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Abstract
Copper has been reclusive with regard to its plasmonic investigations among the founding plasmonic metals. With the advent 
of technology and the associated improvements in understanding of plasmonics, copper has been able to make a stand for 
itself among its peers and even outshine them in a few aspects such as dielectric loss, cost, and a more intricate and facile 
tuning of the near and far field intensities of the plasmon-enhanced distributions. This review is aimed at highlighting the 
different classes of plasmonic copper (PC), ranging from its pristine version to the array of composited and alloyed com-
positions. The focus is on an all-encompassing review of PC with regard to its shortcomings and merits, its exploration for 
plasmonic applications, and emerging phenomena discovered due to the plasmonic virtue. We aim to bring about a compre-
hensive treatise of the investigations on PC, where the major discussions are on the topics of a generic treatise on surface 
plasmons (both localized and propagating), pristine copper and its potential for different applications, the almost inescap-
able phenomenon of oxidation, and the associations that copper has been made to form in order to be exploited for multiple 
uses such as chalcogenides, silicides, alloys, and other metamaterial architectures. Specific outcomes of the changes to the 
near and far-field distributions of PC in various conditions such as oxidized/alloyed/composited and stabilized have been 
discussed, highlighting the changes to PC in lieu of these modifications. The concluding sections highlight some fascinating 
compositions including multi-elemental copper and its atomic clusters and cursorily studied compositions which are among 
the few materials that could offer untapped capabilities which will be made evident from brief glimpses of their plasmonic 
character. The outlook for plasmonic copper has never been more promising, ranging from the need for comprehensive 
investigations of emerging material compositions and configurations (of both pristine and composited copper) to the realm 
of commercialization. Copper has, thus, been projected to be a viable alternative to existing options including the poster 
children of plasmonics, namely, silver and gold.
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Introduction

Plasmonic nanoparticles have wide applications due to 
their fundamental virtue of being light manipulators, such 
as in sensing, catalysis, switches, waveguides, heaters, and 
theranostic agents [1]. Among the coinage metals, Cu has 
often had to take a back seat with regard to its promise in 
plasmonic applications due to the superior properties of the 
other two, among which stability and low optical loss are 
often attributed to be the reasons for their being frontrunners 

for plasmon-enhanced properties. As an example of the 
potentially inferior nature of Cu compared to Au and Ag, 
the degree of overlap between the inter-(excitonic) and intra-
(plasmonic) bands of Cu nanoparticles (NPs) (≈ 0.03 eV) is 
much higher than Au and Ag, causing the LSPR absorption 
to be fundamentally less intense. This is all the more evident 
while considering the energy spacing between the 3 days and 
4 s orbitals for Cu in comparison with Au and Ag [2]. Yet, 
plasmonic copper has rekindled the interest of researchers 
recently due to its promise as a replacement for Au and Ag 
in a myriad of applications such as for enhanced scatter-
ing, catalysis, and even non-linear optical (NLO) proper-
ties. In this review, we discuss how this has become pos-
sible with the advent of nanotechnology and nanomaterials. 
Specifically, with the evolution of synthesis techniques and 
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fabrication technologies, delicate control of the oxidation of 
Cu is one such enabler, allowing the blooming of investiga-
tions aimed at replacing expensive plasmonic metals such 
as Au and Ag with Cu. We have attempted to highlight the 
prospect of Cu as a plasmonic metal by discussing its appli-
cability towards every aspect of plasmonic research to the 
best of our reach of published literature.

We start with a discussion on plasmonics in general 
and the factors to be mindful of while trying to manipu-
late plasmonic behavior, with a restriction that only surface 
plasmon resonance (LSPR) is dealt with and not its com-
panion, bulk plasmon resonance. We then discuss the two 
themes of research of pristine Cu plasmonics, viz., plas-
monic Cu nanoparticles (CuNPs) and films. Attempts to 
be comprehensive in terms of the prospects of both these 
configurations have been made by a review of their promise 
for a wide array of applications. The very interesting and 
quintessential part of Cu plasmonics, that is, oxidation, is 
discussed subsequently. Oxidation can be avoided and com-
pletely reversed, as multiple investigations have revealed, 
and can even be beneficial when control is achieved of the 
oxidation rate and if permanent termination of the oxida-
tion process can be intentionally induced. We then discuss 
the extensive avenue of Cu composites such as chalcoge-
nides, carbides, silicides, alloys, multi-elemental compos-
ites, and other hitherto unexplored (from a plasmonic angle) 
compositions of Cu. Comprehensive discussions on often 
explored plasmon-enhanced properties, such as the use of 
this enhancement for theranostics, catalysis, energy storage, 
and Raman scattering along with unexplored/rarely explored 
aspects such as multi-elemental compositions (composed of 
Cu clusters with more than three elements) and applications 
such as NLO and electron emitting plasmonic sources, are 
attempted. As will be demonstrated from this review, the 
property of Cu being less expensive (and hence amenable 
for unconventional explorations in terms of composition 
and for mass production) and having a dielectric function 
that can be easily (due to inherently high reactivity) and 
intricately varied for manipulations of the plasmonic profile 
can make it the metal of choice for plasmonic applications. 
We conclude this review with a discussion of the myriad of 
aspects that are unaddressed/those that need a more rigor-
ous confirmation and the avenues that are yet untouched by 
plasmonic Cu nanostructures, highlighting the conclusion 
that Cu plasmonics is an increasingly expanding area of the 
broader field of plasmonics.

SPP vs LSPR: A Brief Treatise

The collective excitation of free electrons at a metal– 
dielectric interface in response to an electromagnetic field  
is termed as plasmon resonance. The excitation being 
dependent intricately on the electronic structure of the 

material, the material constants such as the dielectric 
constant, rate constant of different types of excitations 
that can induce a plasmonic resonance etc. are impor-
tant, and excellent reviews can be found elucidating the 
same [3]. This resonant oscillation can be very different 
when induced in continuous films compared to induction  
in discrete nanoparticles. In films, this excitation can lead  
to the generation of a propagating wave of plasmons (the 
surface plasmon polariton wave or SPP), whereas due to 
the localization of the excitation within the boundaries of 
a nanoparticle, it is termed as localized surface plasmon 
resonance (LSPR) when induced in them. We give here an 
overall understanding of the theoretical calculations which 
can help predict the defining attributes of the plasmon 
resonance such as the damping, the frequency, propagation 
constant, and the dielectric constants.

For a propagating wave at the interface between a die-
lectric and the metal, we can consider the situation illus-
trated in Fig. 1 [4], where 1 denotes the dielectric and 2 
is the metal.

From classical electrodynamics defining the conditions 
for continuity of a wave between 1 and 2 and from Max-
well’s equations which when solved allow computation of 
the fields created by the oscillating plasma of electrons, 
we get the relation between the wave vectors of the SPP in 
the metal and the dielectric as [4]

where k1, k2 are wave vectors and ε1, ε2 are the dielectric 
constants.

From this relation, it is evident that the plasmon wave 
can exist at the interface only for the condition of ε1 = − ε2, 
that the wave exists only at frequencies of negative values 
of the dielectric function, and that the wave can exist only 
at the interface on the assumption of an exponential decay 
away from it, as shown in Fig. 2 [4].

The propagation constant of the SPP is given as [5]

(1)
k1,Z

�1
=

k2,Z

�2

Fig. 1   Propagating SPP wave at the interface between a metal and a 
dielectric
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where ksp is the wavenumber of surface plasmon polariton, 
ε(ω) is the dielectric constant as a function of frequency, and 
c is the speed of light.

As briefly mentioned, the condition for the SPP con-
strained to the interface dictates an exponential decay away 
from it. The penetration depth of the evanescent field of 
the SPP away from the interface is hence different for the 
dielectric and the metal, where this distance is referred to as 
the skin depth for the latter. The value of this propagation 
length (Lsp) is arrived at from the imaginary part of the SPP 
wavenumber [5]

The discussion so far defining the nature of the SPP once 
induced, it is important that the SPP also needs to couple 
with the incoming electromagnetic wave for resonant exci-
tation and hence requires both frequency and wave vector 
matching with it (in contrast to localized surface plasmons 
(LSPs) which do not as they are not a propagating wave). 
This can happen only when the condition of momentum 
matching is satisfied between the two waves. It is to be kept 
in mind that the momentum of the SPP is always greater 
than that of a free space photon, as shown in Fig. 3 [4] which 
illustrates the dispersion relation of the plasmon wave. Vari-
ous means of achieving this coupling exist and are broadly 
classified as through photon tunneling (through the configu-
rations pioneered by Otto and Kretschmann) and through 
diffraction coupling (through the employment of scattering 

(2)ksp =
�

c
[

�r�(�)

�r + �(�)
]
1∕2

(3)1

Lsp
= 2Imksp =

�

c

�
3

2

1
�2(�)

||�1(�)||
1

2 (||�1(�)|| − �1)
3∕2

features such as gratings on the metallic films), although 
other unconventional methods such as through electron tun-
neling and LSP scattering have also been reported.

With the defining attributes of the SPP being described 
until this juncture, we will attempt to describe similar attrib-
utes for the second type of resonating plasmons, i.e., LSPs. 
LSPs are electrostatic oscillations in contrast to propagating 
SPPs and can arise both in films (on confined areas such as 
roughness features) and in bound geometries such as nano-
particles. The location and width of LSPs are defined by 
the particle size/shape, composition, and the dielectric envi-
ronment around it. In deriving the characteristic oscillation 
frequency of the LSPs, one starts with calculating the dis-
placement of the collective plasmon oscillation (termed as 
dielectric displacement, D) in relation to the incident electric 
field (E) of the incident electromagnetic wave as [6]

where P is the polarization density which is

The number density being (n) and e is the charge of the 
electron, and the value of x is arrived at by solving the equa-
tion of motion of a free electron with mass m, given by [4]

Solving the equation and inserting the displacement x into 
the equation for D gives the expression for the bulk plasma 
frequency (ω),

(4)D = �0E + P

(5)P = nex

(6)mẍ + m𝛾 ẋ = −eE

(7)D = �0(1 −
�2

p

�2 + iγ�
)E

Fig. 2   The field of the propagating plasmon wave at the interface 
where it decays with different degrees into the respective media

Fig. 3   Dispersion relation between wave vector and frequency of 
light in a vacuum, in a dielectric, and of surface plasmons
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where �p =
√

(
e2n

�0m
) is the natural frequency of oscillation 

of the electron cloud (the plasma frequency), γ the damping 
parameter, and ε0 the dielectric permittivity of free space.

One of the constitutive relations of linear isotropic mate-
rials with a permittivity ε is that [7]

On comparing the relations for D, we get

For frequencies close to ωp, the temporal duration of 
damping events is quite low (approaching femto seconds and 
thus, close to 1015 Hz), leading to an often-made approxima-
tion that damping can be ignored, leading to [8]

This relation can be modified to incorporate the dielectric 
permittivity of the material around the plasmonic entity by 
establishing the relation between the dielectric constants of 
the two. For this purpose, the extinction of light by a nano-
particle at the resonance condition needs to be examined. 
The quantification of this extinction is through the calcula-
tion of the extinction cross-section (a combination of the 
scattering and absorption cross-sections). For a spherical 
nanoparticle and under the quasistatic approximation (of 
a homogeneous polarization or a dipolar resonance), the 
absorption cross-section is given by [9]

where �s is the dielectric function of the surrounding 
medium, �r, �i are the real and imaginary parts of dielectric 
constants of the material (nanoparticle) exhibiting SPR, N 
is the conduction electron density of the nanoparticle, and 
R is the radius of the nanoparticle.

For resonance to occur and hence the maximization of 
absorption [10], the condition

can hence be arrived at for spherical nanoparticles. Equa-
tion (10) then becomes

which intimately ties the resonance frequency with the free 
electron density and the dielectric constant of the surround-
ing material. It is to be noted here that the value of 2 is only 

(8)D = �0�E

(9)�(�) = (1 −
�2

p
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)
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(12)�1 = −2�s

(13)� =
ωp

√
2εs + 1

valid for spherical nanoparticles, and for other morpholo-
gies, it needs to be modified accordingly. For example, the 
case of nanorods changes the value to ((1-pf)/pf), where 
pf is the depolarization factor that is determined from the 
nanorod aspect ratio. In actual materials, there is often an 
overlap between the energies at which inter-band transi-
tions occur and the SPR. To account for this and the fact 
that the damping of the resonance is not negligible and is 
contributed to by scattering from lattice entities (phonons, 
defects, impurities, other fermions ( Γb) ), the surface (for 
particle sizes approaching the mean free path of the mate-
rial ( (Γs)) ), and radiative damping ( Γr) , the relation (10) is 
written as [11]

where εinter is the interband transition, and damping con-
stants are given by

where �F is the fermi velocity of electrons, l∞ is the mean 
free path of the conduction electrons in bulk, �0 is the bulk 
damping constant, A is a theory-dependent parameter which 
is dependent on the type of the scattering process, R is the 
radius of the metal nanosphere, h is Planck’s constant, V is 
the volume of nanoparticle, and k is a constant that can be 
arrived at from the graph relating the resonance energy of 
the plasmon with the measured experimental linewidth. The 
plasmon frequency hence changes to [12]

where �ib1 denotes the contribution of interband transitions 
to the real part of the nanoparticle permittivity.

It is to be kept in mind that for obtaining the cross-
sections for non-spherical particles (such as nanostars 
and nano dendrites), computational methods tuned to 
sufficiently simulate complex shapes are often neces-
sary. Methods based on the discrete dipole approximation 
(DDA) such as the finite-difference time-domain (FDTD) 
analysis have been typically used to simulate the optical 
properties [13] that arise in such non-spherical plasmonic 
structures. FDTD algorithms solve the differential form of 
Maxwell’s equations by assuming appropriate boundary 
conditions and discretizing the space and time domain to 

(14)�r = �inter + 1 −
�2
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find the electric and magnetic fields at different positions 
and time steps of the structure under examination.

The brief treatise in this section on the characteristics 
of surface plasmons enables multiple insights to be arrived 
at. The prediction of the plasmonic property has reached a 
level of maturity that lattice-level manipulations of materials 
and the resulting changes/induction of plasmonic virtues can 
be simulated knowing the equations above and incorporat-
ing appropriate boundary conditions, as will be discussed 
in subsequent sections. An intuitive conclusion from the 
comparison of SPPs and LSPs is that the latter can be much 
more amenable in terms of tuning compared to the former, 
considering the ease of excitation (due to no requirement of 
frequency as well as wave vector matching), the number of 
variables that exist for the tuning investigations, the inherent 
stability of discrete nanostructures than continuous films 
(one reason for which is the requirement of lattice matching 
for plasmonic films in order to have a reasonable durabil-
ity when subjected to practical conditions), and the ease of 
synthesis (with films requiring in many cases cost prohibi-
tive equipment). However, SPPs are worthy on their own, 
especially in terms of achieving resonances that are hybrids 
with other similar modes possible on manipulating the con-
figurations of the films, as will be shown in later sections. It 
stands that the application dictates in almost every instance 
the choice between a film vs nanoparticle configuration, as 
other dictating entities such as difficulties in fabrication and 
compositions usually do not exist due to the rapid evolution 
of technology.

Plasmon‑Enhanced Properties due 
to Nanostructured Copper

This section has been elaborated with the contextual flow 
of an introductory section on synthesis of CuNPs followed 
by the different investigations that have reported pristine as 
well as modified plasmonic Cu nanostructures.

Synthesis Techniques of Plasmonic Copper

A brief description of the methods and their evolutions for 
the synthesis of structured/morphologically controlled cop-
per nano/microparticles and the associated changes to the 
LSPR properties is relevant to understanding the achieve-
ment of tuned light absorption. Simple solution-based meth-
ods such as chemical reduction [14, 15] often lead to the 
problems of agglomeration and the coupled loss/deteriora-
tion of the absorption properties. Oxidation in particular is a 
significant problem for CuNPs, with Cu2O or CuO forming 
as a result depending on whether the medium is alkaline 
or acidic/neutral, the processing conditions, and the use of 
capping agents. Plasmonic properties are lost as a result due 

to the transition from metallic Cu to a semiconducting oxide 
[16]. Capping agents such as polyvinylpyrrolidone (PVP) 
and polyethylene glycol (PEG) can help in this regard, 
although differences in dispersion/agglomeration based on 
the choice of such agents must be kept in mind. For example, 
PVP has been reported to stabilize CuNPs against oxidation 
in a considerably better manner than PEG [17]. Techniques 
such as anodic stripping voltammetry can reveal the ease 
with which capped nanoparticles are oxidized, and analo-
gous studies on Ag NPs which also oxidize readily report 
that PVP is better at preventing oxidation than PEG [18]. 
We have included an explicit section of how oxidation in 
Cu can be detrimental/prevented/exploited for and in vari-
ous applications. Distinct morphologies such as nanorods 
and spheres, with differing degrees of sizes, oxidation, and 
agglomeration are possible by modifying the Cu precursors 
(such as Cu(DS)2 instead of CuSO4) and surfactant concen-
trations [19]. It is also possible to control agglomeration 
and oxidation through the use of halides such as iodine and 
bromine, with CuI demonstrating the best colloidal stabil-
ity due to stronger attraction between Cu and I atoms and 
hence a more dispersed colloid (the product solubility con-
stant quantifies this comparison between halides such as Cl, 
Br, and I as stabilizers) [20].

With the purpose of this review being on the different 
plasmonic investigations on Cu, the discussion on the syn-
thesis modalities has been given a very cursory treatment. 
However, an exhaustive but incomplete summary of the 
shapes and sizes of Cu nano/microparticles and the meth-
ods of synthesis is presented in Table 1, and review articles 
on the synthesis methods for Cu [21] are also referred to the 
reader for a more comprehensive/specific list.

