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Abstract
This article presents a systematic technique for designing a novel multiband plasmonic antenna based on graphene with a 
silicon nitride (SiO3N4) dielectric substrate in the terahertz band frequencies. Higher conductivity values are found in the 
1–5 THz ranges when the graphene conductivity values are measured at these band frequencies. Based on this, graphene 
chemical potential (μc) values between 0.0 and 1.0 eV are implemented to derive the fundamental antenna parameters. 
According to the simulated results, the proposed antenna operates at dual-band frequencies when μc is less than 0.3 eV and 
at triple-band frequencies when it is greater than that. Furthermore, for terahertz applications, the chemical potential value 
of 0.5 eV appears more reliable as the suggested antenna is operated at a tri-band frequency of 0.855, 3.760, and 4.650 THz 
with a gain of 3.06, 7.65, and 7.53 dB and fraction bandwidth of 32.4%, 5.21%, and 4.24%, respectively. Furthermore, the 
advancement of the current work was evident when comparing the obtained results with those previously achieved by other 
researchers, particularly in terms of antenna size, gain, and bandwidth values. Finally, it can be concluded that the recom-
mended antenna offers good frequency tunable features and is suitable for high-speed indoor wireless applications.

Keywords  Plasmonic antenna · Graphene · Chemical potential · Microstrip antenna · Terahertz

Introduction

THz radiation has the advantages of numerous range of 
applications in the field of recent surveillance communi-
cation systems due to non-ionizing properties as well as 
large transmission capability [1]. In the electromagnetic 
(EM) spectrum with THz, frequency is placed between the 
microwave (mm) and infrared (IR) bands that possesses a 
particular property of the microwave and light waves. Hence, 
the terahertz (EM) waves are allowed to begin from both 
the electronic and photonic device [2, 3]. With the quick 
growth of terahertz detectors and sources, THz band has 
gained more attention in the field of wireless communication 
systems [4]. An important component of communication 
technology is the antenna that is used to transmit and receive 

information in the form of electromagnetic (EM) wave. The 
antennas used in the THz region should be capable of pro-
viding high gain, wide bandwidth (BW), compact, and low 
cost. This leads to make the microstrip patch antennas as a 
suitable choice for these applications [5, 6].

Additionally, the terahertz (THz) technology needs small 
size of the communication and electronic devices with 
enhancing the data speed. The nano-antennas are advance 
designed using good conductor materials like copper, silver, 
and gold, but these conductors in nano-antenna operate at 
THz frequency with very high energy losses and are not 
easy to tuning it for resonance frequency (fr) control [7]. To 
reduce these limitations, researchers are drawn towards the 
use of novel materials such as graphene as an alternative to 
aforementioned metals [8, 9].

Graphene is one layer of carbon atoms and formed in a 
honeycomb lattice that provides good optical characteristics 
that lead it to be suitable for plasmonic applications [7, 10]. 
Beyond that, graphene is currently popular with the interest 
of the research field because of its new electrical, mechani-
cal, chemical, optical, and thermal properties [11–13]. With 
respect to its special properties, graphene offers wide possible 
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uses in a variety of fields, such as transistors with ultra-high 
speed, antennas [14, 15], transparent solar cells [16], wave-
guides [17], demultiplexers [18, 19], resonators [20], absorb-
ers [21, 22], filters [23], and modulator [24, 25]. Currently, 
several graphene-based antennas have been recommended 
involving the leaky-wave [26], Yagi-Uda [14, 27], reconfig-
urable [28–30], and reflect array [31] antennas that display 
widespread capabilities in the THz band [32, 33].

When graphene material is integrated into antenna systems, 
it displays improvement in the radiation performance compared 
to the typical conventional antennas at very high frequencies. 
This is because graphene has a good conductivity and its chem-
ical potential (μc) can be changed via an external electrostatic 
direct current (DC) or by doping during manufacturing pro-
cess [34]. Besides, the relationship between momentum and 
energy of electrons in graphene is linear rather than quadratic 
through a variety of energies and this allows extremely high 
carrier mobility to be obtained at room temperature [35]. These 
graphene extraordinary properties allow it to be very interesting 
to promote surface plasma polariton (SPP) mode, especially in 
the THz frequency range, as its resonance plasma frequency is 
exactly located in this band [35]. On the other hand, the gra-
phene plasmonic behavior can be employed as a radiating patch 
or an artificial magnetic conductor (AMC) in miniaturization 
process for the design of antennas [36].

