�
II
= AIIIexp

(

−�Ia
)

,

AIIexp
(

�IIa
)

− A�
II
exp

(

−�IIa
)

= −
�I�m
�I

AIIIexp
(

−�Ia
)

.

(10)tanh
(

�IIa
)

= −
�II�m
�I

.

The dispersion relation of Eq. (10) and mode structure of 
SPs Eqs. (5–7) are plotted in Figs. 2 and 3 for different nor-
malized values of a�p∕c = 5, 10, 15 of the air gap between 
the metallic plates. Figure 2 shows that up to upper limit of 
SPs frequency, the frequency has linear behavior. For higher 
value of wavenumber, the curve has same behavior as that 
of single conductor surface. At the inter metallic surfaces of 
metal-air-metal structure, the SPs have maximum value and 
have zero inside the conductors (metallic plates) is shown 
in Fig. 3.

Terahertz Surface Plasmons Excitation 
by a Relativistic Electron Beam

Consider an electron beam of density n0b and moving with 
relativistic velocity v0bẑ  , through the air gap between two 
metallic plates (Fig. 4); the electron beam density is given by

(11)n0b = N0exp
(

−x2∕r2
b

)

,

Fig. 2  Dispersion relation of surface plasmons in for metal-air-metal 
symmetrical structure for different values of air gap  a�p∕c = 5, 10, 15 
between metallic plates

Fig. 3  Mode structure of SPs in metal-air-metal symmetrical struc-
ture for different values of air gap a�p∕c = 5, 10, 15 between metallic 
plates

Fig. 4  THz surface plasmons excitation by a relativistic electron 
beam passing through the gap
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where  rb is the radius of beam. The electron beam has a  
current is given by Ib =

√

�N0abev0b , where b is the width 
of the electron beam. When this beam moves through 
the gap, it couples with the SPs. The response of electron  
beam in presence of SPs fields is given by the equation of motion

The electric and magnetic fields of SPs the air gap 
-a < x < a are given by

The velocity of electron beam in the presence of SPs is 
given by �⃗v = v0bz⃗ + �⃗v1 (beam velocity and perturbed veloc-
ity) and the Lorentz factor γ of the moving electron beam 
is given by � =

(

1 −
v2

c2

)−1∕2

 or 𝛾 = 𝛾0 + 𝛾3
0

v0b ��⃗v1z
c2

 . In terms 
of components and linearizing the Eq. (12), we have

The x and z components of velocity of Eq. (14) can be 
written as v1z =

eEz

im�3
0 (�−kzv0b)

,

v1x =
eEx

mi��0
−

ev0b

m�(�−kzv0b)�0
�

�x
Ez . The equation of continu-

ity is  𝜕n
𝜕t
+ ∇ ⋅

(

n�⃗v
)

= 0 where n = n0b + n1; this gives the 
perturbed density

The total perturbed current density is given by 
��⃗J1 = −n0be ��⃗v1 + n1ev0b�z  . For purely growing instability, we 
look the terms that have 

(

� − kzv0b
)2 in denominator and 

other terms may be discarded it. So, the total perturbed 
current density is given by

(12)
(

𝜕

𝜕t

(

𝛾 �⃗v
)

+ �⃗v ⋅ ∇
(

𝛾 �⃗v
)

)

=
−e

m

(

�⃗E +
�⃗v × �⃗B

c

)

.

(13)

�⃗E =

(

AII

(

�z −
ikz

𝛼II
�x

)

exp

(

𝛼IIx

)

+ A�
II

(

�z +
ikz

𝛼II
�x

)

exp
(

−𝛼IIx
)

)

exp
[

−i
(

𝜔t − kzz
)]

,

�⃗B = �y
c

i𝜔

𝜔2

c2𝛼II
(AIIexp

(

𝛼IIx
)

+ A�
II
exp

(

𝛼IIx
)

)exp
[

−i
(

𝜔t − kzz
)]

.

(14)

�

�t

(

�0v1xx̂ + �3
0
v1zẑ

)

+ ikzv0b
(

�0v1xx̂ + �3
0
v1zẑ

)

=
−e

m

[

x̂

((

1 −
kzv0b

�

)

Ex +
v0b

i�

�

�x
Ez

)

+ ẑEz

]

.

(15)n1=
𝜕n0b
𝜕x

v1x

i
(

𝜔 − kzv0b
)Ez +

n0b∇ ⋅ ��⃗v1

i
(

𝜔 − kzv0b
) .