Plasmon‑Enhanced Properties from Discrete 
and Pristine Copper Nanoparticles

Cu Plasmons for Photoemission

Sub-wavelength features are frontrunners of the need for 
tuned LSPR and SPP. They have been reported to enhance 
multiple properties such as Raman scattering, fluorescence, 
second harmonic generation, catalysis etc. due in major  
part to the coupling between the enhanced electromag-
netic field resulting from the plasmons with the phenom-
ena responsible for the individual properties [71–74]. As 
an example of the probing into such features, a 100-fold 
increase in the charge density extracted due to photoemis-
sion of electrons from a nanostructured Cu surface has been 
reported. The surface consisted of patterned (through ion 
beam milling) nanoholes on a single crystalline Cu surface. 
Tuning of the absorption wavelength was pronounced while 
changing the spacing between the holes and much lesser 
while changing their dimensions and/or shapes, allowing 
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Table 1   Summary of a few morphological investigations on Cu nano/microparticles with the SPR peak locations and the synthesis method

S. no. Synthesis method Morphology (nano) Dimensions (nm) SPR wavelength (nm) Ref.

1 Chemical reduction Spheres 43–45 561–572 [17]
2 Spheres 1.3–4.7 587 [22]
3 Spheres 4–7 – [23]
4 Spheres 10 573 [24]
5 Flowers 2–4 554 [25]
6 Spheres 2.5 600 [26]
7 Spheres 1000 – [27]
8 Shells Core: 63; shell: 30 550–720 [28]
9 Spheres 2–20 560 [29]
10 Plates Dia: 48; thickness: 17 600 [30]
11 Spheres 23 576 [31]
12 Cubes Edge length = 28 700 [32]
13 Cubes Edge length = 30 620 [33]
14 Wires 24 591 [34]
15 Spheres 5–25 591 [35]
16 Spheres 2500–2800 – [36]
17 Spheres 100 570 [37]
18 Spheres 40 580 [38]
19 Wires Aspect ratio = 5700 – [39]
20 Spheres 1500 – [40]
21 Spheres 5.1 577 [41]
22 Spheres 1.3–1.8 570 [42]
23 Wires Aspect ratio = 350–450 590 [43]
24 Hexagon Edge length = 50 565 [44]
25 Cubes 100 610 [45]
26 Clusters 1 443 [46]
27 Rods Dia = 20 695 [47]
28 Rods Aspect ratio = 2.8–35 762–2201 [48]
29 Supramolecular assembly Disks, prisms, cylinders Dia: 14.8 650 [49]

Size: 13.5 650
Aspect ratio: 1.7 560,650

30 Spheres 16 580 [50]
31 Cluster 1.4–2.8 570 [51]
32 Polyol Spheres 65 – [52]
33 Spheres 45 – [53]
34 Pulsed laser ablation Spheres 1–7 609–626 [54]
35 Spheres 10–14.3 595–626 [55]
36 Electron beam irradiation Spheres 25 – [56]
37 Spheres 30–70 670–730 [57]
38 Hot injection Cubes Edge length = 75 588 [58]
39 Spheres 108–300 – [59]
40 Wet chemical Wires Aspect ratio: 4 620–626 [60]
41 Hydrothermal Hexagons 600–900 608 [61]
42 Tubes Length = 30–80; dia = 8–12 550–650 [62]
43 Microwave Spheres, rods 10–70 – [63]
44 Spheres 7.2 560 [64]
45 Spheres 3 278 [65]
46 Crystals 2.3 275 [66]
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close as well as a wide control of the absorption wavelength. 
Since photoemission can occur through multiple processes 
such as the three-step process and field-assisted emission, 
the Keldysh parameter was used to justify that photoemis-
sion was due to enhancements to the three-step process of 
electron emission from a surface rather than due to field 
emission. Limitations of a reduced damage threshold neces-
sitated the reduction of the input laser fluence by five times 
compared to a flat surface [75]. The reason for the enhanced 
photoemission was postulated to be due to the efficient 
absorption of the incident photon energy and the transfer of 
this energy through plasmon decay to the ejected electrons. 
Such manipulations of metallic surfaces promise their usa-
bility as sources of electron beams despite their intrinsically 
low quantum efficiencies.

Cu Plasmonics in Energy

The concept of solar energy harvesting using nanomaterials 
has become increasingly relevant with time, with applica-
tions that utilize this energy including current generation, 
anti-reflective coatings, and heating [76]. The process of 
solar energy utilization through increasing carrier genera-
tion in conventionally employed materials (such as through 
plasmonic absorption as well as energy transfer) is a highly 
researched one. Briefly, the absorbed solar energy by the 
plasmonic oscillation is transferred to hot electron–hole 
pairs (in the regime of femtoseconds) from the plasmon 
decay [77]. Cu and Au have advantages as attractive materi-
als in this regard as both intraband and interband transitions 
can be excited by visible light (the latter being 2.14 eV for 
Cu and 2.4 eV for Au), a major part of the solar spectrum 
[78]. The lower interband transitional energy of Cu gener-
ates hot electrons (inner shell electrons in the vicinity of 
the plasmons) of higher energy due to the close overlap. 
Additionally, comparing these two, Au has a higher work 
function (5.1 eV) than Cu (4.65 eV) [79], and Cu, there-
fore, can form lower energy barriers (for e− transfer) with 
electron-accepting materials such as TiO2. Indeed, Cu plas-
monic systems in both film and NP configurations have been 
extensively investigated for photocatalysis when compos-
ited with TiO2 for example [80]. Additionally, theoretical 
calculations of the hot carrier energies that can result from 
plasmon decay through direct vs phonon-assisted processes 

predict that the hot carriers can have a higher energy than 
the decaying plasmon energy due to the higher density of 
states (DOS) in the d bands of Cu [81]. All of these reasons 
make Cu a theoretically promising material for solar photo-
voltaics and for energy harvesting and storage applications. 
A detailed analysis of this comparison between Au and Cu 
has confirmed that the predictions are true in terms of the 
photocurrent generated as a result of hot carrier injection 
from Au vs from Cu. Cu exhibited photocurrent increases 
due to contributions to hot carrier injection from both the 
inter (550 nm) and intraband (675 nm) transition regimes, 
whereas Au exhibited this increase for only the plasmonic 
excitation due to the higher barrier Schottky barrier that the 
interband transition generated hot electrons could not over-
come. Care must be taken however in designing the inter-
face between plasmonic Cu and the matrix, as the distance 
between the plasmon-generated hot carriers (confined to 
near surface regions) and the electron acceptor must be at the 
maximum the mean free path of the hot electrons (~ 30 nm) 
to prevent their thermalization within Cu itself [82]. With 
regards to PC for energy applications, the intricacies in the 
processes of thermalization and scattering have been an 
important focal point, as summarized in Fig. 4.

Notably, the higher imaginary component of Cu in com-
parison to Au and Ag at wavelengths corresponding to the 
dipolar resonance means that the plasmon peak is signifi-
cantly damped at these wavelengths, compared in Fig. 5, 
adapted from the excellent work of Barbara et al. [88].

A tuning in LSPR location and intensity has been 
reported by a simple switching of the anions used for 
controlling solution pH between Cl− and SO4

2−, wherein 
the former was able to selectively adsorb on the growing 
CuNPs and cause variations in the final morphologies and 
crystallinities. These variations led to an optimal tempera-
ture increase of 40 °C when used for LSPR-based PT heat-
ing, with a resulting promise for use as an antibacterial 
agent [93]. It is important to note here that the depression 
of the melting point of nanoparticles compared to their 
bulk counterparts (depending on parameters like strain, 
morphology, defect chemistry, crystallographic orienta-
tion of the surface, size, and shape) must be taken care 
of while designing them for PPT applications. Multiple 
studies have investigated the same, reporting significant 
differences from the bulk melting point of approx. 1358 K. 

Table 1   (continued)

S. no. Synthesis method Morphology (nano) Dimensions (nm) SPR wavelength (nm) Ref.

47 Microemulsion Clusters 3 450 [67]
48 Spheres 4 570 [68]
49 Truncated triangular nanoplates Size = 60; width = 22 565–585 [69]
50 Spheres 300–500 430–630 [70]
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Spheres of diameters 30 nm have their melting points as 
low as 450 K [94], and rods of dimensions undergo melt-
ing transitions at 673 K [95]. The PPT property can intui-
tively be also employed for therapy, wherein highly local-
ized increases of temperature can kill cancerous/malignant 
cells [96]. The tunability of the plasmonic property is 

almost mandatory for such applications, as the ability to 
synthesize nanomaterials that absorb in the biological 
transparency window (650–1350 nm) is vital for in vivo 
therapy. CuNPs, either present alone in pertinent mor-
phologies such as nanowires (NWs) [97] or along with a 
biocompatible support that helps in dispersion, have been 

Fig. 4   Summary on the 
investigations on PC for energy 
applications [83–92]

Fig. 5   a Near-field scattering efficiency of Cu-water interface for different radii of spherical particles. Extinction, far-field scattering, and absorp-
tion efficiency of Cu spheres with different radii; b 100 nm and c 22 nm in water (reproduced with permission from [88])
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explored with this motive. Where a temperature difference 
of a few degrees can be the difference between live tissue 
and one that can be neutralized, plasmonic heating with 
CuNPs can easily achieve temperature increases of 20–35 
degrees [98]. A comprehensive summary of the different 
morphologies of Cu and Cu systems investigated exclu-
sively for PPT applications can be found in [99].

Cu Plasmonics for Catalysis

The concept of PT heating is also of use in catalysis, termed 
photocatalysis, or PT catalysis [100, 101]. The obvious 
increase in reaction rates with temperature makes plasmonic 
materials that convert light into heat suitable candidates 
here. An important advantage of plasmonic nanomaterials 
in catalysis is the ability to achieve selectivity, as the energy 
of the hot carriers that are generated from plasmon decay 
depends on the plasmon characteristics [102]. All the three 
mechanisms of plasmon damping, viz., radiative damp-
ing into photons, Landau’s damping, and non-radiative hot 
electron–hole pair generation can lead to enhancements in 
catalytic rates. Indeed, these mechanisms have been shown 
in founding research wherein the photo-induced oxidative 
switching between Cu2O/Cu resulted in the increase in epox-
idation of propylene, an important reaction in simplifying 
plastic manufacturing. The energy deposition by the plas-
mons into the Cu2O shell was shown to convert it into pris-
tine Cu and restore the catalytic property. The only require-
ment seemed to be that of the irradiation power, where only 
intensities above 550 mW/cm2 could cause this change in 
oxidation state [103]. Cross-coupling (C-C) reactions are 
a class of catalytic process in which complex products are 
formed from simpler entities. Core–shell nanocubes of Cu@
Ni were able to catalyze and improve the yield by 62% of 
the C-C reaction of boric acid, due to the enhancement in 
the reaction rate provided by the absorption of light by plas-
monic Cu and its conversion into heat. Compared to conven-
tional methods of providing heat such as through a thermal 
transfer-based process, plasmonic heating was found to be 
more efficient [104]. A summary of the investigations on 
mechanistic aspects of PC catalysis has been compiled and 
presented in Fig. 6. Ag and Cu nanoparticles were compared 
for their catalytic enhancement rates in the oxidation of fer-
rocyanide, with the observation that CuNPs had an order 
of magnitude higher catalytic activity than Ag, yet with 
an accompanying limitation of a much higher oxidation-
induced rate loss and leaching from the support material. 
Deconvolutions of the photocatalytic vs PPT mechanisms of 
enhancements were not performed (although possible with 
specialized techniques such as scanning electrochemical 
microscopy [105]), which would have allowed discerning 
the results in terms of the PT efficiency of Ag and Cu [106].

CuNPs for Enhanced/Directed Scattering of Photons: 
Fluorescence, Enhanced Raman Studies, and Luminescence

Since LSPR and SPP predominantly talk about absorption 
and scattering of light, one can intuit that the property of 
luminescence by materials distal to plasmonic materials can 
be significantly enhanced and/or altered. Properties such as 
fluorescence [115, 116], phosphorescence [117], and chemi-
luminescence [118] have been reported to be enhanced due 
to coupling of the fluorophores’ scattering transitions with 
surface plasmons and their oscillating electromagnetic field. 
The enhancements to fluorescence are conventionally exam-
ined through two material systems. One is where Cu alone 
is studied for changes in scattering as a function of particle 
size/environment/film thickness, roughness, and material 
composition. The second approach is to study the enhance-
ments to the emission of fluorophores that are used for a 
myriad of applications, as a function of extremely varied 
parameters such as the size/shape/dielectric/composition of 
the Cu or the composition/distance and conjugation intensity 
of the fluorophore. Cu alone when present at sizes down 
to 12 nm exhibited an enhancement in fluorescence yield 
by 4 orders of magnitude (5 for 30 nm particles) compared 
to bulk Cu in one study [87], due in part to the enhanced 
local electromagnetic fields that increased the quantum 
yield by coupling with the incoming and outgoing photons 
and in part to the second harmonic generation (SHG) of 
LSPR [119]. Another study revealed that roughened films 
can enhance the emission only when the excitation energy is 
close to the LSPR that occurs at the local roughness features, 
and that the enhancement is absent for the higher energy 

Fig. 6   An overview of different reports on the employment of PC for 
catalysis [107–114]
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emissions (such as the emission from the second d band 
of Cu centered at 3.50 eV [120]. An important observation 
from this study was that this absence in enhancement for 
the rough surface was due to the quenching of the emitted 
photons by the roughness features themselves, although it 
is probable that the absence of coupling between the LSPR 
(occurring at approx. 2.15 eV) and the 3.50 eV emission 
could be the primary cause. Enhancements to the lumines-
cence property in particular of different PC conjugates have 
been compiled in Fig. 7.

A simple but excellent illustration clarifies the reasons to 
the observed enhancements, as shown in Fig. 8 [134]. Mul-
tiple studies that have explored PC exclusively for enhance-
ments to scattered Raman profiles have been illustrated in 
Fig. 9 along with a few unusual explorations of PC for dis-
play applications.

As shown in Fig. 10, drastic changes could be achieved 
in the absorbance wavelengths when PC was explored as a 
candidate material for displays [149].

Plasmonic CuNPs for Non‑Linear Optics

One of the manifestations of the nonlinearity in optical prop-
erties (NLO) is second harmonic generation (SHG), which 
is the frequency doubling of photons when passed through 
a non-linear material and has huge potential, for example, in 
realizing high-energy lasers, specifically those with tailored 
wavelengths (instead of only the typically available wave-
lengths that are limited in terms of their length by the mate-
rial’s electronic structure). Local field enhancements are a 
crucial reason for the enhancements to both SHG and SERS, 
and measurements of the same can be helpful in comparing 

and choosing the appropriate plasmonic material of choice. 
In this regard, the drastic drop in field enhancements for 
excitation wavelengths below approx. 650 nm (due to an 
increased damping of the resonance from inter-band exci-
tons) necessitates this as a limit for plasmon-enhanced SHG 
from Cu [158]. Of the very few studies that have explored 
the NLO potential of Cu, that of PVP-protected CuNPs 
revealed third-order nonlinear susceptibilities equivalent 
to that of AuNPs, leading to their prospective potential in 
four-wave mixing. The plasmonic component being the 
reason for this observation was not discussed; however, it 
is probable that the LSPR excitation played a part here as 

Fig. 7   Investigations revealing 
enhancements to photon scatter-
ing using PC [121–137]

Fig. 8   Enhanced fluorophore interacting with a metal surface via the 
near-field or the far-field for the cases of region 1 (~ 50 nm) or distant 
(≥ 500 nm)
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the excitation wavelength used close to that of the LSPR of 
CuNPs [159]. From the myriad of investigations that report 
the possibilities of non-linear SHG on multiple plasmonic 
materials [160–165], it is proposed that the potential of Cu 
for the same is at a very nascent stage of study.

Cu Plasmonics for Sensing

Sensing with CuNPs alone without a protective layer presents 
problems in terms of oxidation, as will be discussed in sub-
sequent sections. However, different architectures incorpo-
rating Cu in the nanometer sizes have been explored regard-
less. An example is the use of thickness-controlled deposited 
Cu shells on a SiO2 island, with the prediction of a higher 

refractive index (compared to air) and bio-compatible SiO2 
being more suitable for a red-shifted and stable plasmon. The 
influence of thickness was detrimental post 30 nm, for which 
the highest intensities of absorption were observed. The use 
of these capped Cu shells for DNA sensing was investigated, 
and sensitivities down to 10 fM were reported [166]. A gen-
eral comment here is that for sensing with CuNPs formed 
from film deposition and annealing, the relation between 
the thickness of films and the observed plasmonic attributes 
such as intensities, positions, peak widths, and stability is 
not always universal, as other factors such as packing density 
(which controls light penetration) and surface faceting of the 
islands of Cu that are finally achieved also play a role. CuNPs 
have been investigated for colorimetric sensing as well, with 

Fig. 9   PC studied exclusively 
for enhanced Raman scattering 
applications as well as those 
rare studies on PC for displays 
[138–157]

Fig. 10   Spectral response of 
the nanostructured plasmonic 
copper film with thickness, 
length, and width of the slits 
is 30 nm 140 nm, and 60 nm 
respectively, and periodicity in 
x- and y-direction 300 nm dur-
ing a reduction and b oxidation 
(reproduced with the permission 
from [148])
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the ability to detect sulfide ions at concentrations between 
12.5 and 50 µM. Interestingly, the oxidation of the synthe-
sized nanoparticles did not happen for a few days, attributed 
to being stored in airproof vials and the protective nature of 
the CTAB ligands used during synthesis [167]. These are 
among the few studies that have explored the potential of 
discrete nanoparticles of Cu for sensing, more investigations 
being limited mainly by the tendency for oxidation and prob-
ably difficulties in achieving unique morphologies that can 
be better in terms of the plasmonic properties compared to 
conventional spherical ones.