In this investigation, a novel plasmonic nano-antenna based 
on graphene is proposed and designed on the silicon nitride 
(SiO3N4) dielectric substrate using coupled gap feeding tech-
niques operating at 0 to 5 THz. In the first step, the graphene 
surface conductivity ( �g ) is calculated in the range frequency 
of 1 to 10 THz with various chemical potential (μc) values. 
After that, the performance of the simulated antenna is com-
puted under the impact change of graphene chemical poten-
tial. Finally, the chemical potential values, which maintain the 
dual and tri-band frequency operation of the various vibration 
modes, are specified. Also, their impacts on the overall sug-
gested antenna parameters are determined.

The continuing section of the present work is arranged as 
follows: In the “Material and Simulation Technique” section, 
the numerical model for computing the electric conductivity 
of graphene and geometry of the proposed plasmonic antenna 
are provided in detail. The results and dissection of the pro-
posed antenna parameters at various operational modes are 
described in the “Results and Discussions” section. The main 
conclusions are summarized in the “Conclusion” section.

Material and Simulation Technique

The graphene-based plasmonic antenna is designed and 
simulated using CST software techniques. In this article, a 
graphene radiation patch is built up on a dielectric substrate 
whose bias voltage (Vg) is connected between a single layer 

of graphene and antenna substrate that enhances the chemi-
cal potential (μc) and this in turn leads to varying graphene 
conductivity (�g).

Graphene Properties

In this section, the variation of graphene electric conductiv-
ity as a function of μc is studied. As indicated by [37], the 
graphene conductivity is complex and consists of intra-band 
(σintra) and inter-band (σinter) parts. Furthermore, graphene 
conductivity ( �g ) is dependent on the frequency which 
is described by Kubo’s formula and it is approximately 
expressed as [38]

The conductivity of graphene due to intra-band (σintra) and 
inter-band (σinter) can be expressed, respectively, as given 
by [39, 40]

where ω is the angular frequency, T is the temperature, e is 
the charge of the electron, μc is the chemical potential, kB is 
Boltzmann’s constant, ℏ is reduced Planck’s constant, and г 
is a scattering rate. However, in the range of THz frequen-
cies, the term of inter-band has little impact on the total 
surface conductivity of graphene (σg), and hence, the intra-
band conductivity term will control the value of total surface 
conductivity (σg) [41, 42].

The numerical expression of Kubo formula, as mentioned 
in Eqs. (2) and (3), is handled to analyze the behavior con-
ductivity of graphene in the terahertz (THz) band frequen-
cies using various chemical potential values. The obtained 
results of the real component and imaginary component of 
the graphene surface conductivities are displayed in Fig. 1a 
and b, respectively. This figure displays that the conductiv-
ity of graphene is related to the chemical potential (μc) and 
it is obviously seen that σreal ≥ 0 while σimag ≤ 0 in the range 
frequency of 1 to 10 THz. It is also observed that the values 
of the imaginary component are greater in comparison to 
the values of the real component. Besides, in the frequency 
ranges 1–4 THz band, this figure indicates that the graphene 
conductivity is high compared to the other considered fre-
quency ranges and it might be regarded as a good choice for 
some antenna design considerations.

Therefore, the graphene conductivities can be controlled 
through the applied μc. Since graphene conductivity values 
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are high relative to high values (μc) due to having a greater 
carrier density and this makes the graphene patch material 
to support (SPPs), which will be used to confine the incident 
EM wave. Moreover, the graphene material properties in 
terms of thermal, electrical, optical, and mechanical char-
acteristics are displayed in Table 1.

Plasmonic Antenna Geometry

The microstrip antenna in simple form consists of dielectric 
substrate confinement between two parallel conductors [44]. 
In this work, a rectangular graphene radiation patch is placed 
at the upper part of the dielectric substrate of silicon nitride 
(SiO3N4). The opposed side of the antenna substrate is made 
up of graphene with the same dimensions of the substrate 
which is used like antenna ground plane as illustrated in 
Fig. 2. The thickness of the ground plane and the patch is 
considered to be the same and equal to 0.345 nm.