(16)

��⃗J1 = −
�zev0b

i
(

𝜔 − kzv0b
)2

[

−
𝜕n0b
𝜕x

ev0b

m𝜔𝛾0

𝜕

𝜕x
Ez −

ev0bn0b

m𝜔𝛾0

𝜕2

𝜕x2
Ez +

n0bkzeEz

m𝛾3
0

]

,

The Cherenkov condition demands that kz ≈ �∕v0b . In 
Eq. (16), the last two terms cancel out each other and one 
may get

At boundaries x = -a and x = a of interfaces in metal-air metal 
structure, the field of SPs satisfying the Maxwell’s equations 
∇ × �⃗Es =

i𝜔

c
��⃗Hs,  ∇ × ��⃗Hs = −

i𝜔

c
𝜀� �⃗Es , in the absence of electron 

beam. The permittivity has value �� = �m = �L − �2
p
∕�2 in I 

(-a < x) and III (a > x). In the presence of moving electron beam, 
the new electric and magnetic fields of SPs are given by.

The fields  �⃗E and ��⃗H of SPs both satisfy the Maxwell’s equa-
tions inside the metals, which are given by ∇ × �⃗E = −

1

c

𝜕 �⃗H
𝜕t
, 

∇ × ��⃗H =
4𝜋

c

(

����⃗J1b + ����⃗J1p

)

=
𝜀L
c

𝜕�⃗E
𝜕t

 ,  where  ���⃗Jip = 𝜎mA �⃗Es+

i
𝜕𝜎m

𝜕𝜔

𝜕A

𝜕t
�⃗Es, �m = �L + i

4��m
i�

 and outside the metals �L = 1, � = 0, 
using Eq. (18). We have

Putting Eq.  (19) into Eq.  (20) and assuming that 
�B∕�t ≅ �A∕�t , the resulting equation is multiplying by E∗

s
 

and integrating over the limit −∞to +∞, we have

where R(A) = −
2𝜋∫ a

−a

𝜕n0b
𝜕x

𝜕Esz

𝜕x
E∗
sz
dz

e2v2
0b

im𝜔𝛾0(𝜔−kzv0b)
2

∫ −a

−∞
�⃗Es⋅��⃗E∗

s
dx+∫ a

−a
��⃗Es⋅��⃗E∗

s
dx+∫ ∞

a
��⃗Es⋅��⃗E∗

s
dx
. In air gap 

-a < x < a, between metallic plates the electric field ���⃗Es of SPs 
is given by �⃗Es = 2AII

(

cosh
(

𝛼IIx
)

�z −
ikz

𝛼II
sinh

(

𝛼IIx
)

�x
)

exp
[

−i
(

𝜔t − kzz
)] 

and using �n
0b

�x
= −

2N
0

x

r2
b

exp
(

−x2∕r2
b

) , �Esz
�x

= 2AII�II sinh
(

�IIx
)

exp[−

i
(

�t − kzz
)]

A , the values of following terms are 
∫ a

−a

�n0b

�x

�Esz

�x
E∗
sz
dz = −

8N0

r2
b

A2
II
�2
II
r3
b

√

�∕2 ,  ∫ a

−a
���⃗Es ⋅

���⃗E∗
s
dx ==

A2

II

(

2

�II
sinh

(

2�IIa
)

+ 4a

(

1 −
k2
z

�2
II

))

 a n d  ∫ ∞

a
���⃗Es ⋅

���⃗E∗
s
dx =

A2

I

(

1 +
k2z

�2
I

)

∫ ∞

a
exp

(

−2�Ix
)

dx = A2

I

(

1 +
k2z

�2
I

)

1

2�I
exp

(

−2�Ia
)

 , 

hence the RHS of Eq.  (21) becomes 2�e2v2
0b

im��
0
(�−kzv0b)

2

4N
0

�2
II
r
0b

√

�
�

2

�II
sinh(2�IIa)+4a

�

1−
k2z

�2
II

�

+
A2
I

A2
II

�

1+
k2z

�2
I

�

1

�I
exp(−2�Ia)

� . Using A
2

I

A
2

II

=

4exp
(

2�Ia
)

cosh2
(

�IIa
)

= 2exp
(

2�Ia
)(

1 + cosh
(

2�IIa
))

 , the 
RHS gives 2�e2v2

0b
2N0�

3
II
r0b

√

�

im��0(�−kzv0b)
2
D

 , where D = sinh
(

2�IIa
)

+

(17)��⃗J1 =
�ze2v0b

im𝜔𝛾0
(

𝜔 − kzv0b
)2

𝜕n0b
𝜕x

𝜕Ez

𝜕x
.

(18)�⃗E = A(t) �⃗Es,
��⃗H = B(t)��⃗Hs.

(19)
�B

�t
= −i�(A − B),

(20)
[

𝜕A

𝜕t

𝜕

𝜕𝜔
𝜀�(𝜔) − i𝜔𝜀�(A − B)

]

�⃗Es = −4𝜋�����⃗J1b.