We have so far presented an overview of the different 
purposes for which Cu has been explored in the nanoparticle 
form for plasmonic applications and explorations. The other 
construction of plasmonic Cu is the Cu film, wherein inter-
esting plasmonic phenomena can be invoked apart from the 
traditional SPP wave. The different applications, limitations, 
solutions, and outlook on the use of Cu films exploiting in 
particular the SPP characteristics are discussed in the sub-
sequent sections.

Copper Plasmonics in Films

Plasmonic Cu Films for Sensing

The field of sensing is a prime area of application for plas-
monic films, due to the inherent interface sensitivity of the 
plasmon to charge interactions. Films of Cu have also been 
explored in this regard, although with the consideration that 
a protective dielectric be deposited on the film to avoid oxi-
dation. With this ideology of fabrication, films of Cu pro-
tected by SiO2 or Al2O3 with a graphene oxide linker have 
been reported for studying neutravidin-biotin interactions. 
The refractive index sensitivities for the Cu films with these 
layers were found to be 55% and 75% higher than for even 
Au films with no dielectric on top, attributed to the signifi-
cantly lower optical losses in the energies investigated for 
Cu compared to Au [168]. The Langmuir–Blodgett films of 
copper phthalocyanine have been shown to be a potential 
sensor material for NO2 [169]. An issue with multi-elemental 
protective films is their deterioration over time and use due 
to the high probability of the presence of defects including 
pores at the time of deposition, which can serve as diffusion 
paths for oxygen to access the underlying Cu, oxidizing it 
over time and eliminating the plasmonic effect. Close-packed 
and conformal films can hence be inherently better at protec-
tion, and graphene has been attempted as a protective layer 
with this reasoning on Cu films. The atomic thickness with 
which graphene can be worked with aids in reducing the 
extent of shielding of the plasmonic field compared to the 
thicker layers of the multi-elemental materials as well, aiding 
in enhanced sensitivities than other thicker films. The defect 
density in graphene is again vital here, and graphene grown 

elsewhere and transferred onto Cu was better at protection 
than in situ grown graphene due to a higher defect presence 
in the latter films, arising from surface effects from lattice 
mismatch during film growth. The resulting protected Cu 
films were promising for the sensing of graphene hydrogena-
tion, as well as waveguides for light transmission [170]. With 
this investigation as proof, a subsequent study has revealed 
the prospect of this Cu/graphene layer composition deposited 
on a photonic fiber as an effective sensing configuration with 
a sensitivity of 2000 nm/RIU. An increase in sensitivity was 
achieved through intentionally incorporating appropriately 
sized holes (300 nm diameter) on the fiber surface prior to 
Cu/graphene deposition, leading to the coupling between the 
SPP mode and the LSPR of the holes. The number of lay-
ers of graphene had a profound impact on the sensitivity, as 
more than two layers led to a significant damping of the SPP. 
Due to the attenuation of the SPP into the metal being much 
stronger than the dielectric, a higher refractive index dielec-
tric as an intermediate layer can be intuitively understood 
to be better for sensing due to the resulting improved acces-
sibility of the plasmon field to interactions happening on the 
surface. With this understanding and with regard to improv-
ing the sensing performance of Cu films, materials amena-
ble to deposition as a continuous film with a high refractive 
index and a low thermo-optic coefficient along with minimal 
lattice mismatch can be ideal. An investigation of the use 
of III-V nitrides which have a low thermo-optic coefficient, 
similar lattice configuration to graphene (hexagonal) high 
refractive index, and a near-zero extinction co-efficient (and 
hence unwanted incident light attenuation) at the Cu SPP 
wavelength of 633 nm has proven to enhance the sensitiv-
ity of simpler Cu/graphene films with this reasoning [171]. 
The theoretical study revealed that the higher optical quality 
(judged from obtaining the best evanescent field enhance-
ment and sensitivity) of InN among the other nitrides resulted 
in the best performing composite film.

Native oxides of Cu have also been investigated as the 
easiest to form protective layer for Cu in sensing applica-
tions. A study on the best thickness of Cu and an intention-
ally created oxide layer (through annealing) revealed that 
for the maximum sensitivity of the film when the refrac-
tive index was changed between that of air and water, the 
optimal thickness of Cu was 44 nm and that of the oxide 
was 1 nm for a film deposited on a glass prism [172]. A 
similar investigation in terms of the sensitivities between 
air and aqueous phases but with the objective of compar-
ing the sensing configuration has been performed, in which 
the configurations of Cu films deposited on prisms, those 
with periodic corrugations (the grating configuration) and 
those deposited directly on optical fibers were fabricated. 
Results revealed that the prism configuration exhibited the 
best sensitivities, but that this was primarily due to difficul-
ties associated with the other two configurations, viz., the 
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inhomogeneity of films for the fiber configuration and the 
loss of a significant portion of the incident light due to dif-
fraction in the grating configuration. A thin layer of Au was 
deposited to prevent oxidation of the films [173]. A similar 
finding of a lower refractive index sensitivity, when films 
in the Kretschmann configuration and those with a grating 
configuration were studied, has been reported, wherein Cu 
was found to be more sensitive than an Au film. The rea-
son for the grating configuration being an order of magni-
tude less sensitive could be due to inefficient evanescent 
wave coupling to the plasmon, as the evanescent wave is 
not entirely restricted to the metal/dielectric interface in this 
configuration [174]. Refractive index sensitivity studies with 
water and glycerol with Cu films prepared through chemical 
deposition and protected by a layer of benzotriazole mol-
ecules led to values of up to 131 nm/RIU depending on the 
film deposition parameters [175]. The choice of materials 
that can improve the sensitivity is more critical with regards 
to sensing with films rather than the film parameters them-
selves, such as protecting/permittivity enhancing over layers 
and the use of adsorption enhancing molecules, as revealed 
by a study employing Cu films with Fe2O3 and antimonene 
over layers on Cu configured in the Kretschmann geom-
etry. Fe2O3 improved the permittivity, and antimonene was 
used for a more efficient binding molecule due to its highly 
customizable functional group chemistry. Refractive index 
sensitivities of up to 398 nm/RIU were reported from the 
simulations [176].

Cu Films as Plasmonic Waveguides

It is of note here that the loss of the Cu plasmon wave is 
significantly dependent on the surface quality (against impu-
rities) and surface crystallinity (against a high concentra-
tion of grain boundaries) as well, significantly impacting the 
propagation length which can reach values of up to 65 µm 
at 750 nm for oxide-free but polycrystalline films [177]. 
These values are of significant importance in the field of 
subwavelength optical guides, of which plasmonic materi-
als are deemed as frontrunners. Cu is especially relevant 
for wave-guiding applications due to its compatibility with 
existing CMOS processes. But Cu by itself is not preferred 
for wave-guiding among the coinage metals due to lower 
propagation lengths stemming from high ohmic losses, albeit 
having a smaller mode confinement volume [178]. However, 
lengths > 40 µm at the telecommunication wavelength of 
1550 nm for 170 nm thick films protected by SiO2 and SiN 
layers have been observed [179]. Of importance here is that 
the propagation length is not only governed by the material 
but also by the construction of the waveguide.

Waveguides can be made significantly more efficient in 
terms of propagation lengths by sandwiching a low-permittivity  
material between the metal and the conventional dielectric 

as the propagating mode is pushed out of the metal into the 
sandwiching dielectric [180]. Interesting to note here that the 
selection of the intermediary dielectric is opposite here (with 
regards to permittivity) than when one is selected for sensing. 
The resultant coupling between the SPP mode in the metal- 
low permittivity dielectric and the fundamental mode in the 
higher permittivity dielectric leads to a strong confinement  
(within areas down to 1/100th of the diffraction-limited  
area for the wavelength) of the propagating hybrid mode,  
significantly enhancing the propagation distances [181]. A 
common configuration of this hybrid plasmonic waveguide is 
Cu-SiO2-Si [182–184], which has also been reported as the  
first experimental configuration to demonstrate polarization 
splitting in the hybrid waveguide configuration. This splitting  
results in the TM excitation being able to propagate along the  
device, whereas the TE is not [185]. The same configuration  
has also been demonstrated as a compact electro-optic  
modulator with very low waveguide insertion loss [186]. 
Cu-TiO2-Si was a configuration investigated as a waveguide-
based resonator due to the negative thermo-optic coefficient of 
TiO2 [187]. Spoof surface plasmons, waves propagating in the 
1 × 109–11 × 109 Hz regime, have been realized with staggered 
waveguides made of Cu films. Propagation distances over 150 
times the wavelength have been reported with features that were 
in the form of squared bars, and the distances depend on the 
staggered separations between the bars [186].

Cu Films in Non‑Linear Optics

Films designed for non-linear optics are of benefit for exam-
ple in making neutral density filters, as lasing materials, 
as emission sources of up converted photons, and as other 
light manipulators. Cu films exhibiting one such NLO 
characteristic of reverse saturable absorption (RSA) have 
been fabricated through pulsed laser deposition. RSA is the 
increase in absorption of the excited state electron popula-
tion in comparison to the ground state electron population, 
which is notably contributed to not only by plasmon absorp-
tion but also by inter-band transitions. Manifestation of this 
behavior was found to be closely associated with the parti-
cle size in one study, which for sufficiently small particles 
related directly with the hot carrier generation efficiency 
from plasmonic decay. The line between calling the depos-
ited structures films vs particles was very thin in this study, 
as although the deposition was described as a film, the plas-
monic behavior (observation of a broad absorbance) was 
attributed to discrete and polydisperse nanoparticles [188]. 
The standing of a particular material composition/configu-
ration for non-linear RSA applications is quantified by the 
non-linear absorption coefficient, which was on the order of 
10−4 cm/W for these laser-prepared CuNPs. Other studies 
have examined different compositions and configurations, 
and the analogous coefficients were 2–6 × 10−5 cm/W for 
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Cu-SiO2 films [189], 0.01–1 × 10−8 cm/W for ion-exchanged 
Cu nanocomposite glass [190], and 10−6–10−7 cm/W for Cu 
implanted silica glass nanocomposites [191], demonstrating 
the possibilities for such materials for optical attenuation in 
high power lasing applications for example. Towards another 
investigation of NLO from Cu, an unconventional and novel 
study on the excitation of tip-induced plasmons (TIP) due to 
energy transfer between electrons tunneling between the tip 
of a scanning tunneling microscope (STM) and a Cu phth-
alocyanine (CuPh)/Au film has reported an enhancement in 
the emission of up-converted photons from this configura-
tion. An enhancement in the inter-band electronic transition-
induced photon emission at a wavelength of 720 nm from 
the CuPh was observed. The up-conversion was confirmed 
from the fact that the bias voltage of the tunneling electrons 
(< 1.7 V ≈ 720 nm) was lower than the energy of photons 
emitted (720 nm) [192]. The use of nanopatterned Cu films 
as cathode sources for electron emission has been reported. 
The enhancements of such a surface composed of spherical 
holes (and localized resonances hybridizing with the SPP 
mode) to the electron yield was 1200 times that of a flat sur-
face which does not exhibit localized resonances. The emit-
ted electrons had a narrow energy distribution (judged from 
the value of the Keldysh parameter), and the enhancements 
originated from SP assistance, confirmed through simula-
tions and calculations of expected enhancements assuming 
the changes occurred only due to a lower reflectivity of the 
patterned films (the Fowler-Dubridge theory was used for 
quantifying the enhancements due to lower reflectivity). The 
angular spread, emission time scales, and the damage thresh-
old of laser fluence of the nanohole array cathode were com-
parable to the most efficient metallic cathodes [193].

Cu Films for Enhanced Scattering

Scattering of light by plasmons being a dominant field 
of study and Raman scattering being a major benefactor 
from plasmonic enhancements, Cu films have also been 
explored along these lines, albeit to a much lesser extent 
than Au and Ag due to the high oxidation instability and 
often comparable or inferior enhancements to the latter 
two. SERS of Cu phthalocyanine molecules deposited on 
Cu resulted in a 23-fold enhancement when excited at the 
SPP wavelength of 632 nm of Cu, compared to the 50-fold 
enhancement observed for Au. The collection efficiency 
of the scattered light from the SPP was improved using a 
Weierstrauss prism and in the Otto configuration (the latter 
for control over the angle of reflectance) [194]. The cou-
pling of propagating SPPs and LSPRs can be very interest-
ing due to the intense electromagnetic fields concentrated at 
the interfaces between the NPs and the films. In this regard, 
islands of Ag with their LSPR have been investigated as 
a coupled system with the propagating SPPs of Cu films 

for enhancements to the fluorescence of dye molecules. 
Both emissions of photons into free space by the proximal 
dye molecules of rhodamine, as well as plasmon-coupled 
fluorescence (PCF-detected at the back of the Cu films), 
increased with the presence and increasing coverage of 
the Ag islands, and at coverages approximating Ag films 
instead of NPs, the enhancements diminished considerably 
indicating the beginning of the loss of the metal-enhanced 
fluorescence property. A narrowing of the emission angle 
of the PCF was also a consequence of the presence of the 
Ag islands [195]. Similar observations were made in one 
of the other rare investigations of MEF on Cu films, with 
40 nm thick films exhibiting the highest increase in PCF by 
1.39 times of sulforhodamine fluorophores [196]. While it 
is intuitable that such films may not stand the test of time 
due to their oxidation-prone nature, it is probable that thin 
protective layers such as graphene as discussed earlier in 
this article can be a viable approach for realizing durable 
and plasmonic fluorescence enhancing Cu films.

SERS being dependent on the hotspots created and the 
extreme field localizations at these locations, films of plas-
monic materials empowered with surface roughness and/or 
roughness features such as other nanoparticles can be inter-
esting. The role of the hotspot in SERS studies (which can 
also be used to monitor scattering from molecules created 
at the hotspot assisted by plasmons) can be confirmed for 
example from two separate studies. The first used a film of  
Cu on which Ag nanoparticles were and were not present on  
the surface, for which the latter morphology catalyzed the  
reaction (the dimerization of 4-nitrobenzenethiol) and the 
former did not on the excitation of SPP/LSPR, respectively  
[143]. The second study was also on photocatalysis (for the  
conversion of 4-aminothiophenol to p,p′-dimercaptoazobenzene)  
but employed CuNPs which could readily cause the 
reaction [197].

Optical Nanoparticle Trapping by Cu Plasmons

Optical trapping is the phenomenon of exertion of forces 
on an agent (example: an NP) for its manipulation by virtue 
of its interaction with light. A coherent/concentrated EM 
field is required for this to be possible, such as from a laser. 
Plasmons intrinsically can be of applicability in this field 
and have been explored for this property. The tuning of the 
separation distance and geometry of one such Cu plasmonic 
nanoantenna for the manipulation of polystyrene nanopar-
ticles resulted in the intense EM fields exerting forces up 
to a few femtonewtons on them. It is important to note here 
that the enhancements to the EM fields that resulted in the 
trapping were due to excitation at 1064 nm and not the plas-
monic wavelength of Cu, which should be equal to if not 
better for optical trapping if investigated due to the inher-
ently magnified and localized fields during resonance. The 
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potential use of polystyrene for biological applications led to 
the choice of this wavelength for the study, wherein in vitro 
applications can benefit from this manipulation [198].

On the Oxidation of and Changes Thereby 
to the Plasmonics of Copper

The Nature of Oxidation of Cu

Many theories and supporting evidence exist for the highly 
detrimental (from a plasmonic view) phenomenon of metal 
oxidation [199, 200]. However, we restrict the discussion on 
this topic to reports specific to the observation and inves-
tigation of oxidation to plasmonic Cu films and nanoparti-
cle structures. Copper has an extremely high tendency for 
oxidation, with the dominant oxidation product being Cu2O 
[201] and also CuO (with intermediate phases such as CuOx 
where x = 0.67 [202] present). It is to be noted however that 
a range of stoichiometries of CuOx is possible depending on 
temperature, film porosity, thickness, and particle diameter 
with X values from 0.67 to 1 [203, 204]. The growth of the 
oxidized layer is linear depending on the ambient and the 
nature of the film/NPs, at an oxide film formation rate of 
0.004 nm/day when stored at ambient temperatures (23 °C) 
and atmospheric pressure for example [205] (contradict-
ing numbers exist here for the oxidation rates depending 
on particle sizes and ambient conditions such as the rate 
of 0.034 nm/day for 100–140 nm spherical CuNPs [206]). 
These numbers predict a continuous growth of an oxide film, 
whereas other reports observe a saturation in oxide forma-
tion to the tune of 13 nm thick films after a few hours irre-
spective of oxygen pressure. Multiple mechanisms have been 
proposed as to the oxidation mechanism such as the uniform 
passivation of the CuNPs surface by oxygen to form the 
oxide [207] which was superseded later by the observation 
where oxide islands nucleate on the surface and coalesce to 
form the film [208]. Nevertheless, the quick oxidation of 
pristine Cu with a resulting layer not exceeding a thickness 
of ~ 15 nm (composed of Cu2O) followed by the occurrence/
conversion of other species such as CuO and CuOxH2O 
[209] is the inference from research on this subject, post 
which further diffusion of oxygen into the oxide becomes a 
limiting step for oxidation of the underlying pristine Cu. The 
self-limiting nature of this process (when exposed to air for 
example) has been reported to disappear even at 50 °C, post 
which complete oxidation of NPs occurs [210]. The result-
ing oxide is composed of mostly Cu2O with CuO moieties 
present in proportions that depend on temperature. Although 
the amount of formation of Cu2O is largely near the surface 
of the bare metal [211], significant differences can occur in 
the plasmon oscillation as this is a phenomenon confined to 
the surface, leading to a gradual loss of the property due to 

a decrease in the free electron density. This loss and changes 
to the plasmonic properties of Cu in general have been stud-
ied in detail by multiple researchers [212–214]. Conflicting 
reports thus exist in this continuing field of CuNP oxidation 
research as revealed by the discussion so far, to be added to 
the prediction and confirmation (through theoretical mod-
eling of the barrier energy for continued Cu diffusion for 
oxidation) of a maximum self-limiting oxide shell thickness 
of only 0.56 nm. Although, in this letter study, theoretical 
calculations considered the various barriers to diffusion of 
Cu atoms at the core towards the surface, it was observed 
that for shell thicknesses up to 0.56 nm, the barrier to Cu 
diffusion from the bulk to the surface was low enough for 
oxidation to proceed [206]. It stands that the phenomenon of 
oxidation while considering Cu fluctuates highly in terms of 
the time required and the extent of self-limitation depending 
on factors such as purity, morphology, temperature, and sur-
face characteristics (such as crystallinity, roughness, poros-
ity, etc.) and the ambient environment (with its own decisive 
parameters such as pressure and nature of the oxidizing spe-
cies) [215] but cannot be unaddressed unless stabilized or 
isolated against even the mildest of oxidizing environments.