As the bias voltage (Vg) is put into the graphene patch, 
the electrons inside the patch are oscillating around their 
equilibrium position at THz range frequencies and this phe-
nomenon is called SPP [45, 46]. The dispersion relation of 
the SPP wave vector (kSPP) or the transverse magnetic (TM) 
mode of the graphene sheet is evaluated in free space using 
the relation given by [47] as

where λSPP, λ0, � , k0, and �eff are, respectively, operational 
surface plasmonic polariton wavelength, free space wave-
length, attenuation constant, wave vector, and effective 
intrinsic impedance of graphene material. Besides, the width 
(Wp) and length (Lp) of the simulated plasmonic antenna 
are determined through the formula expressions presented 
by [48] as

where M and N are positive integer numbers; εr and εeff are 
relative and effective permittivity of the dielectric material, 
respectively; ΔL is the radiation patch length expansion as 
a result of the creation of fringing fields. Moreover, the 
width (Wf) of the microstrip line feed is determined from 
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Fig. 1   Variation surface conductivity of graphene dependent on frequency with various values of μc using the Kubo model a real and b imagi-
nary terms

Table 1   Thermal, electrical, optical, and mechanical characteristics 
of graphene material [43]

Properties Value Unit

Thermal and electrical Electronic mobility ̴ 2 × 105 m2/Vs
Band gap 0 –
Current density ̴ 109 A/cm
Thermal conductivity ̴ 5000 W/mK
Fermi velocity ̴ 106 m/s

Optical Transparency ̴ 97.70% –
Mechanical Tensile strength ̴ 1 TPa

Elastic limit ̴ 20% –
Thickness 0.345 Nm
Surface area 2360 m2/gm
Breaking strength 42 N/m
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the mathematical relation of the input antenna impedance 
(Za) given by [48] as

It is worth mentioning that Za should be matched to char-
acteristic impedance with the line feeding (Lf). Hence, the 
antenna ground and substrate dimensions are determined by 
using the expression given by [48] as

where Lg, Wg, Ls, and Ws are the length and width of antenna 
ground plane substrate material, respectively. According to 

(8)Wf =
11.96�

◦

Za

(9)Ls = Lg = Lp + 2Lf

(10)Ws = Wg = Wp + 2Lf

the above equations, the dimensions of the proposed anten-
nas computed are summarized in Table 2.

At the same time, the selection of appropriate chemical 
potential (μc) values for graphene (μc) may significantly affect 
the impedance characteristics of the antenna and, therefore, the 
antenna resonating frequency. Furthermore, the chemical poten-
tial (μc) is able to provide variations in the charge carrier density 
in the radiation patch which in turn impacts the carrier mobility 
numbers and provides the graphene tunable. The specific details 
of the considered dielectric substrates with the implemented simu-
lation and design procedure techniques are presented in Table 3.

With the use of the aforementioned specifications of the 
dielectric substrate and graphene patch dimensions, as well 
as their physical characteristics, the radiation performance of 
the plasmonic antennas is determined and discussed in the 
next section.

Fig. 2   Top and cross-sectional view of the graphene-based plasmonic microstrip antenna

Table 2   Optimized plasmonic 
antenna dimensions (units in 
μm)

Parameter Wp Lp Wf Lf G Wg Lg h

Values 35 28 9.15 13.5 1.5 55 48 5
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Results and Discussions

The radiation performances of the multiband plasmonic gra-
phene patch antenna are investigated using different chemical 
potential (μc) by implementing CST at the operating frequency 
ranges from 0 to 5 THz. The characteristic of the multiband 
proposed antenna is analyzed in regard to reflection loss 
(S11), voltage standing wave ratio (VSWR), gain, efficiency, 

bandwidth (BW), fractional bandwidth (FBW), and far-field 
radiation pattern, as well as their E and H plane patterns.

Dual‑Band Operation

The essential antenna characteristic is S11, and it could be 
lower than − 10 dB for suitable antenna impedance match-
ing. Figures 3 and 4 display the proper operating frequency 
where S11 and VSWR parameters have minimum values 
with regard to the antenna bandwidth (BW). The change in 
the operating frequency (fr) dependent on the μc is immedi-
ately apparent from the S11 and VSWR parameter curve.