(21)
𝜕A

𝜕t
= ΓA = −2𝜋

∫ ∞

−∞
J1z ⋅ E

∗
sz
dz

∫ ∞

−∞
���⃗Es ⋅

���⃗E∗
s
dx

= R(A),
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�II
�I

(

1 +
k2
z

�2
I

)

(

1 + cosh
(

2�IIa
))

+ 2�IIa
(

1 −
k2
z

�2
II

)

 , hence the 
Eq. (21) gives.

Taking �A∕�t = −i�,� = kzv0b + � , one may obtain the 

�3 = R exp(2il�) , where R =
4�3∕2e2v2

0b
N0r0b�

3
II

m�0�D
 . Hence, the 

growth rate turns out to be, Γ = im� = R1∕3
√

3

2
 and it gives

The Eq.  (23) gives the growth rate of THz SPs  
generation. The normalized growth rates versus  
normalized frequency of THz SPs for different energy 
values ( �0 ) of an electron beam and different normalized 

(22)
�A

�t
=

4�3∕2e2v2
0b
N0r0b�

3
II

m�0�
(

� − kzv0b
)

D

(23)Γ =

√

3

2

�

�2
pb
v2
0b
r0b�

3
II

�0�D

�1∕3

.

values of air gap ( a�p∕c ) between metallic plates is  
plotted in Figs. 5, 6, 7, and 8. We plotted the normalized  
growth rates for following parameters: �pb∕�p = 10−3

;  v0b∕c = 10−2;  r0b�p∕c = 10−5;  �L = 9 ; for different 
energy values of electron beam  �0 = 1, 2, 3, 4, 5 and  
air gap between metallic plates  a�p∕c = 5, 10, 15, 20 .  
Figures 5, 6, 7 and 8 show that there is board spectrum  
of THz radiation. The growth rate of THz radiation is 
lower for high energy electron beam as compared to low 
energy electron beam, because at low energy the electron  
beam has strong interaction with highly localized and 
propagating SPs. In Figs. 6, 7, and 8, it is shown that as 

Fig. 5  Normalized growth rate Γ∕�p as a function of normal-
ized frequency �∕�p for the following parameters: �pb∕�p = 10−3

;  v0b∕c = 10−2 ; r0b�p∕c = 10−5 ; �L = 9 ; for different relativistic 
energy �0 = 1, 2, 3, 4, 5 and normalized gap a�p∕c = 5

Fig. 6  Normalized growth rate Γ∕�p as a function of normalized fre- 
quency �∕�p for the following parameters: �pb∕�p = 10−3 ; 
v0b∕c = 10−2 ; r0b�p∕c = 10−5 ; �L = 9 ; for different relativistic energy 
�0 = 1, 2, 3, 4, 5 and normalized gap a�p∕c = 10

Fig. 7  Normalized growth rate Γ∕�p as a function of normalized frequency 
�∕�p for the following parameters: �pb∕�p = 10−3 ; v0b∕c = 10−2 ; 
r0b�p∕c = 10−5 ; �L = 9 ; for different relativistic energy �0 = 1, 2, 3, 4, 5 
and normalized gap a�p∕c = 15

Fig. 8  Normalized growth rate Γ∕�p as a function of normalized 
frequency �∕�p for the following parameters: �pb∕�p = 10−3 ; 
v0b∕c = 10−2 ; r0b�p∕c = 10−5 ; �L = 9 ; for different values of normal-
ized gap a�p∕c = 5, 10, 15, 20 and fixed energy of electron beam 
�0 = 1



 Plasmonics

increasing the air gap between the metallic plates, the 
growth rate is decreased. Figures 5, 6, 7 and 8 also show 
that the growth rate decreases with increases in the beam 
energy, frequency, and air gap between the plates.

Conclusion

In conclusion, the metal-air-metal symmetrical structure is a 
favorable structure for broadband THz radiation generation 
by relativistic electron beam (MeV). These beams are easily 
generated from plasma-based charged particle accelerators 
[39]. The growth rate and frequency have large value for low 
energy electron beam. The growth rate of generated THz 
radiation is varying with one third power of beam current 
density and peak of the growth rate at particular value of 
frequency is decided by the energy of electron beam and 
an air gap between the plates (few micron). The radiation 
frequency about 0.50 THz can be generated by an electron 
beam have current about 170 A and energy nearly about 
3 MeV and has growth time is few ns. The highly confined 
and propagating THz SPs can be transformed into THz radi-
ation by a suitable surface grating that are commonly used 
at present days. The beam current has value nearly about 
170 A. Hence, the proposed structure will open the pos-
sibility to design a compact source for coherent and tune-
able THz radiation generation in broad spectrum regime. 
When a background plasma is created by the beam, the mode 
structure is considerably modified, leading to a reduction 
in the growth rate, hence to the efficiency of the device. In 
addition, this proposed structure also provides a new way of 
controlling the propagation of THz-SPs, which are important 
for manipulation of optical waves. The feasible applications 
of this device will be useful for medical diagnostics and 
treatments with considerable advantages, etc.
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