Prevention/Reversal/Utilization of Cu Oxidation 
as Relevant to Plasmonics

Reversal

Oxidation in Cu can be prevented/reversed by a few pro-
cedures. For example, the treatment of oxidized Cu with 
acetic acid was found to remove the oxide layer through 
the formation of cupric acetate and a resulting return of the 
plasmonic metallic Cu [57, 216]. There was no loss of the 
thus exposed Cu due to etching, rendering it safe for such 
procedures. Adoption of appropriate post treatment proce-
dures such as drying with inert N2 instead of a water rinse/
air drying is essential [217], to avoid the reformation of the 
various oxide species. Although these species reappear once 
exposed to ambient conditions, this method presents a solu-
tion where devices based on plasmonic Cu can be prepared 
where vacuum transfer between fabricating equipment can 
minimize this re-occurrence. If avoiding hydrated envi-
ronments is not a possibility, vapor phase etchants such as 
1,1,1,5,5,5-hexafluoro-2,4-pentanedione (H + hfac) can give 
similar results of removing the oxides [218]. The oxidation 
can also be reversed for example by subjecting to a strongly 
reducing atmosphere such as H2 where all the phases of 
oxide were observed to change into elemental form. This 
study has investigated only CuNPs and not films, and hence, 
the redox behavior of films can be expected to be different 
based on porosity, thickness, etc. [204]. Yet another method 
of reversal seems to be direct irradiation with the light of 
oxidized Cu. With regards to deposited Cu nanoclusters, 



1318	 Plasmonics (2024) 19:1303–1357

1 3

the facet design of the clusters can be useful in prevention. 
Preparing clusters through gas phase aggregation such as 
through physical vapor deposition leads them to typically 
have a monocrystalline nature {(111)}, with these facets 
having a higher coordination compared to polycrystalline 
NPs. This results in fewer reaction sites for oxidation. Com-
bined with a process such as plasma ozone treatment which 
resulted in the formation of a Cu (II) oxide compared to 
Cu (I) and where the Cu core-Cu (II) shell was found to be 
much more stable against further oxidation than when Cu (I) 
forms (typically when exposed to ambient conditions during 
storage), this methodology of CuNP production can be a 
prospective solution to the oxidation problem of plasmonic 
Cu, as shown in Fig. 11 [219].

Prevention

In terms of prevention, the obvious choice of stabilizing 
ligands is the most straightforward solution. Multiple ligand 
types and classes including thiols and acids have been tested 
for their effects on stabilizing CuNPs against oxidation, with 
thiols and oleic acid being those which lead to oxidation 
stability while simultaneously avoiding aggregation [220]. 
For thiols, longer chains resulted in more stability to oxida-
tion but were also found to cause a rapid loss of plasmonic 
Cu due to thiolate formation with the help of atmospheric 
oxygen. This observation was not found with oleic acid, 

wherein the double bond in the oleyl chain was responsible 
for stabilizing the CuNPs [221]. Thiolate immobilization 
(which is usually self-assembled) can thus prevent oxida-
tion, but probably at the cost of the plasmonic property of 
Cu [222]. The chain length and the composition of the thiol 
affect the stability provided against oxidation, with longer 
chains stabilizing better due to the reduced permeability of 
oxygen through the chains [223–225]. One-step synthesis 
techniques such as irradiation by high-energy γ rays of the 
matrix in which CuNP precursors are dispersed are also 
effective ways to realize NP synthesis (by ionized species 
generated by the irradiation) and to avoid oxidation simul-
taneously (as the dispersion matrix, PVA, is impervious to 
oxygen) [226]. Stabilizing ligands which contain multiple 
moieties that can bind to the CuNPs can be found in mole-
cules such as polyethyleneimine, allowing enhanced stability 
and an alternative pathway to prevent oxidation compared to 
single- and double-molecule-capped CuNPs [227]. Preven-
tion of CuNPs from oxidation to preserve SPR by various 
modalities has been reported in brief in Fig. 12.

Utilization

The oxidation of CuNPs leads to interesting effects as well 
due to the inherent nature of the LSPR property. For exam-
ple, the commencement of the process does not immedi-
ately quench the plasmon oscillation, until the coupling of 

Fig. 11   LSPR band for large 
CuNPs at different times a 
kept in ambient air, b kept in 
a nitrogen atmosphere, and c 
ozonated and kept in ambient 
air (reprinted with permission 
from [219])
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the photon to the valence electrons proximal to the surface 
is no longer possible due to the screening of the incident 
photon field from them [237]. In fact, depending on the 
nature of the solvents (i.e., whether they are capable of 
forming electron-sharing associations like pi- bonds), the 
plasmon intensity has been reported to increase if the sol-
vents where the CuNPs are dispersed change from one 
that is not capable of pi-bonding to one that is. The even-
tual result is the attenuation of the plasmon peak and the 
appearance of the exciton peaks, depending on the rate 
of oxidation [238] in such solvents. Yet another prospect 
is the use of oxidized Cu as an electron scavenger, pre-
venting recombination and leading to the generation of 
holes for catalyzing reactions. In a study with ZnO com-
posited with Cu, the oxidized phase of Cu (CuO), which 
resulted very quickly on exposure to the ambient, was used 
as an advantage to scavenge electrons on photoexcitation 
of ZnO, wherein these electrons were used for reduction 
of the CuO, whereas the holes were used for catalyzing 
production of H2O2. For such an application, Cu is most 
beneficial compared to Au and Ag due to its lower half-
cell potential (0.52 V) compared to Au (1.69 V) and Ag 
(0.80 V) [239]. A similar enhancement to the catalytic 
activity of Cu@CuO also points to the usability of an 
oxide shell, for catalysis at least [240]. Such studies reveal 
the prospect of achieving tailored absorption through fac-
ile manipulation of the CuNPs’ environments and can be 
useful while trying to achieve NPs with a better shelf life 
for various applications.

From the discussion thus far, the phenomenon of oxi-
dation in Cu need not always be viewed as a detrimental 
process. The intricate control of the parameters such as the 
proportion of the CuNPs that are oxidized, the thickness 
of the oxide layer, and its use for applications as pointed 
out so far leads to the postulation that Cu plasmonics can 
lead to a fruitful collaboration with oxidizing agents in 
terms of realizing specific goals for pertinent applications.

Plasmonics in Doped/Non‑Elemental/
Composite Copper Nanosystems

Pristine plasmonic nanomaterials gradually lose their 
plasmonic property on increasing the particle size, due to 
increasingly stronger damping of the plasmon with size. 
Moreover, the plasmonic properties of pristine metals are 
locked-in post deciding their size, shape, and composition. 
However, doped nanomaterials can have significantly dif-
ferent LSPR manipulative abilities, due to the possibility 
of making changes to the stoichiometry (and by extension 
the dielectric constant/free electron density) by doping, 
for instance. Apart from doping, temperature modulation 
(including thermal aging), phase transitions, oxidation, and 
field-assisted copper migration can also tune the LSPR 
of Cu [241, 242]. Doping can be achieved predominantly 
through two modalities, viz., inclusion of a different element 
and by self-doping [243], wherein the parent molecule is 
imbibed with vacancies to change the stoichiometry. Cop-
per is particularly amenable to creating non-stoichiometric 
doped compositions due to its low chemical potential which 
leads to its release from the solid phase relatively easily, 
leading to the induction of LSPR due to self-doping. The 
former modality for inducing LSPR through doping/alloying 
is the compositing of pristine plasmonic materials with other 
materials such as semiconductors [244] and polymers with 
marked improvements in the resulting properties. Herein, we 
attempt as much a comprehensive discussion as possible on 
the different classes of Cu-based plasmonic nanomaterials, 
with a focus on the plasmonic aspects.

Copper Chalcogenides

Chalcogenides of Cu have been the major players among 
the different plasmonic Cu compounds, being extensively 
investigated for their plasmonic properties. Hence, the sec-
tion on chalcogenides alone has been divided broadly into 
their origins and their applications.

Plasmonic Origins and Virtues of Chalcogenides  
and Their Applications

Summaries treating Cu chalcogenides as sub-sections of a 
broader perspective, for example, on doped semiconduc-
tors and metal oxides, as well as summaries of chalcoge-
nides being explored for different applications such as 
theranostics and catalysis, have been published [245–250]. 
Broadly, the investigations on plasmonic copper chalco-
genides have been centered primarily on Cu2S and Cu2Se, 
with compounds such as Cu2Te and CuSSe also being 
investigated with a decreasing order of frequency. It is of 

Fig. 12   Research on the prevention of PC oxidation towards LSPR 
preservation [228–236]
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note that stoichiometric chalcogenides are not plasmonic 
due to the absence of sufficient free carrier density, while 
Cu-deficient compounds are plasmonic due to the presence 
of holes. Rigorous reviews on plasmonic Cu sulfides treat 
these compounds in terms of multiple viewpoints such as 
their compositional integrity in various situations, the lim-
its of plasmonic manipulation, the applications where they 
can offer benefits, and the property enhancements possible 
by doping multi-valent ions into their lattice [251]. Their 
applicability to the control of solar radiation has also been 
widely investigated (through films deposited via chemical 
bath deposition on multiple substrates) as efficient reflec-
tors of infra-red radiation while permitting visible light 
penetration [252–254]. On this perspective, only their light 
interaction properties of transmittance, reflectance, etc. are 
quantified, with the mechanisms behind the observations 
either attributed to their semiconducting nature or not dis-
cussed. Considering the focus of this work, only research 
that has discussed and discovered aspects in the plasmonic 
perspective and those that explicitly acknowledge/treat this 
perspective of CuxS have been included.

With regard to the plasmonic Cu2-xS family, these nano-
materials have had an interesting history of being identi-
fied as plasmonically active nanomaterials in the infra-red 
from being wrongly assigned as indirect band gap materials 
[255–257]. The validation of the LSPR property through 
assessment of the optical absorbance dependence on free 
carrier density (for Cu2S) was the point from which plas-
monic chalcogenide research took off [258, 259]. Of note is 
the fact that the confirmation of the LSPR property in the 
first study derived from comparisons of the observations 
of the optical absorbance of stoichiometric Cu2S which did 
not exhibit LSPR absorbance [260]. Since then the investi-
gations of this family have grown in terms of manipulating 
LSPR through various means, although in many instances 
continued attributions to the d-d transitions instead of plas-
monic excitations in these materials [261–264] are made. 
The composition of Cu2-xS can accommodate large varia-
tions in Cu vacancies, leading to structures such as chalcoc-
ite (Cu1.997-2S), djurleite (Cu1.93–1.97S), digenite (Cu1.8S), and 
anilite (Cu1.75S). As cursorily mentioned earlier, LSPRs of 
non-stoichiometric Cu2S are mediated by holes rather than 
electrons as they are the free carriers in this p-type molecule 
and are generated when CuS gets oxidized to the different 
non-stoichiometric forms. The relatively lower free electron 
densities that result lead to LSPRs in the NIR region, with 
high tunability in their position and bandwidth depending 
on free carrier density, shape, and the refractive index of 
the surroundings (such as stabilizing ligands/shells/sol-
vents). To this extent, different shapes and sizes of Cu2-xS 
nanomaterials have been developed, including disks [265], 
spheres with precise manipulation and reversibility of the 
SPR property (through the reversible processes of oxidation 

in air /reduction with tetrakis hexafluorophosphate) [266], 
and spheres with biasing based modulation of the free car-
rier density [267]. It is worth noting that the LSPR of these 
chalcogenides can be controlled more drastically by control-
ling the transformations between the different phases rather 
than by controlling the morphology, and even then, within a 
phase, only a limited variation in non-stoichiometry exists. It 
is also established that the barrier for further transformations 
into other phases is higher than that for achieving variations 
in stoichiometry within a phase. Hence, by employing oxi-
dizing conditions with suitable potencies, fine tuning of the 
LSPRs of chalcogenides can be possible [268]. A very useful 
equation that allows prediction of the LSPR energy ( �sp ) is 
given as follows [269]:

The terms �p , εm, and γ are as explained in the previ-
ous sections. It is of importance to note here that the above 
equation is valid when the LSPR is separated from the band 
gap excitonic transitions. It is important as well that the 
linewidth γ is influenced by variations in vacancy density 
as well as the particle size distribution and that estimating 
the value of the hole effective mass in the calculations of 
ωp is not always performed for the purposes of validation 
of the calculations. Accurate values of hole effective mass 
which can be arrived at from the valence band curvature 
are very important to be able to predict the location and the 
width of the resonance for hole-based LSPR materials such 
as chalcogenides. Indeed, substantial variations in the effec-
tive masses exist for the CuS family, ranging from 0.55 me 
for CuS to 0.8 me for Cu1.96S [270, 271]. With regard to how 
many free carriers are required for a plasmon oscillation, 
such estimations for a 6 nm QD of Cu2-xS, for example, lead 
to a figure of approximately 200, ample enough to sustain 
LSPR which was confirmed by spectroscopic investigations. 
Care must be taken while dealing with interpreting the LSPR 
behavior of CuxS, as multiple studies have also revealed the 
possibility of Cu existing in monovalent or divalent states 
depending on the lattice coordination environment. It can 
be predicted then that LSPR tuning is possible for the latter 
than the former, and it is evident that the full potential of 
LSPR manipulation of CuS/Cu2S is not always addressed 
[272, 273]. Indeed, the conversion between covellite (CuS) 
and chalcocite (Cu2S) through reduction with Cu+ ions 
is one of the transitions that have been well documented, 
although the manifestation of this transition on plasmonic 
virtues such as the study on band structure and temporal 
stability leaves room for discovery [274].

Since Cu is inherently unstable unless protected by vari-
ous means as discussed in earlier sections, investigations 
on protecting CuNPs and films against oxidation while still 
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maintaining the electronic structure of the free carriers have 
been a continuing endeavor. A promising but less explored 
route of stabilizing the hole-free carriers, not by Cu vacan-
cies, but by using anions adsorbed on the surface, has been 
realized in this approach. The compound of ferrocenium 
triflate was found to be a suitable valence hole stabilizing 
species by adsorbing as an anion on the surface while still 
preserving the Cu stoichiometry. This approach was, how-
ever, quantitatively less effective at stabilizing the holes (by 
approx. 300 mV) compared to the conventional approach 
of creating Cu vacancies to realize free holes. Interestingly, 
both modes of realizing free holes resulted in indistinguish-
able LSPR bands, indicating the suitability of this approach 
where Cu deficiency leading to phase transitions is not 
desired [275]. Plasmonic probes of reactions can be very 
sensitive to the refractive index (nm) according to the fol-
lowing equation [276]:

They can thus be used to monitor the reaction environ-
ment to determine parameters like the pH, charged species 
present and in general to ascertain the redox conditions. Spe-
cifically, the activities of oxidants such as alkylamines and 
iodine promote the creation of Cu vacancies whereas reduct-
ants like thiols and sodium biphenyl quench them, causing 
a blue and a red shift of the LSPR respectively, proving that 
the Cu plasmon can also serve as an indicator of the species 
present if the reverse approach (of interpreting the shift in 
LSPR as an indicator) is followed. Additionally, the mobil-
ity of Cu in CuS has been proven to be high and essentially 
without restriction (due to multiple theories one of which 
is the weak-electrolyte model) [277], thus not factoring as 
a rate-limiting step in these reactions and enabling them to 
be used as prompt probes of the reaction conditions [276].