This dependence indicates that the plasmonic antenna can 
be tuned within a frequency range, which shifts from 0.795 
to 0.855 THz in the first excited vibration mode (TM10), 
while shifting from 3.605 to 3.790 THz in the second excited 
vibration mode (TM20) and from 4.647 to 4.670 THz in the 
third excited vibration mode at TM11. The plasmonic nano-
antenna is simulated in the μc value which varies from 0.0 
to 1.0 eV, which can be achieved simply through an exter-
nal DC voltage source. Besides, for every chemical poten-
tial, the S11, VSWR, operating frequency, gain, efficiency, 
bandwidth (BW), and fractional bandwidth (FBW) of the 

Table 3   Simulation detailed information of recommended antenna

Parameters Value Unit

Simulation solver Time domain solver FDTD –
Range frequency 1.0 to 5.0 THz
Mesh type Hexahedral –
Impedance 50 Ohm

Substrate Types SiO3N4 –
Relative permittivity 9.5 –
Loss tangent 0.0001 –
Density 3290 kg/m3

Young’s modulus 2.5 × 109 N/m2

Fig. 3   Changing of S11 versus frequency of the plasmonic antenna with distinct μc
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proposed antenna are measured and the results are demon-
strated in Table 4. It is clearly seen from this table that the 
minimum values of S11 and VSWR are − 42.374 dB and 
1.015, respectively, which are recorded at the μc value of 
0.5 eV and at the resonance frequency of 0.855.

Moreover, the antennas with both μc of 0.0 and 0.1 eV 
are resonating at dual-band frequencies, which are 0.795 
and 0.820 THz at the first excited mode (TM10) and 
3.605 and 3.705 THz for the second excited mode (TM20) 
with S11 values of − 41.484 and − 39.559 and − 20.683 

Fig. 4   Changing of VSWR ver-
sus frequency of the plasmonic 
antenna with distinct μc

Table 4   Plasmonic graphene-
based patch antenna parameters 
for various chemical potential 
values

μc (eV) Band fr (THz) BW (THz) FBW (%) S11 (dB) VSWR Gain (dB)

0.0 Dual band 0.795 0.248 31.32 −41.484 1.017 2.64
3.605 0.262 7.24 −20.683 1.203 6.61

0.1 Dual band 0.820 0.243 29.63 −39.559 1.020 2.71
3.705 0.224 6.05 −31.018 1.066 6.73

0.3 Tri-band 0.830 0.232 27.83 −39.955 1.021 2.83
3.755 0.212 5.75 −30.263 1.063 7.43
4.647 0.201 4.30 −14.715 1.450 6.56

0.5 Tri-band 0.855 0.202 32.40 −42.374 1.015 3.06
3.760 0.202 5.21 −36.389 1.030 7.69
4.650 0.196 4.24 −16.058 1.373 7.53

0.7 Tri-band 0.825 0.202 23.88 −36.046 1.032 2.97
3.780 0.209 5.37 −27.927 1.083 7.29
4.665 0.189 4.07 −14.936 1.436 6.53

0.9 Tri-band 0.825 0.222 26.91 −39.244 1.022 2.75
3.705 0.209 5.67 −31.205 1.056 7.56
4.605 0.202 4.41 −14.220 1.482 6.59

1.0 Tri-band 0.820 0.196 23.90 −30.173 1.063 2.71
3.790 0.215 5.51 −25.025 1.110 7.21
4.670 0.183 3.94 −15.253 1.417 6.66
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and − 31.018 dB, respectively. Besides, the implemen-
tation of other studied chemical potential values makes 
the proposed plasmonic antenna to operate at triple-band 
frequencies with acceptable values of S11 and VSWR. 
Furthermore, the wider fractional antenna bandwidth of 
32.40% is also observed with the μc value of 0.5 eV for 
the first excited vibration modes (TM10). In addition, 
this table also displays that the second excited vibration 
modes (TM20) provide a higher antenna gain value of 
7.69 dB with the use of all considered chemical potential 

values. On the other side, the 2D view electric (E) and 
magnetic(H) planes of far-field radiation pattern for the 
first (TM10), second (TM20), and third excitation mode 
(TM11) of the plasmonic antenna for each chemical 
potentials are also measured and displayed in Fig. 5.