Cu Chalcogenide Sulfides

The concept of PT catalysis due to plasmon-induced heat-
ing has also been investigated with plasmonic Cu chalco-
genides. Anilite (Cu4S7) has been used with this motive 
for the cyclocondensation of 1,3-cycloheanedione and 
3-methyl-2-butenal. The porous nature of anilite achieved 
helped in maximizing the absorption in the infrared, lead-
ing to enhancements of approximately five-fold of the cata-
lytic rates. The crevices of the pores were also predicted to 
contribute to this enhancement by facilitating heat transfer 
through their increased surface area [278]. Analogously, 
enhancements to the catalytic reactions of the Suzuki cou-
pling reaction, the oxidation of benzyl alcohol, and the 
hydrogenation of nitrobenzene have been reported to be due 
to the plasmon-enhanced performance of anilite@Pd nano-
particles. The infrared absorption of anilite compared to the 

(20)�r(ω) = −2n2
m

UV–visible for Pd caused only anilite to be the contributor to 
the increased catalytic rates at NIR wavelengths. Separation 
of the contributions to this enhancement due to thermal heat-
ing (due to plasmonic absorption) and due to the photocata-
lytic channel was done through a simple experiment in the 
presence and absence of light (while still providing external 
heat when illumination was not present). The considerably 
reduced catalytic rates for the latter condition confirmed the 
LSPR route for photocatalytic enhancement. Corroboration 
with work function calculations leads to the mechanism of 
hot hole injection (due to LSPR-induced e–h pair generation) 
into Pd from Cu as the cause for this enhancement, whose 
resulting p-type nature served as the initiator for all the reac-
tions such as the dissociation of H atoms [279]. The observa-
tions here support the theoretical band structure calculations 
for Cu from other studies, which report generation of hot 
holes with a considerably higher energy than hot electrons 
(by ~ 2 eV) and hence an easier injection into other mate-
rials, making them promising for such applications. This 
asymmetry in energy distributions of hot electrons and holes 
makes Cu an efficient material for hole injection and an 
attractive prospect in plasmon-driven hot carrier research 
[280]. Yet another hydrogenation reaction in which furfural 
was catalyzed by Cu-LSPR-mediated dissociated H2 into 
furfuryl alcohol reports hot carriers as the energy source for 
the dissociation. The encapsulation of CuNPs in a thin film 
of carbon enabled oxidation-stable photocatalysis during the 
hydrogenation process [281]. The easier migration of free 
holes within plasmonic CuxS through creating this material 
with the help of a CuxS seed vs without has been studied. 
The observations indicate that the seed-based approach led 
to a much higher concentration of Cu vacancies and, hence, 
a better photocurrent density than the starting material of 
stoichiometric CuS. The increase in free hole density by 
approx. 2.5 times between materials achieved through these 
two processes was sufficient to cause a shift by approx. 
1000 nm in the LSPR wavelength [282].

Theranostics, the field combining both branches of med-
icine of therapy and diagnostics, has evolved in a consid-
erable manner with the advent of nanotechnology. In this 
regard, PT therapy of tumors has been a highly explored 
one, especially with plasmonic nanoparticles due to their 
widely tunable morphology and stability. The PT property 
of plasmonic digenite was found to be effective for cell 
destruction due to its plasmonic absorption in the NIR 
region. Comparisons with AuNRs led to the conclusion that 
they can be superior to the latter, although comparisons 
with optimally designed AuNRs for PT therapy were not 
done [283]. Materials with more than just the PT property, 
such as those that can also enhance the imaging component 
of the therapeutic methods, can be intuited to be better than 
those capable of a singular function. In this regard, with 
particles between 10 and 50 nm being ideal to have the best 
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retention times in vivo, magnetic Fe3O4@Cu2-xS nanopar-
ticles with synergistic advantages of imaging (magnetic 
and thermal) and therapy (by infrared absorption induced 
heating and ablation) of tumors have been reported [284]. 
Regardless of the controversy surrounding the nature of 
the excitation of Cu chalcogenides, such composites with 
both magnetic and optical control have immense interest 
stemming primarily from their broad absorption, allowing 
exploitation of their absorbing nature at both the biologi-
cal windows (808 nm and 1064 nm). The efficacy of the 
lower energy window was much higher than the higher 
energy, and the molar extinction coefficient was the reason. 
Specifically, the higher extinction coefficient for the lower 
energy allowed a higher temperature rise during irradiation, 
leading to a higher tumor-killing efficacy. The PT con-
version efficiency was higher for the 1064 nm irradiation 
as well, determined from the formula in Eq. (21) [285]. 
Another composition is one where Au was composited with 
CuS, allowing excitation of the LSPR in both and pos-
sibly bettering the PTT metrics. Indeed, the absorbance 
intensity of the composite when in the same concentration 
as when either of the materials were present alone was 
quantitatively higher [286]. Previous research has shown 
that the field enhancement “tails” of the LSPR can extend 
to energies much beyond the peak LSPR energy, result-
ing in much higher absorbance intensities due to coupling 
between this tail (of the Au’s LSPR) and the LSPR of the 
CuS. Specifically, the interparticle dipole coupling can 
create hotspots [287] in the enhanced fields, which can 
result in the observed effects. The killing of tumor cells 
was achieved at much lower laser powers in the Au/CuS 
study, the reason being attributed again due to the cou-
pling between Au and CuS. This is likely (given that the  
excitation wavelength for the therapy was 980nm, much 
lower than the 530nm required for exciting the LSPR of 
Au), yet it is probable that other reasons are at play here, 
such as possibly a higher surface area for heat transfer of 
the composited particles which improved the killing effi-
cacy. The NIR LSPR of CuS alone has also been explored  
for combined PT and positron emission tomography (PET) 
imaging by incorporating the radio isotope of 64Cu into 
CuS which was synthesized in the nanodot morphology 
with an effective hydrodynamic diameter of less than 6 nm 
(controlled through the molecular weight and concentration 
of PVP). Irradiation at 808 nm resulted in a temperature 
rise to 50 °C, which along with the quick renal clearance 
(95% removed within 24 h) resulted in a composition that 
has a rare potential for dual modes of imaging and therapy 
of cancer [288]. Another commonly used radioisotope of 
131I was also investigated for the same purposes, also prov-
ing to be effective in NIR absorption-based PTT and imag-
ing when incorporated with an effective diameter of 20 nm, 
albeit with a protective cap of PEG [289].

where η is the PT conversion efficiency, I is the laser power, 
A is a constant, λ is the wavelength of the laser, h is the heat 
transfer coefficient, S is the surface area of the well, T is the 
temperature of the solution, and Qs is the heat associated 
with the light absorbance of the well and solvent.

Insertion of different elements into the chalcogenide lat-
tice leads to optical properties not possible with the chal-
cogenide lattice alone. Copper iron sulfide is a promising 
variant of CuS due to its extremely diverse LSPR bands. 
Plasmons absorbing from 486 to 1200  nm have been 
reported in this compound by a simple increase in the ratio 
of Cu: Fe from 1:1 to 10:1. High-resolution XPS studies 
revealed that the proportions of the cations and anions at 
the surface, the nature of the valence state of the surface 
atoms, and the nature and concentrations of the capping 
ligands decided the intensity and shift in LSPR position, 
determined directly by the Cu/Fe/S ratios used during 
synthesis [290]. The origins of the LSPR have hence not 
been explicitly dealt with in this study, and even a previous 
review on this composition only briefly ascribes that the 
possibility of the presence of side phases/Cu deficiencies is 
the reason for the plasmonic effect [291]. Clarifications in 
this regard were presented in a more recent work, wherein 
a changeover from an electron-based LSPR (at approx. 
500 nm) to a hole-based NIR LSPR (at approx. 1200 nm) 
was observed wherein iron sulfates were produced during 
this transition, creating the hole carriers [292]. Yet another 
ternary composition is copper indium sulfide, whose Cu 
deficiency (resulting in CuxInyS2) led to sub band-gap 
LSPR resonances in the NIR at around 1200 nm. The close 
energy spacing between the LSPR frequency and the exci-
tonic band-gap (at 800 nm) makes this material promising 
for applications looking for light harvesting using both exci-
tations such as light harvesting and catalysis [293]. Such 
ternary materials are often explored only for their band-
gap tuning and seldom studied for their non-stoichiometric 
compositions [294]. Apart from the brief discussions on the 
possible elements that can be incorporated in the CuS lat-
tice, a more comprehensive summary of others is presented 
in Table 3. The hitherto discussed possibilities of tuning 
the light absorption of the CuxS family by stoichiometry 
manipulation have been extended by an interesting investi-
gation on this manipulation. The conversion between cov-
ellite and stoichiometric (non-plasmonic but fluorescent) 
chalcocite has been reported by electrochemical mediation. 
Specifically, the intercalation of Li ions into the chalcogen 
lattice led to this conversion, while Cu+ intercalation led 
to a permanent conversion to chalcocite. The prospects of 
these results is attractive for applications such as optical 
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switching in the NIR and those involving fluorescent imag-
ing such as sensing and other luminescence based applica-
tions [295].

The closing remarks of the CuS family of plasmonic 
materials are ironic with a review of a study attributing 
plasmonic absorption in stoichiometric CuS, which as a 
pristine material was not thought to not possess vacancy-
originated hole plasmons. This study employed the discrete 
dipole approximation and the Drude-Sommerfeld model to 
account for the observed experimental spectra. The excel-
lent fit between model and experiment was proof that the 
free holes necessary to exhibit the Drude-like behavior were 
constituents of the pristine lattice itself, with densities of up 
to 1022 cm−3. Additional confirmations of the inherent resist-
ance to stoichiometric changes of CuS were also reported as 
additional proofs for this phenomenon. The nano disk mor-
phologies investigated in this work exhibited two resonances 
in the NIR corresponding to one in-plane and another out-of-
plane resonance [273]. Few studies exist on the LSPR ori-
gins of covellite such as this that attribute the LSPR nature 
to inherent lattice free-holes. It can be predicted then that 
these free carriers can make CuS reactive. Similar to how an 
oxide layer of controlled thickness can help in stabilization, 
the incorporation of Pd into the CuS structure as a CuPdS 
shell tuned the LSPR along with increasing the stability. A 
limitation, however, was the increased broadening with the 
increase in Pd content, due to a reduced particle size (and a 
resulting higher surface scattering) [296]. It is hence evident 
that the CuS family although exhaustively investigated is 
still nascent in the aspects of studying and manipulating the 
origins of the LSPRs in it.

Cu Chalcogenide Selenides

Non-stoichiometric Cu2Se is another interesting prospect in 
the plasmonic copper chalcogenide group. The absorptions 
in this material have been in multiple instances attributed to 
impurity level transitions similar to the sulfide family and 
have since been corroborated well with LSPR excitations 
[297–299]. Mechanisms of achieving non-stoichiometry 
involve commonly the use of oxidizing agents or atmos-
pheres and reversal through reducing agents [250, 268]. 
Unusual techniques such as ligand exchange which allow 
for tuning over 200 nm of the LSPR peak position [300, 301] 
are among the different modalities of tuning. Remarkable 
tuning of the LSPR can be possible, as shown in Table 2.

Electrochemical redox reactions can give useful insights 
into the mechanism of LSPR tuning in Cu2Se, wherein 
in situ tuning and LSPR observation are possible [312]. 
Influences of the potential sweeping voltages (magnitude/
sweep rate), electrolyte concentrations/compositions, hyster-
esis in material composition between redox cycles, and dis-
persion of the plasmonic NPs in a secondary medium such 

as a membrane (which itself will influence LSPR through 
particle aggregation/charge transfer) are a few of the mul-
tiple factors that influence the LSPR of the resulting NPs. 
XPS measurements confirmed the contributions to LSPR 
of Cu vacancies rather than oxidation state changes, as no 
peaks corresponding to divalent Cu were observed.

Non-stoichiometric Cu2-xSe has also been explored for 
theranostics, such post encapsulation with a bio-compatible 
polymer that prevents cytotoxicity while still maintaining 
the particle sizes (10–50 nm) for longer retention within 
the body. The temperatures attained matched those when 
AuNRs were used, which makes them more suitable due to 
the better sizes (AuNRs were larger in order to be able to 
absorb at 808 nm) and the fact that the structure-directing 
agent of CTAB used for AuNR synthesis is cytotoxic [313]. 
The multifunctionality of plasmonic Cu2-xSe nanoparticles 
(with sizes in the sub-5nm range) wherein the purposes of 
imaging (PTT), Single Photon Emission Computed Tomog-
raphy (SPECT) and Computed Tomography (CT) could be 
possible was fulfilled by these nanoparticles. With regards 
to the plasmonic role, the temperature increases achieved 
as a result of the PT effect could be precisely controlled 
between 25 °C and 75 °C by changing the concentration 
of the NPs keeping the irradiation power constant [314]. A 
similar objective of sensitive photoacoustic imaging (pulsed 
optical excitation leading to ultrasonic wave emission due 
to thermoelastic lattice expansions) has been reported with 
Cu2-xSe NPs for imaging lymph nodes, the usual paths of 
cancer progression. Highly sensitive imaging of the lymph 
nodes could be done with the concentrations of the phospho-
lipid encapsulated NPs down to 1.7 pmol/ml while excited 
at 900 nm [315]. NPs are conventionally promoted as nano-
sized carriers of drugs, and a composition of Cu2-xSe encap-
sulated by a SiO2 shell has been used in this regard both as 
a PT and chemotherapeutic nanomaterial. The cancer drug 
doxorubicin was loaded onto the shells along with a PEG 
cap that added the property of hydrophilicity to the complex, 
and the drug released by the heat generated on NIR radiation 
of the NP raised the temperature to 45.3 °C [316]. In place 
of an encapsulated shell, heterogeneous NPs (heterodimers) 
composed of Au and Cu2-xSe have been reported for the 
combined possibilities of dark-field as well as photoacous-
tic imaging. The dark-field imaging was feasible due to the 
scattering of light by the AuNPs at 566 nm (red-shifted from 
the expected peak at 520 nm due to hole transfer from the 
Cu2-xSe), enabling highly localized imaging of the infected 
lymph node. The PTT potential of the approx. 10 nm diam-
eter NPs were not investigated, however, which should have 
been a possibility considering other research that has done 
very similar explorations into this aspect [317].

The plurality of the CuS/Se family in terms of appli-
cability has been investigated with a rare perspective of 
their suitability for non-linear absorption. Specifically, 
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the enhancements to the two-photon emission intensities 
from these materials catalyzed by LSPR have been studied, 
wherein the LSPR provides a virtual state for excitation. The 
mechanism of enhancement of this emission has been shown 
in Fig. 13 [318]. The explicit role of LSPR in enhancing this 
intensity was confirmed by tuning its absorption close to the 
two-photon absorption edge (by substituting Se for S at an 
atomic percent of 2.6), which was at 950 nm. A significant 
enhancement was observed for LSPR at this energy, com-
pared to 1145 nm for stoichiometric CuS [318].

Similar to CuS, insertions of elements in the Se-based 
Cu chalcogens have also been studied. Such ternary com-
pounds exhibit variations in their LSPR based on their size 
and shape as can be intuited, but an additional modality 
of compositional tuning was achieved with varying the Se 
precursors with the same Cu and Sn precursors (leading 
to differing LSPRs due to differing free carrier densities). 
Specifically, the reason for this was the differing abilities 
of the different Se precursors to incorporate Sn into the lat-
tice, which ultimately controlled the Cu:Sn ratio and hence 
the LSPR position and width, apart from the differences in 
morphology [319].

Plasmonic Cu Chalcogenide Sulfide Selenides

Plasmonic chalcogenide compositions of both S and Se have 
been reported in the interests of discovering the tunability 
possible in the optical properties for applications such as 
diodes. In this regard, compositions of Cu2-x (SySe1-y) were 
synthesized, and observations of the different stoichio-
metries indicated that the plasmonic behavior was predomi-
nantly controlled by the Cu deficiency and, to some extent, 
the phase of the materials (cubic vs hexagonal), and not the 
S/Se stoichiometry. The particle sizes were not found to be 
a governing parameter, as they were in regimes where the 

quasistatic approximation (predominantly dipolar contribu-
tions only and no multipolar contributions) holds as well 
as where surface dephasing was not an issue as well [320]. 
Another study of these compositions revealed an observation 
of variation in the direct band gap with S/Se ratios, although 
the changes to the free carrier absorbance were not investi-
gated here. The purely cubic nanowire morphologies were 
synthesized maintaining the Cu ratios constant and tuning 
the S/Se ratio [321]. The tunability of the phase and the 
free carrier absorbance with the S/Se ratio was, however, 
reported through the synthesis of these compositions with 
different precursors and processing agents [322]. Achieving 
monodisperse particles as well as a broadly tunable (from 
1350 to 1600 nm) LSPR of this composition was possible 
while using a specific complex capped precursor, while 
changing the specific complexes did not result in the same 
level of tuning [323]. One of the more comprehensive inves-
tigations of the insertion of Se into a CuS chalcogen through 
anion exchange corroborated the influence on the effective 
mass of free carriers, band gap, and the LSPR peak position 
with this insertion. The trends of decreased electron density, 
effective mass, and increased bulk plasma energy as well 
as LSPR were all attributed to the insertion of the larger 
Se atom which led to a more diffused setting of the lattice. 
However, experimentally little influence (a change of only 
0.1e V in LSPR energy) was found on the insertion of Se, as 
unaccounted for effects such as the surface capping ligand 
and a decrease in free carrier density due to an increase 
in Cu content during synthesis were attributed to be more 
influential in reality [324]. It could be concluded then (at 
least from the reports from the majority of studies on Cu/S/
Se) that the Cu deficiency and phase predominantly influ-
ence the free carrier absorbance, whereas the S/Se ratios 
influence the direct band gaps in these materials.

Plasmonic Cu Chalcogenide Tellurides

The enhanced scattering properties of either molecules 
in the proximity of LSPR active nanomaterials or of the 
LSPR nanomaterials themselves have been well established, 
including in reports in this review. In consideration of one 
of the mechanisms of this enhanced scattering, SERS, the 
distance between the molecule under study and the LSPR 
nanoparticles is of considerable importance for the enhance-
ments. The ideal molecule will have moieties that can 
directly bind with the LSPR nanoparticle. With this purpose, 
the poster children of SERS (Au and Ag) have electronega-
tivities which prevent their binding for example with –OH 
moieties which are a predominant part of many SERS active 
molecules. An alternate LSPR composition in this regard is 
CuTe, wherein the electropositivity of Te allows probing 
of molecules with –OH groups, enabling and extending the 
classes of molecules that can be investigated. The LSPR of 

Fig. 13   Absorbance profile for plasmon-assisted two-photon-absorb-
ing inorganic nanoparticles
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CuTe being in the NIR is an added benefit in terms of the 
coupling between the LSPR mode and the Raman modes 
of molecules. Although comparisons of SERS enhance-
ments between Au, Ag, and CuTe are not possible in most 
cases due to the inability to match the proximity between the 
molecule and the plasmonic material, considerable enhance-
ments (approx. 106) were observed with CuTe nanocubes 
and found to be the highest in comparison to nanoplates and 
nanorods of CuTe [325]. Interestingly, pump-probe spec-
troscopic measurements concluded that the time constants 
for LSP thermalization are lesser for Cu2-xTe than Cu2-xS 
and Cu2-xSe by a factor of 3 and 2, respectively, potentially 
indicating their applicability for PT purposes as well [326]. 
It remains an observation that the plasmonic properties of 
CuTe through experiments and for different applications 
remain largely unexplored, though multiple reports on its 
synthesis exist [327]. Insights into field enhancements 
[328] are often used to validate the potential for a material 
for a certain application, and from one such investigation, 
Cu2-xTe having morphologies of spheres, rods, and tetra-
pods were studied. Revealing insights on the distribution 
and excitation of the LSPR for these shapes indicated that 
the enhancements were found to be strongest for elongated 
shapes (rods and tetrapods) compared to spheres. However, 
the low carrier density (compared to Au for example) and 
possibly localized (and not collective) oscillations resulted 
in a lower enhancement magnitude of the field compared to 
similar morphologies of Au. The localized nature of carriers 
in Cu2-xTe is also reported in Ab initio structure calculations, 
wherein vacancy channels of 0.3 × 0.7 nm were revealed to 
be alternatingly formed along the {001} layers connected by 
low-density areas between them as shown in Fig. 14 [329].

The lack of a database for the material constants of this 
chalcogenide is also an issue here [330], as it is quite pos-
sible that the enhancements are not reflective of the actual 
numbers due to the difference in the LSPR peak positions of 

the calculations vs the synthesized nanoparticle, and hence, 
the field enhancement magnitudes are quite possible to be 
revised as research progresses on these materials. This is 
indeed made clear from a previous report [217], wherein 
field enhancements comparable to many if not the best coin-
age metals have been observed.

Combining the optoelectronic properties of semiconduc-
tors and metals can be of immense benefit, as both exci-
tonic and plasmonic properties can be exploited. To this 
end, compositions of CdTe-Cu2-xTe have been investigated. 
An interesting behavior of the Auger-mediated recombina-
tion between excitons in CdTe with the free carrier holes in 
Cu2-xTe was reported, resulting in a quenching of the PL of 
the CdTe subunit although the investigators were careful not 
to rule out the changes to PL as due to the different surfaces 
and proximities for the CdTe vs CdTeCu2-xTe compositions. 
Another observation was the unexpectedly low shifts in 
resonance frequency between the two materials, which was 
ascribed to the fact that the free carriers were localized more 
in comparison with the conventional free electron-based 
resonance exhibiting materials wherein the delocalization 
results in a wider influence on the plasmon resonance. This 
degree of localization was alluded to as the reason that the 
environment had a lesser impact on the resonance of the 
composite in terms of the shift despite the markedly higher 
refractive index. The carrier dynamics were found to be 
significantly altered for the composite than pristine CdTe 
material, ascribed also due to the faster Auger route of exci-
ton relaxation. Such interesting combinations can be used 
for manipulating the decay dynamics and other interactions 
between these absorptions, which have been proven to lead 
to new phenomena such as Fano resonances [331].

The reports reviewed so far have been chosen to reflect 
the differences possible in terms of observations and appli-
cations of the predominant plasmonic chalcogenides of 
Cu. We present a comprehensive summary on the different 
chalcogenides of Cu used for plasmonic investigations in 
Table 3. Studies on the optical metrics of such Cu deficient 
chalcogenides aimed at revealing the absorption and scat-
tering cross-sections, dependence of them on particle mor-
phologies and the dielectric environment, and changes to 
them based on the myriad of possibilities present in terms 
of lattice alterations are vital to take these group of materials 
forward for such applications. Research such as reviewed 
here reveal the fundamentally interesting prospects of non-
stoichiometric plasmonic chalcogenides, with regards to tun-
ing their optoelectronic behavior in accordance with LSPRs 
as well as the coupling between them and excitonic transi-
tions. This coupling for example leads to changes in the exci-
tonic band-gap as well and is often reconciled by pertinent 
theories such as the Moss-Burstein effect, AC Stark effect, 
and the Purcell effect. Phenomena such as enhanced two-
photon absorption, dynamical Stark shifts, up-conversion, 

Fig. 14   Cu1.5 Te structure determined and refined by electron diffrac-
tion tomography (EDT). a View along [100] and [100] highlighted in 
blue. b View along [010]. HAADF-STEM images are highlighted in 
blue. c View along [001]. Te represented by green, Cu atoms by red 
(reprinted with permission from [329])
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and plasmon generation by quantized exciton generation are 
a few examples of potentially rewarding investigations in 
such plasmonic systems [332].

Plasmonics of Composited/Ligand Stabilized Cu 
Nanoparticles

We discuss here the design, synthesis, and study of materials 
and devices based on combining plasmonic Cu with various 
moieties as ligands, stabilizers, and generically as additives. 
The concept of MEF has been introduced already, and the 
use of metallic alloys composed in part of Cu has been inves-
tigated for their enhancements to the fluorescence of suit-
able fluorescent molecules. In this regard, the effect of add-
ing Cu to the most commonly used AgNPs for fluorescent 
enhancement has been investigated. The result was that the 
CuNPs quenched the fluorescence when present in increas-
ing mole fractions, as new channels of non-radiative decay 
of the absorbed photons were created in Cu. The overlap of 
the emission peak of the tested fluorophore (Cy3) with the 
inter-band transitions in Cu can be intuited to be a problem 
as well, as it will further quench the emission intensities. 
However, engineering the particle sizes to tune the scatter-
ing vs absorption (i.e., radiative vs non-radiative channels) 
percentages can help, as it was found that alloy particles of 
60 nm diameter were found to cause MEF when present as 
spheres and in a dielectric of polyvinyl alcohol [370].

 The composite of graphene/Cu has been projected to be 
one of the better prospects for photonic applications, due to 
reasons like a strong confinement of the plasmon at the inter-
face, an effective protection against oxidation, and minimal 
interference with the plasmonic field enhancements due to 
the monoatomic thicknesses possible. As grown Cu/gra-
phene can be advantageous (albeit having a higher defect 
density as a result of the lattice mismatch during growth) 
compared to transferred graphene grown in a separate CVD 
process wherein a better level of intimate electrical contact 
and adhesion is possible with the former. To overcome this 
limitation, CuNPs were formed post deposition of a continu-
ous film simultaneously during the deposition and growth 
of Graphene with methane as the carbon source. The result-
ing capped composites exhibited a tenfold enhancement in 
the fluorescent intensity of a DCM dye due to strong cou-
pling and energy transfer between the plasmonic and dipolar 
modes [371]. Graphene-protected Cu was also studied as a 
fluorescence-enhancing combination for a single crystalline 
material. BP3T modified with this combination exhibited a 
marked increase in PL intensity when compared with either 
BP3T/Cu or BP3T alone. The contribution from graphene 
was not explicitly addressed (apart from improvements to 
oxidation stability), while the enhancements to the intensity 
were attributed due to the coupling of the LSPR of Cu to 
the emission from the dye and a reduction as a result of the Ta
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emission lifetimes. Directional emission studies measuring 
the polarization of the emitted light could have shed more 
light on the causal reasons for the enhancements [372]. An 
interesting aspect to be mindful of while designing graphene-
protected Cu is the presence, concentration, and nature of 
defects. Comparing the defects present in sheets vs in gra-
phene powders led to a change in the intimacy in contact 
between them. The result was a lower H2 evolution (through 
H+ reduction on graphene defect sites) when Cu alone was 
used and when graphene with lower concentrations of defects 
was used. The mechanism of hot carrier generation through 
plasmon decay and the crucial subsequent step of their sepa-
ration (electrons to graphene and holes to lactic acid) was 
proposed as the causal mechanism for the observations. 
Hence, it can be stated that graphene with defects can be 
beneficial too, as evidenced by this example [373]. Graphene 
has hence become a strong associative combination with Cu 
for a myriad of purposes and enhanced phenomena.

Mimicking natural processes has been an ongoing effort 
for a diverse range of purposes [374]. One such process 
which when mimicked can give efficient results is photo-
synthesis, in which utilization of CO2 forms a part. This 
begins with conversion of CO2 into for example the CO2 
radical anion or CO, which can initiate multiple reactions 

such as fuel production from biowaste. For the catalytic 
reduction of CO2, plasmonic materials are of benefit due to 
the generation of hot carriers during thermalization. If the 
hot electrons and hot holes can be separated, reactions can 
be catalyzed [375]. In this research on hot carrier genera-
tion and separation, the contributions to the hole popula-
tion (when for example d-holes are generated) by plasmonic 
decay are crucial [376], as the energies of these holes criti-
cally dictate their lifetimes and hence probabilities to par-
ticipate in reactions. This dependence of the d-hole energy 
on its lifetime is directly tied to the DOS which for Cu varies 
steeply with energy as shown in Fig. 15 [376] compared to 
for example Au, as the hybridization between the d and sp 
bands is stronger for the latter leading to a broader DOS 
and hence a lower dependency on energy. The result is that 
for d-holes created at levels at increasing distances from the 
Fermi energy, the lifetimes increasingly reduce due to this 
nature of the DOS in Cu [377].

Meticulous calculations of the lifetimes confirm this 
trend, with 250  fs observed for hot electrons excited to 
energies of 0.1 eV above the Fermi level whereas for those 
excited to 2 eV a drastically reduced lifetime of 20 fs [378]. 
In this field of hot carrier separation catalysis, the natural 
tendency of Au NPs to be more inert than Cu has made it 

Fig. 15   Schematic diagram of interband emission involving d-holes created by 488, 532, and 633 nm excitations on Au vs Cu
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and Ag the main proponents for this field of research, and 
yet Cu has been studied extensively for its efficacy in cata-
lyzing CO2 reduction, albeit not very often on the plasmonic 
angle but through electrochemical reduction catalyzed by it 
[379]. Meanwhile, a comprehensive and careful summary 
on plasmonic catalysts in general that exclusively treat CO2 
reduction alone is available [380]. The binding energy of CO 
on Cu is the critical factor in determining the investigated 
materials’ selectivity and catalytic activity [381] with Cu 
occupying the middle ground in terms of the binding energy 
and metals like Ag, Au, and those of Pt, Ni, Ru, and Rh 
occupying the low and high binding energy regions, respec-
tively. There are studies, however, that have investigated 
this enhancement in CO2 reduction using alloys of Au-Cu 
on TiO2, yet do not ascribe hot carrier separation-induced 
reasons for the same [382]. Other reports for example have 
investigated the synergistic effects of a Cu/Pt/TiO2 compos-
ite as well as an Au-Cu alloyed SrTiO3/TiO2 composite and 
report an increase in CO2 reduction based on the increased 
photo-generated carriers from TiO2 [383, 384] and only hold 
Cu to be responsible for presenting sites for adsorption/des-
orption with no mention of the plasmonic enhancements 
from Cu itself. More published research points to the same, 
wherein the plasmonic contribution by Cu was not investi-
gated (probably due to the nature of the surface Cu species to 
be oxidized), and its role was as a recombination preventer/
adsorption enhancer [385]. A brief mention of the enhanced 
electromagnetic fields of the Cu plasmons being a contribu-
tor to the enhancements was made in this study [386].

The Au‑Cu Alloy System

Au being the other poster child of metal photoluminescence 
has been alloyed with Cu in an extensive array of reports. 
Careful studies carried out through varying the lattice pro-
portions of Cu, particle sizes, binding ligands, and excita-
tion as well as emission wavelengths revealed that the NIR 
PL emission from the alloyed NPs arose from transitions 
within the Au-thiolate (the most often used cap for Au clus-
ters) surface complex. The Kohn–Sham potentials used to 
reveal the orbitals and the DOS corresponding to this sys-
tem confirmed this postulation along with excitation spectra, 
with little variation in the PL position with size. Increasing 
amounts of Cu resulted in an increasingly redder emission, 
with atomic percents from 0 to 80% shifting the PL peaks 
from 947 to 1067 nm [387]. The brightness of these alloyed 
NPs was also brighter than the best NIR-emitting lanthanide 
probes, indicating their deployment readiness for various 
luminescence-based applications.

Furthering such investigations, Au-Cu alloys have been 
proposed to increase the conversion of nitroaromatics to 
anilines predominantly through the reason of Cu provid-
ing a stronger site for adsorption than Au due to its slightly 

electropositive nature [388] when present as an alloy. The 
Au-Cu alloy system has been a strong contender in this field 
of plasmon-enhanced catalysis due to tunable absorbance 
and nature of surface sites [389], with studies that report 
on their uses for example in enhancing rates of conversion 
of 4-nitrophenol to 4-aminophenol with alloyed triangular 
prisms [390]. A summary of this system and the reactions 
studied with the investigation of its plasmonic advantages 
is provided in Table 4.

The first observation of the interactions between the 
constituents in a plasmonic alloy is the change in absorp-
tion. Among the myriad investigations that often confirm 
a bathochromic shift with increasing Cu atomic fractions, 
ordered Au-Cu alloys have also shown a hypsochromic shift, 
attributed to the ordered creation of the alloys in contrast to a 
random formation by modifying the synthesis process [407]. 
Compared to other alloy systems that will be discussed next, 
computational findings suggest that Au-Cu can be the most 
favorable composition when looking for a homogeneous 
mixing of both atoms instead of the atoms becoming seg-
regated. The thermodynamic driving forces calculating the 
energy of formation predict a decrease in formation energy 
of Au-Cu compared to Au alone for appropriate propor-
tions of Cu insertion, confirming this conclusion. The close 
overlap between the Au-5d and the Cu-3d orbitals allowed 
charge transfer to the more electronegative Au from Cu, and 
though the simulated clusters consisted only of 100–200 
atoms, they exhibited a collective “plasmon-like” electron 
oscillation due to the close overlap [408].

The presence of Au as a compositing element to Cu rather 
than an alloying element has also been studied. The resulting 
coupled plasmon being termed as a charge transfer plasmon 
(CTP), leads to interesting effects such as a drastically red-
shifted resonance position (up to 1200 nm) compared to both 
Au and Cu. The nature of the contact line between Au and 
Cu proved to be a deciding factor of the resonance position 
and width, with adsorption of DNA on the preliminarily 
synthesized Au seeds also controlling this contact line [409]. 
Such structures when studied in a more comprehensive 
manner through multiple investigations can be promising 
especially in terms of applications concerned with surficial 
properties, such as sensing and catalysis.

The Cu‑Ag Alloy System

Another alloy system of Cu is with its coinage peer of Ag. 
Interestingly, the Ag-Cu system has been reported to form 
alloys as well as bimodal compositions, wherein the latter 
can be present as a core–shell arrangement or as segregated 
phases of Cu and Ag with separate LSPR peaks for each. 
Both compositions have been reported with an almost equal 
occurrence. The bimodal composition being investigated for 
its plasmonic properties is summarized in Table 5.
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Studies have reported the possibility of controlling the 
formation of products (azo vs azoxy) through the use of 
Cu-graphene vs Cu-Ag-ZrO2. The former resulted in the 
formation of both azoxybenzene and azobenzene from 
nitrobenzene, while the latter resulted in the formation of 
azoxybenzene from nitrobenzene. For the Ag/Cu/ZrO2 study, 
multiple investigations were done to rule out/confirm this 
catalytic activity, ranging from XPS to confirm the metallic 
state of Cu in the alloy vs when present alone, elemental 
mapping from TEM to confirm the presence of both Ag 
and Cu in the lattice, and catalytic activity measurements to 
confirm that only the alloy enhanced the conversion in an 
optimal amount compared to its monometallic counterparts, 

and that only the alloy resulted in a selective conversion to 
azoxybenzene instead of azobenzene. TEM analyses were 
concluded to reveal the (111) plane of the alloy’s lattice as 
a governing observation, albeit confirmation through other 
studies/with calculations could have revealed insights into 
the DOS distributions for example. The plasmonic peak was 
observed at approx. 408 nm for the alloy, implying a closer 
match to that of Ag than Cu. This could be reconciled from 
the proportions of the Ag: Cu for the alloy, which at values 
of Cu higher than 4:1 led to a considerably oxidized sur-
face and a loss of catalytic activity. A higher conversion 
was observed for excitation wavelengths close to 400 nm, 
implying a plasmon-induced enhancement to the conversion 

Table 4   A summary of Au-Cu alloy system to enhance the plasmonic resonances and the mechanisms of tuning their morphology

S. 
no.

Configuration Morphology Dimension (nm) LSPR 
(nm)

Method of tuning LSPR Ref. 
no.