These figures demonstrate a directional E plane while a 
bidirectional H plane for the first excited vibration mode. 
However, in the second resonant modes, both E and H 
planes show a semi-omnidirectional pattern with some 
back and side lobes. Besides, the radiation figures for the 

Fig. 5   2D representation of the recommended plasmonic graphene-based antenna radiation pattern for E plane a TM10, b TM20, and c TM11 
and for H plane d TM10, e TM20, and f TM11 modes

Fig. 6   The S11 and VSWR depended on frequency with various μc at TM11
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third resonant frequencies display generally an approxi-
mate bidirectional E plane and H plane.

Change of μc for Tri‑band Operation

In this section, the influence of μc on the antenna parameter 
printed on SiO3N4 as a dielectric substrate is investigated, 
which is widely employed in solar cell technologies. In addi-
tion, it can be supported multiband resonant that develop it 
suitable for designing new smart antennas. As explained by the 
results presented in Table 4, it is clear to see that the recom-
mended antenna operates at a dual-band frequency at 0.795 
and 3.605 THz and 0.820 and 3.705 THz, respectively, for 
the μc values of 0.0 and 0.1 eV. However, with an increase 
in μc from 0.3 to 1.0 eV, a third mode of vibration appears at 
frequencies 4.647, 4.650, 4.665, 4.605, and 4.670 THz, respec-
tively. The excitation of the third vibration modes can be attrib-
uted to the fact that as the chemical potential increases fringe 
line fields will be produced along the edge of the antenna 
patch. Consequently, the stored energy in the plasmonic nano-
antenna resonator reduces. Therefore, the antenna quality fac-
tor (Qc) decreases, and thus, the antenna bandwidth (BW) of 
the proposed plasmonic antenna is changed.

As a result, the fundamental vibration mode is transvers 
magnetic mode (TM10) [49]. However, when the chemical 
potential becomes higher, sufficient carrier charge density is 

formed within the antenna patch and this causes the antenna 
to operate with a high-order vibration mode, for example, 
TM10, TM20, and TM30, to propagate due to the creation of 
SPP at THz frequencies. The above modes will produce reso-
nance equivalent to TM10 but in different frequency bands 
due to a different phase angle. Therefore, with the appropriate 
chemical potential values, the plasmonic patch antenna can 
be adjusted to resonate at tri-band frequencies.

Fig. 7   3D view of the radiation far field at a 0.855 THz, b 3.760 THz, and c 4.650 THz and 2D view of the E plane and H plane at d 0.855 THz, 
e 3.760 THz, and f 4.650 THz for TM10, TM20, and TM11 mode with μc of 0.5 eV

Fig. 8   Directivity and gain relative to frequency of the proposed plas-
monic antenna with a μc value of 0.5 eV
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Therefore, the total antenna radiation parameters that are 
summarized in Table 4 imply that the reliable chemical poten-
tial values of the graphene patch for tri-band operation appear 
to be at 0.3 eV and 0.5 eV. On the other hand, whenever μc is 
greater than the aforementioned limit, the ability of the presented 
plasmonic graphene patch antenna will be reduced due to the 
creation of surface waves. Generally, the advised plasmonic 
nano-antenna operates within a dual-band frequency as μc are 
below 0.1 eV, while beyond this value it resonates with a tri-
band frequency. In addition, the variance of S11 and VSWR in 
tri-band operations is calculated again and the results are shown 
in Fig. 6. These two figures indicate that all considered chemi-
cal potential values provide acceptable S11 and VSWR values.

Furthermore, the 2D and 3D view of the radiation pattern 
for the tri-band antenna with μc of 0.5 eV is computed and 
the results are illustrated in Fig. 7. This figure demonstrates 
omnidirectional pattern behavior of the plasmonic nano-
antenna in the first excited vibration mode at 0.855 THz, 
contrarily a bidirectional pattern for the second excited mode 
at 3.760 THz and an approximate bidirectional pattern for 
the third resonant mode at 4.650 THz.