1 Silica@Au, Au-Cu
Au = 1–15 Wt%

Spheres Silica-40
Au-2

506 Changing the concentration of Au [391]

2 Au-Cu @TiO2
Au = Cu = 1 mol%

Spheres 3.1–3.8 551 Varying the stoichiometric value of Au/Cu [392]

3 Au-Cu
Cu = 12 mol%
Au = 1 mol%

Cubes Edge length = 3–85 530–660 composition varied from AuCu3 to Au3Cu [393]

4 Cu-Au
Cu = 27%
Au = 73%

Spheres 4–7.4 514 Varying the sizes of the Au seeds [394]

5 Cu-Au
Au = 5–43%

Core–shell Au-1.5
Cu-2.6

– Varying the stoichiometric value of Au/Cu [395]

6 Au-Cu and Au-Cu3 Crystals and wires Width = 10, height = 11
Dia = 15–25

600 Varying the solvents [396]

7 Au-Cu alloy
Au = 0.6–1.8
Cu = 0.2

Alloy 3–4 527 Absorbance tuning was not a focus of this 
study

[397]

8 Au-Cu@CdS
Au = 0.3–0.5%

Stars Spike length = 61 640–950 Tuned by the atomic ratio of Cu [398]

9 Ag@Al2O3
Ag = 20 Wt%

Cubes Edge length = 60 590 Absorbance tuning was not a focus of this 
study

[399]

10 Cu-Au, Cu-Pt, Cu-Pd
Cu = 2–4%
Au = 1%

Rods Aspect ratio = 1–4 600–900 Varying Cu concentration [400]

11 AuCu
Au = 75%
Cu = 25%

Spheres 2.2 560 Varying the molar concentration of Au-Cu [401]

12 Au-Cu
Au = 86.2%
Cu = 13.8%

Stars Spike length = 100 450–1500 Varying the precursor molar ratio of Au/Cu [402]

13 Au-Cu
Au = 5%

Spheres 3.2–7.6 530–640 Varying the concentration of Cu [403]

14 Au-Cu@alumina
Cu = 95%

Spheres 6.1 Au:520
Cu:560

Absorbance tuning was not a focus of this 
study

[404]

15 Au-Cu
Au = 6%
Cu = 6%

Spheres 3 514 Varying the concentration of Cu [405]

16 Cu-Au Tubes 50–70 560 Absorbance tuning was not a focus of this 
study

[406]
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as well as the observation of a lowered activation energy 
for the irradiated samples confirming this postulation. The 
study with graphene as a stabilizing support (for Cu in the 
metallic state) reports the plasmon peak and the associated 
enhancements to the conversion due to an efficient cleavage 
of the N–O bond. The conversion efficiency was found to 
markedly depend on temperature due to the different activa-
tion energies and the Bose–Einstein electron distributions 
[414]. Considering that visible light irradiation has been 
employed in these studies, it is quite probable that contribu-
tions to the effective free carrier densities in the alloys from 
Cu play an active role to the catalytic rates as well, although 
the contribution is probably detrimental considering the 
easy tendency for oxidation of Cu. It is hence a compromise 
probably that the addition of Cu provides considerable tun-
ability in the LSPR position, while limiting the stability of 
the pristine metal that it alloys with to a very short period 
of time (usually days). Reports confirm this observation 
for the Ag-Cu system as well, wherein tuning from ~ 400 
to ~ 600 nm is possible with different mole fractions of Cu 
albeit with accompanying stability limitations [381, 415]. A 
novel multi-compositional nanorod comprising of sodium 
yttrium fluoride (NaYF4), TiO2, and a Ag-Cu alloy has 
been investigated for two-photon up conversion-mediated 
photocatalytic applications with the aim of generating the 
highest currents on photoexcitation. The specific functions 
of upconversion in NIR by NaYF4 and injection of the up 
converted photon into TiO2 for carrier generation, of TiO2 
for carrier generation, and of the Ag-Cu alloy for prevent-
ing carrier recombination and to aid in photocarrier genera-
tion due to the overlap of the LSPR with the TiO2 band-gap 
were elucidated in this study. The role of Cu however, was 
attributed only as reducing Ag utilization and hence costs, as 

substantial amounts of it will shift the LSPR away from the 
absorption edge of TiO2 and reduce the photocurrent ampli-
tude [416]. An analogous investigation with the composition 
of Ag-Cu-decorated SiO2 on which layers of S-doped car-
bon nitride (CN) were wrapped on has been reported as an 
efficient photocatalyst. In this case, however, the generation 
of hot carriers and their transfer to CN (preventing recom-
bination) which catalyzed the production of H2 from water 
was the mechanism of photocatalysis. The molar ratios of 
1:3 of Ag: Cu led to the highest H2 generation rates among 
the compositions investigated and were optimal to prevent 
recombination (due to close contact) between the alloy and 
the CN wrapper. The comparatively lesser reduction in PL 
intensity for this ratio compared to others confirmed the 
attribution of this ratio as optimal (due to the absence of  
hot carrier recombination which would have reduced H2 
production) [417].

Other Plasmonic Cu Composites

The importance of the separation distance between the 
plasmonic material and the scattering center such as a 
fluorophore was investigated in a study employing a hier-
archical structure of CuNWs and MoSx dispersed in a Cu 
foam. Marked differences in PL intensities revealed the 
differences in recombination rates for the compositions 
involving MoSx blended into CuNWs and Cu foam vs those 
where CuNWs were first blended with MoSx post which 
they were dispersed in the foam support, making the former 
much better for photocatalytic H2 evolution [418]. Trans-
metalation of ligands can also be catalyzed by LSPR, and 
from the one report on this specific reaction, the irradiation 
wavelength was reported to be crucial. The switch between 

Table 5   Plasmonic properties of the bimodal composition and the mechanisms of tuning their morphology and the prospective applications

S. no. Configuration LSPR (nm) Prospective  
applications

Method of tuning LSPR Novel findings Ref. 
no.

1 Ag-Cu-alloy Ag: 404–430
Cu: 581–588

Sensors Changing the Molar ratio of 
Ag and Cu

Smaller aggregate nano-
structures with higher 
fractal dimensions have 
Ag-rich, while the larger 
aggregates with low mass 
fractal dimensions have 
Cu-rich compositions

[410]

2 Ag-Cu-alloy Ag: 407
Cu: 585
Ag-Cu: 534

Flip-chip Varying the reaction time Silver-copper alloy nano-
particles for the conduc-
tive fillers in electrically 
conductive adhesives

[411]

3 Ag-Cu @Cu core–shell Ag: 460
Cu: 600

Catalysts, sensors, SERS Changing Molar ratio and 
reaction time

Optical property can be 
controlled by changing the 
thickness of the Cu shell

[412]

4 Ag-Cu alloy Ag: 410 – Changing the Molar ratio of 
Ag and Cu

The proportion of silver 
and copper salts varied 
degrees of solid solubility

[413]
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homo-coupling to cross-coupling when irradiated with dif-
ferent LSPR active wavelengths (< 500 nm vs > 500 nm) 
using Cu-Pd particles was attributed to be the reason for 
the different reaction intermediates that were formed under 
these conditions. Interestingly, the transmetalation was not 
observed when using pure Cu or when Cu was combined as 
a composite with other molecules such as Pt/Al2O3. A brief 
attribution to plasmonically generated hot electrons in Cu 
was given for the differences in selectivity, and the pres-
ence of Pd was critical for better adsorption kinetics, Cu-Pd 
coupling, or other yet undiscovered factors [419]. Consider-
ing the plasmonic metal of Pt, an interesting investigation 
wherein hybrid propagating modes that arise due to coupling 
between a specific periodic arrangement of nanostructures 
and the plasmon modes has been reported in the bimetallic 
system of Pt-Cu. Galvanic displacement of lithographically 
patterned Cu squares by Pt led to this bimetallic configura-
tion, and the absorption signatures were dominated by Cu 
(interband transitions at 510 nm, dipolar plasmon at 675 nm) 
and a hybrid surface lattice resonance (HSLR) at 865 nm 
which was invoked due to the coupling. The photocatalytic 
enhancements were not found to be influenced by the Pt 
plasmon. Among the different experimental conditions 
tested to quantify the catalytic activity such as in dark con-
ditions, with and without Pt, and with different shell thick-
nesses of Pt and size/spacing of Cu, the strongest enhance-
ments arose in the presence of the HSLR, attributed to the 
intense electromagnetic fields at the boundary between the 
Cu/Pt nanoparticle and the ITO substrate [383].

The higher energies of plasmonically generated hot elec-
trons compared to those generated by decay of interband 
transitioning ones have been predicted and confirmed, mak-
ing the latter process more efficient than the direct inter-band 
excitation [420]. This stems from the fact that LSPR being 
confined close to the surface, only electrons near the Fermi 
level will be influenced by LSPR energy transfer, leading to 
a higher energy as they transition to the excited state com-
pared with the electrons that are excited from lower ener-
gies below the Fermi level. Hence, exploiting plasmons for 
creating hot carriers is more advantageous than generating 
them through inter-band transitions. Towards further inves-
tigations of this plasmonic angle presented by Cu, p-NiO 
has been used to effectively accept hot holes, thereby seg-
regating the hot electrons in the Cu. It is important to have 
a semiconductor that is transparent in the range of plasmon 
absorption (example: a band-gap of 3.7 eV for NiO) such 
that the semiconductor’s valence band (example: − 5.4 eV 
in vacuum for NiO) lies below that of the metal (− 4.5 eV 
in vacuum for Cu) for hole extraction. The enhanced rates 
of production of both CO and formate (HCOO−) on visible 
light irradiation confirmed the role of LSPR-generated hot 
electrons in Cu, thought to form these products from the cre-
ation of the anion radical first. Importantly, the competing 

mechanism of H2 evolution which always occurs along with 
CO2 reduction was suppressed. The hypothesis that this is 
the case because of the increased dissociation of H2 that 
does evolve on the Cu surface but dissociates through the 
DIET (desorption-induced electron transitions) mechanism 
has been put forward to explain the reason for this selectiv-
ity [421]. The DIET mechanism has also been proposed to 
be a reason for the reduced activation barrier for desorption 
of reaction products in the reaction of NH3 to produce H2 
on a Ru-Cu alloy. The reductions in the activation barri-
ers of all the reaction steps beginning with the scission of 
the first N–H bond to the final desorption of the products 
were predicted to be influenced by the charge transfer of hot 
electrons to the adsorbate orbitals, with enhancements to the 
reaction rates ranging from ~ 20 to ~ 177 compared to when 
only Cu or only Ru was present [422]. In another research 
studying epoxidation of alkenes including styrene, trans-
stilbene, cis-stilbene, and norbornene, the required energy 
for the reaction was achievable only at energies higher than 
500 nm and hence excluded plasmons from playing any role, 
except for cis-stilbene where the epoxidation was observed 
for the excitation wavelengths matching the LSPR absorp-
tion of the Cu-TiN composite nanomaterial [423].

Hot electrons, being of obvious interest in a myriad of 
applications involving reaction enhancements and facilita-
tion, have been reported to be generated through the mecha-
nism of plasmon relaxation even in sub-3 nm Cu nanopar-
ticles. This is probably a controversial work reviewed here, 
with the ascribing of the inter-band absorptions observed 
(centered at 395 nm) to an LSPR absorption which is intra-
band. The authors clearly ascribe the higher energy of this 
absorption due to band discretization but still attribute the 
same to LSPR. Regardless, a novel approach of controlling 
the distance between the sub-3 nm CuNPs and the support 
materials of TiO2 to distances of approx. 0.42 nm was fol-
lowed (with the help of multiple linker molecules), so that 
only hot electrons with the required energy (to cross the 
resulting Schottky barrier height of 0.88 eV) can transfer 
into the semiconductor and aid in the eventual evolution of 
H2 [424].

A side note on the LSPR of small (< 3 nm) CuNPs is 
apt to be had here. Multiple studies such as this attribute 
a “shift” in LSPR to energies up to 6.2 eV (200 Nm) [65, 
425] for the particle sizes observed, while the studies cited 
for these reports only mention a vanishing of LSPR at 
these sizes with no mention of such a marked shift in the 
LSPR energy, and clearly describe the impossibility of a 
continuous DOS (and hence an LSPR) at these sizes near-
ing 1 nm [426]. There are studies that report an absorb-
ance peak analogous to plasmonic absorption for particles 
from 2 nm down to nearly 0.6 nm, with a marked decrease 
in contribution towards this absorbance by free carrier 
absorption (LSPR) as compared to bound carrier absorption 
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(inter-band transitions). It stands then for Cu that for sizes 
less than 10 nm (the mean free path for Cu), the plasmon is 
highly damped, and that the LSPR contribution to absorp-
tion is substantially negligible at sizes less than 2 nm where 
energy band discretization into discrete energy levels occurs 
[427]. With all the investigations on plasmon-enhanced 
catalysis, commercialization presents fresh challenges in 
terms of cost, efficiency, precision, etc. Towards addressing 
these issues, amine-capped CuNWs were through a facile 
process of drop-casting dispersed on a fabric, enhancing 
porosity and dispersion simultaneously. Plasmon-enhanced 
PT temperatures of up to 250 °C were achieved, resulting in 
this configuration being a viable proposition for the cata-
lytic azide-alkyne cycloaddition reaction. Furthering this 
investigation to include the reproducibility and optimization 
and affirmation of the role of morphology (as no distinct 
plasmonic peak was reported and yet was attribute to as 
a reason for the high absorption of incident energy), for 
example, can make such ligand-stabilized nanostructures 
marketable [428].

A survey of research reveals that PT therapy (PTT) is 
more effective when employing composites or alloys instead 
of pristine materials. This is primarily (from a plasmonic 
point of view) because of the ease of tailoring the dielectric 
constants (which determine the proportions of irradiated 
energy that is scattered vs that which is absorbed) and the 
ease of tuning the absorption energies. Both of these abilities 
are vital, when considering for example that the breadth of 
absorption energies of only the pristine materials has limi-
tations. Cu has been investigated for PTT with this reason-
ing primarily as sulfides and selenides as discussed in this 
review. However, novel compositions have been attempted, 
with promising results. As an example, Cu-Ag2S has been 
synthesized as an alloy with both Cu and Ag in the + 1 oxi-
dation states, indicating a reduction in free electron density. 
This reduction made possible the peaking of the LSPR of 
this alloy in the infrared, making it apt for PTT. The reported 
PT conversion efficiencies (58.2%) were better than the CuS 
class (27.1%) when the same loadings were used. Careful 
measurements of the reasons for this, such as the dispersion, 
retention times, and the effective dielectric constants, can 
reveal the complete understanding of the material function-
ing [429]. Another example of an alloy composition with Cu 
is with Pd, with the Cu component being added for the sole 
purpose of aiding in autophagy [430] of the tumor cells. The 
LSPR properties of the composition were not investigated in 
detail apart from a brief mentioning of the sharp tips of the 
formed plasmonic tetrapod causing a temperature increase 
of up to 71 °C on irradiation with an 808 nm laser. Justi-
fication of the shape being the major causal factor for the 
improved PT heating was done by comparing the heating 
efficiency with spherical nanostructures wherein the latter 
resulted in much lower temperatures (approx. 45°) realized 

due to the less intense field accumulations [431]. Investi-
gations of modifications to the lattice of this system can 
lead to more aspects of plasmonic manifestation such as the 
phase modifications, stabilities against chemical and ther-
mal environments, causes of the observed morphologies, and 
the extinction cross-sections, as both these elements have 
explicit benefits in applications such as H2 sensing and stor-
age and thermal energy storage and transfer. Indeed, such an 
investigation has been done for the more common Au-Cu 
alloy system, wherein the five-fold twinned edges of the 
initially formed seeds were found to be the growth planes, 
leading eventually to a starfish-shaped nanostructure. The 
differences in particle sizes (ranging from 70 to 200 nm) 
were hypothesized as the reason for the observed plasmonic 
absorbances in the visible to the infrared. Notably, the 
atomic percent of only one particle size was quantified. We 
believe that compositional studies of each size could have 
revealed differences in atomic percent between Au and Cu, 
which could have added an additional variable that caused 
the observed LSPR characteristics. The 70 nm particles were 
deemed more suitable despite the poorer temperature rises 
achieved (due to less overlap between the 808 nm excita-
tion and the NIR LSPR for this particle) as they could be 
retained for a longer duration in vivo post coating with a 
bio-compatible layer of PEG [402].

Optoelectronic materials, concerned with tuning the band 
gap for use as light emitters, are often explored with the 
CZTS/Se (Cu, Zn, Sn, S/Se) class of materials. The plas-
monic behavior of these materials has been extensively 
reported including in the discussion in this review. One 
study projects their suitability for solution-processed photo-
voltaic devices due to their easy reversible gelation ability 
[432]. The LSPR peak was centered at 1326 nm, with vari-
ations in position as well as intensity achieved by varying 
the Cu concentrations. An interesting study that observed 
the intermediate phases that led to the final composition 
of Cu2ZnSnS4 through SERS reported the formation of 
the plasmonic Cu2-xS phase in the beginning stages, which 
gradually disappeared as the final composition materialized 
[433]. In the prevalent optoelectronic application of solar 
cell fabrication and improvement, CuNPs were found to 
increase the efficiency of a PEDOT: PSS-based perovskite 
solar cell by 115% due to the LSPR property. Specifically, 
time-resolved photoluminescence experiments revealed the 
shortening of the radiative recombination of photo-generated 
carriers due to the strong coupling of the plasmon to the 
host material as the reason for the efficiency enhancement. 
A contradiction in their conclusion must be noted here that 
the least average lifetime of emission was observed for a 
particular concentration (2 mg of Cu per ml of the composite 
solution), and yet this concentration had a higher lifetime for 
the plasmonic component and a lower lifetime for other less 
influential components governed by traps/defects, leading to 



1338	 Plasmonics (2024) 19:1303–1357

1 3

the contradicting but inevitable postulation that the reduction 
in average lifetime does not always imply an enhancement 
to scattering. It can be understood from the results of the PL 
emission experiments [434] that the significantly increased 
intensity of PL for the 2 mg Cu sample could be the reason 
for the observation of the best efficiencies. Similar cursory 
conclusions of the enhancements to photocurrents being 
due to LSPR in solar cells based on Cu-PEDOT:PSS and 
Cu-TiO2 have been made in other studies, with necessary 
investigations into the other aspects such as the influence 
of the interface/particle diameter and shape, coverage, and 
durability towards oxidation unaddressed [435–437]. An 
illustration of the reflectance of Cu as a function of wave-
length overlapped with the solar spectrum shown in Fig. 16 
[438] has been given to visualize the benefit of utilizing 
Cu for enhancing solar absorption for various applications 
including solar cell efficiency improvement. The selection, 
therefore, of the wavelength of absorption is crucial, wherein 
studies have reported enhanced magnitudes of photocurrent 
even in the proximity of Cu due to a plasmonic nanoantenna 
effect [439]. This effect, simply put, is the complete concen-
tration of the incident energy into plasmon excitation, which 
led to a higher photocurrent due to more efficient carrier 
generation from plasmon-TCPP coupling. The promise of 
nanotechnology especially for plasmonics is the possibility 
of manipulation of a wave plasmon vs localized plasmon vs 
hybrid plasmons by a facile manipulation of morphology 
and/or the excitation configuration. Such manipulation has 
also been cursorily investigated for solar cell applications, 
specifically on the use of Cu nanowires for inducing a wave 
plasmon. Through the well-researched combination of Cu-
TiO2, the nanowire morphology was found to enhance the 
incident photon to electron (IPCE) conversion efficiency by 
7.5% compared to devices with only CuNWs and by 24% 
compared to when only a dye was used for photocurrent 

generation without any CuNWs on visible light illumination. 
Combinatorial factors of the proximity of dye molecules to 
the TiO2 and Cu, the Cu plasmon for generating hot car-
riers that entered the conduction channel in TiO2, and an  
unsubstantiated “waveguide” property of a propagating SPP 
in the nanowire were attributed to be the reasons for the 
same [440].

Other Compounds of Cu Yet Unexplored/
Emerging for Plasmonic Applications

Interesting chemistries of Cu have been synthesized, such 
as a mixed metal compound consisting of an antimony/Cu 
complex (((Sb2(Ncy)4)2Cu4) [441], CsCuTeS3 [442], and 
CuIn1-xGaxS2 [443] for which explicit treatments of the 
plasmonic behavior can be done. More examples exist, such 
as the mixed chalcogenide-based CuyFe4Sn12X32 (X = S, 
Se) [444] and the CZTS/Se family of materials containing 
both S and Se such as Cu2ZnSn(S1–xSex)4 [445–448] all of 
which were scrutinized for their band-gap values primarily, 
along with carrier masses and mobilities aimed at optoelec-
tronic applications. Similar to the prospect of finding an 
intermediate/lattice component that is plasmonic in such 
materials like the Cu2-x phase as discussed in this review, a 
plasmonic Cu2-xSeyS1-y phase was formed as an intermediate 
in research that reported the formation of Cu2ZnSn(S, Se)4, 
wherein the plasmonic component was largely quenched 
while transitioning towards the final phase [432]. Other 
Janus-type nanoparticle compositions with distinct surficial 
properties have been synthesized, such as the composition 
of Cu-Cu3P [449] whose LSPR aspects can be very unique 
once revealed through future investigations.

The property of LSPR hybridization with other propagat-
ing optical modes such as SPP has been explored for use 
as a directional glazing material, composed of periodically 
patterned Cu on a continuous film. By changing the position 
of the deposited substrate from one that has a continuous 
film of Cu on one side to one where the nanopatterned Cu is 
present, energy could either be reflected or be absorbed and 
converted into heat, making the substrate an ideal conforma-
tion as a coating for building windows to maintain indoor 
temperatures. Such metasurfaces can provide versatility in 
tuning the light extinction by controlling predominantly the 
spacing between the patterned features, leading to hybrid-
ized [450] modes with broadband plasmonic absorption.

Metal–metal alloy/composites comprised of Pt and Cu 
have been reported to be effective for PTT. However, the 
high absorbances in the NIR region had no signatures of 
typical LSPR absorption. Assessments of the lattice struc-
ture, LDOS calculations, and incident field enhancements 
of the dendritic structures of Pt/Cu achieved here could 
lead to these materials being extremely tunable agents for 

Fig. 16   Reflectance of Cu as a function of wavelength compared with 
the solar spectral irradiance



1339Plasmonics (2024) 19:1303–1357	

1 3

applications concerning light-to-heat conversion [451]. A 
highly multi-elemental composition of [Au12Cu13(Ph3P)10I7] 
(SbF6)2 is among a common class of possibly plasmonic 
nanocomposites. The base configuration of such compo-
sitions is MnLm where n and m are the number of metal 
atoms and the protective surficial ligands [452]. Despite the 
effectiveness of these composites being proven for various 
applications such as non-degassed phosphorescence (i.e., in 
luminescence applications that require no de-gassing which 
typically causes PL quenching) and photocatalysis, the plas-
monic aspects have, to the best of our knowledge, not been 
paid due investigations and hence merit analysis. The LSPR 
property cannot be completely reconciled in such clusters 
unless the particle diameter exceeds ~ 2 nm, correspond-
ing to an atomic number of ~ 300 atoms for Cu. Yet, these 
intricate structures [452] with single atom level manipula-
tions can likely exhibit LSPR characteristics by tailoring the 
number of atoms [453] and hence the free electron density 
to such appropriate levels, enabling their access to a myriad 
of applications concerning LSPR such as the capability to 
serve as hot carrier injectors and PT manipulators. Among 
the multiple bimodal/bimetallic alloy systems of Cu, the 
Cu-Ni system is a rarely reported candidate. With analo-
gous observations of a red-shifted resonance with Cu con-
tent and particle size, this tuning of the effective dielectric 
constant can be of use similar to the other systems. Also, the 
fabrication procedure of the Cu-Ni bimetallic alloy through 
de-wetting of films from different substrates and the result-
ing differences in the particle diameter, distribution, and the 
diameter: height ratios can be a beneficial route for intricate 
exploitation of the plasmonic properties, extendable to other 
alloy systems as well [454].

Similar to chalcogenides, phosphides of Cu have been 
reported to be both plasmonic and semiconducting. To 
tune the LSPR in the mid-IR for these materials the 
nucleation controlling agent of Trioctylphosphine (TOP) 
was used, which showed a trend of inducing lesser Cu 
vacancies and hence a more-red shifted LSPR with its 
increase. This material too has promise due to the ability 
of tuning LSPR by tuning multiple parameters such as 
the concentrations of TOP, the surrounding material, and 
the shape and size of the achieved structure, although the 
latter was found to play a much lesser role in this investi-
gation [455]. The plasmonic nature of this compound is 
being confirmed by observation of refractive index tun-
ing as well as the inherent negative energy of formation 
of Cu vacancies, and additional confirmations came in 
from the observation of the p-type nature of the materials 
indicating a hole-based LSPR. A solid step towards com-
prehending the fundamental nature of the LSPR in this 
composition has been done through pump-probe spectros-
copy which resulted in a non-linear and instantaneously 
bleached signal at approx. 1100 nm, indicative of LSPR 

nature [456]. The promise of these materials, however, 
has room for exploration, as their potential has only been 
mentioned in passing for applications such as photovolta-
ics and synthesis of cation-exchanged novel compositions. 
For photovoltaic applications aspects such as the illumi-
nation power and wavelength, play a critical role as con-
firmed by a study employing composited graphene/Cu3-xP 
nanomaterials. The investigation revealed an increase in 
photocurrent when illuminated at the LSPR wavelength, 
but mechanisms causing this increase were not addressed 
although the generic cause of hot carrier generation and 
transfer can be intuited to have an influence [457]. Studies 
revealing the mechanisms for resonance and the locations 
of the Cu vacancies from EELS and atomic contrast STEM 
imaging revealed that the vacancies arise from the absence 
of Cu at lattice sites of type Cu1 and Cu2 rather than of 
types Cu3 and Cu4 [458], and that two modes of plas-
monic oscillation are present. The first one corresponds 
to the dipolar mode while the second one to a non-polar 
breathing mode (also termed as a dark plasmonic mode as 
it cannot couple to light [459]) with radial oscillations that 
can be excited only with an electron beam. Such studies 
reveal the carrier concentrations, origins, and localizations 
of collective plasmons and hence are critical in establish-
ing the potential of emerging materials such as phosphides 
for applications such as Q-switching and NLO [460].

With regards to other materials for which the LSPR has 
not been given credit but where it is probably a contributing 
factor to the observed improvements to properties, one com-
position is of CuNPs embedded in a CNT/pCN composite 
which was investigated for its improved photocatalytic CO2 
reduction [461]. A more detailed analysis of the plasmonic 
aspect of these materials is expected to unambiguously 
contribute to a variety of fields in ways which have been 
discussed here.

A very interesting proposition of LSPR is on generat-
ing low-frequency plasmons, specifically those that exist in 
the microwave frequencies. Although the plasma frequency 
of Cu lies in the visible, studies reviewed here have shown 
the dramatic changes possible in the peaking frequencies. 
As per Eq. (12), SPR occurs when the permittivity of the 
dielectric is negative compared to that of the metal. Remark-
ably, distribution of CuNPs on a three-dimensional matrix 
so that a threshold of percolation (usually a vol% of Cu, 
dictated by the particle size and the matrix’s morphology 
and composition) is exceeded led to this negative permit-
tivity at microwave frequencies, with the induction of a 
delocalized electron oscillation. The creation of metallic 
networks was proposed to create this delocalized electron 
cloud of the individual NPs resulting in the collective excita-
tion. Further studies on achieving/confirming/tuning of this 
low-frequency plasmon should reveal new opportunities for 
these materials such as in attenuating devices [462]. Such 
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oscillations have been observed for multiple combinations 
of Cu, such as Cu/BaTiO3 [463, 464], Cu/YIG, Cu/Ni-Zn 
ferrite [465, 466], and Cu/polyphenylene sulfide.

Studies on employing Cu as an enhancer of SSA which 
can tailor make the Cu architecture to be solely absorbing 
instead of absorbing and scattering is an example of research 
that can immensely benefit this area which is highly driven 
towards large-scale production. A summary of the different 
materials that have been used with Cu as deposited over 
layers for the purpose of enhancing SSA is presented in 
Table 6. Investigations of the interfaces in such architectures 
on various aspects such as the influences of Cu morphology, 
deposited film parameters, and other interfacial properties 
are essential to discover the relevancy of such compositions 
for plasmonic purposes.

A wide array of materials has been investigated as part-
ners of Cu for the specific purpose of enhancing absorption 
of solar energy. In all these studies, strictly cursorial treat-
ments of the absorbances are present, with multiple ques-
tions on the plasmonic aspects unaddressed.

Finally, plasmons in non-stoichiometric and layered 
CuO have been found to be plausibly responsible for high- 
temperature superconductivity. The likelihood of the plasmons 
pairing with electrons for superconductivity was found to be 
high if the lattice was in a layered fashion, as the localized 
plasmon DOS of such a structure was found to be conducive 
for plasmon excitation and coupling with superconducting 
electron motion. It was, thus, concluded that along with other 
excitations such as phonons, excitons, and spin-fluctuations,  
plasmons also facilitated attractive electron–electron  
interactions and hence superconductivity [477].

Conclusions and Outlook on the Future  
of Cu Plasmonics

The multiple directions pursued in the research on plas-
monic Cu have been attempted to be methodically covered 
in this review. Plasmonic Cu has come a long way since its 

discovery and ostracization soon after for plasmonic appli-
cations. The maturation of synthesis technologies according 
to the authors is an important and probably a spearheading 
reason for the continued expansion of Cu plasmonics, keep-
ing in mind the changes to the concentrated field distribu-
tions that can be manipulated seemingly at will due to this 
maturation. Indeed, the coupling between far-fields of the 
LSPR of CuNPs with other excitations such as inter-band 
as well as hybrid excitations which has been discussed in 
this review underlines the possibilities in terms of material 
design [478]. The possibility of experimenting with com-
binations that are increasingly novel while standing on the 
shoulders of the foundational materials and technologies 
can be understood from the discussions on the various top-
ics of this review. The control over morphology, composi-
tion, oxidation, dispersion in the case of nanoparticles, and 
analogous aspects of roughness, precision, uniformity, and 
purity while pondering over films have been enablers for this 
burgeoning of investigations. However, much space exists in 
terms of locking down plasmonic Cu as a material for which 
a complete understanding/application of its optical proper-
ties has been achieved.

To mention a few areas where improvements are pos-
sible, separating the contributions to enhanced catalytic 
performance due to plasmonic contributions can be better 
elucidated, as with eccentric but precise techniques such as 
scanning tunneling microscopy and EELS. Revealing these 
details can help in better exploiting and designing materi-
als aimed at harvesting of unutilized energy (such as solar 
energy and waste heat), as well as designing better materials 
that can prevent carrier recombination and improve reac-
tion rates. The authors opine for example, that the myriad of 
studies that report Cu (such as in the Au-Cu system) only to 
enhance the adsorption of reactant molecules with no part 
to play in plasmonic hot carrier generation (attributed to the 
Au component of the compound) though illuminated with 
visible light can be furthered to study the likely plasmonic 
contribution of Cu. Metal-enhanced fluorescence is one of 
the fascinating areas of research that can benefit by a margin 

Table 6   A summary of the 
different materials that have 
been used with Cu as over 
layers to enhance SSA

S. no. Material deposited on Cu Absorbance wavelength (nm) Absorptance (%) Ref. 
no.

1 Cr, Fe, Mo, Ni, Ta, and W Reflectance = 300–1500 85–90 [467]
2 Ti Reflectance = 100–1500 94 [468]
3 Fe, Cr, and Ni 300–2500 94 [469]
4 Cr, Mo, and SS 300–2500 90 [470]
5 Cr, Fe, Mo, Ti, Ta, SS, and W 300–2500 75–80 [471]
6 Fe, Cr, SS, and Ni 200–800 80 [472]
7 Cr-Cr2O3 and Mo-Al2O3 Reflectance = 600–2000 75–95 [473]
8 Ti-TiNyOx and Cr-CrxOy Reflectance = 300–2000 91 and 94 [474]
9 Ag-Al2O3 500–1200 93 [475]
10 CrN-CrxOy Reflectance = 600–2000 93 [476]
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from mechanistic insights into the phenomenon. With the 
importance of the proximity of the fluorophore to PC, their 
location within a material plays a critical role in determin-
ing the near vs far-field enhancements/quenching to MEF 
[479]. Studies such as pump-probe spectroscopy combined 
with simulations can be of use in this regard, as they have 
in the past in terms of revealing the sequence of events that 
probably lead to the enhancements. Bettering the illumina-
tion method to achieve a total irradiance of CuNPs and their 
conjugated fluoromers is another aspect of bettering fluores-
cence and scattering performance in general. NLO is a field 
that can actively employ plasmonic materials, from the few 
reports reviewed here on the possibilities and unaddressed 
features of this research area.

The phenomenon of oxidation has in this review been 
revealed to be beneficial as pertinent to the application. The 
prevention (through passivation), control (through passiva-
tion/utilizing designs that self-limit oxidation), and reversal 
(through chemicals/fabrication processes) can go a long way 
in opening up possible uses of Cu especially in terms of 
improving their durability and even the plasmonic virtues 
such as the intensity and reach of the near and far fields 
[480]. Intense investigations of multiple configurations and 
morphologies of Cu as discussed in the respective sections 
illuminate the road ahead in terms of realizing CuNPs with 
a short shackle for oxygen.

Copper compounds have immense potential and have 
already been explored for example for unconventional appli-
cations such as plasmonic batteries [481, 482] and plasmonic 
electrical switches in the form of phase and composition-
controlled chalcogenides for example. All of these emerging 
fields of PC applications can benefit from the UV, visible, 
and near infrared photon harvesting from the ambient solar 
spectrum, catalyzing and controlling the electrochemistry 
of these energy storage devices [483]. Such unconventional 
applications indeed seem to be restricted only by contempla-
tions of appropriate design/methods of study. Cu alloys are 
another class of highly nascent materials, wherein only pre-
liminary reports of the observations of differing plasmonic 
properties with regard to different material parameters have 
been done. Investigations of the electronic structure of these 
alloys are hardly if ever dealt with, which is crucial to gain 
insights on the mechanisms of plasmonic manifestation. This 
aspect need not be complex, as simpler tools can reveal ele-
mental presence post which simulation tools can take over 
the electronic structure calculations in many cases. Consid-
ering the inaccessibility of sophisticated imaging technolo-
gies for looking at the atomic level structures of Cu-based 
plasmonic alloys and compounds, computational tools need 
to be sought. These tools have their own shortcomings from 
the aspect of having available accurate material constants 
for novel material combinations, although approximations 
can help considerably. It is admitted, however, that multiple 

metal combinations have been explored as alloying elements 
with Cu already.

A general observation is that reports of plasmon-enhanced 
properties cannot be compared in most cases and yet they are, 
with the resulting materials being touted as better perform-
ers. A prevalent example of this is in PT energy conversion, 
wherein apparent differences in irradiation powers are still 
compared with another published research and reported to 
be better. This is intuitively a roadblock to achieve materi-
als that are benchmarked globally to be evolving candidates 
for such applications. A similar application that suffers from 
the same drawback is theranostics, wherein the parameters of 
irradiation intensity for therapy vary and yet are compared 
against one another. Consistent comparisons or parameters 
hence need to be established, which when quantified for the 
different materials for a particular purpose nullify differences, 
thereby serving as a universal metric for establishing the best 
materials. One such parameter is the refractive index sensitiv-
ity, which carries the same definition across studies. Another 
parameter is the Keldysh constant, which allows confirmation 
of the plasmonic contributions from a material. Such vari-
ables are invariably needed especially in the fields of thera-
nostic and PT energy storage, as the comparability between 
investigations can only be correct if done through them. With 
the promise held by Cu in plasmonics and its increasing par-
ticipation as a frontrunner in this field, it stands that multiple 
avenues of research and commercialization will see Cu as a 
very good option in the realms of the ultra-violet to the near 
infrared, with even extensions to the microwave regime [484].
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