Moreover, the directivity and realized gain for the 
advised plasmonic nano-antenna are also measured in the 
considered frequency bands and the achieved results are 
demonstrated in Fig. 8. This figure indicates that the rec-
ommended antenna resonated at triple-band frequencies of 

Table 5   Tri-band plasmonic antenna compared to previously published work

TL transmission line, CPW coplanar waveguide

Reference Band Substrate type fr (THz) μc (eV) BW (GHz) Gain (dB) Size (μm2) Feeding method

[50] Single band Polyimide 0.51 0.18 400 5.49 600 × 300 TL-fed
[51] Polyimide 2.96 797 5.40 60 × 60 TL-fed
[52] Polyimide 1.90 0.50 – 4.50 120 × 90 TL-fed
[53] – 2.02 1.00 – 8.91 256 × 216 CPW-fed
[54] Al2O3 2.70 – 240 – 100 × 63 Edge-fed
[54] Si3N4 2.70 – 270 – 100 × 63 Edge-fed
[6] Dual band FR4 3.50 0.40 400 1.46 120 × 95 Inset-fed

4.33 460 2.34
[55] Al2O3 1.40 – 400 – 105 × 65 CPW-fed

3.10 150 –
[36] GaAs 0.83 0.45 218 2.79 70 × 60 TL-fed

3.67 178 3.03
[56] Polyamide 0.71 – 4.71 5.14 536 × 526 TL-fed

0.74 3.13 5.00
[57] Silicon 2.48 0.25 115.1 2.70 65 × 65 TL-fed

3.35 140.5 6.03
[55] Si3N4 1.30 – 305 – 105 × 65 CPW-fed

3.10 50 – CPW-fed
Present work SiO3N4 0.82 0.50 243 2.71 55 × 48 Coupled gap-fed

3.70 224 6.73
[6] Tri-band RT 5880 2.32 0.40 230 0.99 120 × 95 Inset-fed

3.53 520 1.93
4.38 610 2.58

[58] Liquid crystalline 
polymer

0.10 – 1.80 15.82 360 × 590 TL-fed
0.63 17.30 16.52
0.83 24.30 16.37

[59] SiO2 1.95 0.3 – 4.79 50 × 50 Inset-fed
4.83 – 5.05
5.44 – 5.53

[36] GaAs 0.77 0.45 203 2.51 70 × 60 TL-fed
3.28 224 2.73
4.51 324 6.56

Present work SiO3N4 0.85 0.50 202 3.06 55 × 48 Coupled gap-fed
3.76 202 7.69
4.65 196 7.53
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0.855, 3.760, and 4.650 THz with a gain of 3.06, 7.65, and 
7.53 dB, respectively.

Lastly, the calculated gain, bandwidth (BW), and size of 
the simulated tri-band antenna with the use of a μc value of 
0.5 eV are compared to the earlier achieved by other research 
teams and the achievements are listed in Table 5. It is clearly 
seen from this table that the bandwidth, gain, and size of 
the proposed antennas agree with the recent available pub-
lished works cited here at dual-band and tri-band operating 
frequencies. Additionally, the results have advantages of 
miniaturizing antenna size and operates with a higher gain 
and broad bandwidth (BW) values.

Conclusion

This article involves the design and analyses of a high-
performance multiband plasmonic antenna. It is consists 
of graphene patch placed on the silicon nitride (SiO3N4) 
dielectric substrate to be used in terahertz wireless com-
munication systems. The design procedure is performed by 
utilizing CST simulation technique and investigating differ-
ent graphene chemical potential values in the range of 0.0 
to 1.0 eV. Generally, the calculated results reveal that the 
operating frequency of the graphene patch antenna can be 
simply tuned through its chemical potential.

In addition, the simulation result implies that, as chemical 
potentials raised to more than 0.3 eV, the proposed antenna 
resonates with a triple-band frequency. Meanwhile, better 
values of gain are 3.06, 7.69, and 6.53 dB and fractional 
bandwidths are 32.4%, 5.21%, and 4.24% when μc is equal 
to 0.5 eV, at the frequencies of 0.766, 3.285, and 4.510 THz, 
respectively. On the other hand, the computed far-field radia-
tion pattern displays an omnidirectional, a bidirectional, and 
an approximate bidirectional pattern behavior for the first, 
second, and third excited resonant modes, respectively. The 
reliability of the proposed antenna relies on multiband operat-
ing frequencies; it is smaller in size and provides high gain 
and a wider bandwidth compared to the corresponding values 
recently achieved by other researchers using another dielec-
tric substrate with different feeding techniques. Therefore, it 
can be said that the proposed plasmonic antenna is suitable 
for high-speed indoor wireless application systems especially 
in the field of medical imaging, material identification, and 
security scanning in the terahertz frequency range.
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