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Abstract
In this work, a biosensor based on two-dimensional photonic crystals is proposed. The structure is based on 30*20 silicon rods 
on the air background. The structure is considered for detection of Glucose and Creatinine concentrations in blood samples. 
This can help physicians in diagnosis of diabetes and kidney failure. The proposed biosensor is designed based on only linear 
materials to overcome low gain and nonlinearity difficulties. The functionality of the biosensor is fulfilled by considering 
the interference and scattering effects of Si defect rod situated in the structure (dark blue rods function as confining sensing 
media while dark green rods act as coupling rods). The proposed biosensor is designed in the format of hexagon shaped rings; 
filtering the operating resonance wavelengths. The functionality of the presented biosensor is investigated by considering 
the photonic band gap (PBG) and field distribution spectra, through the plane wave expansion (PWE) and finite-difference-
time-domain (FDTD) methods. The incident light wave would be applied to the input port and according to the resonant 
wavelength would be transmitted to Outputs 1 or 2. The dimension of the proposed structure is considered as 114μm2 which 
makes it an appropriate option for optical integrated circuits. Finally, for Glucose, the remarkable sensitivity (1400 nm/RIU), 
quality factor (163.6—169.8), detection limit (6.6e-4—6.8e-4) RIU and figure of merit (150.4—152.6) RIU−1 were obtained. 
Similarly, for Creatinine, the sensitivity (795 nm/RIU), quality factor (53.5—58), detection limit (0.0029—0.0030) RIU and 
figure of merit (33.07—34.56) RIU−1 were achieved.
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Introduction

Recently, optical structures have been the main field of 
research interest for various scientists. This happens due to 
their compact sizes, very low costs (compared with conven-
tional technologies), extremely higher capacities and speeds 
(compared with electronic based devices). This is mainly 
due to the fact that in optical based devices, electrons 
(which are responsible for electronic device’s operations) 
are replaced by photons (which are responsible for optical 
device’s operations) [1–3]. Very high speed of light with 
other advantages attracted the attentions of many research-
ers (to the optical based devices). As a result, all of the ele-
ments considered in electronic circuits should be converted 
to optical ones (elements like, logic gates, filters, sensors or 

biosensors, receivers, transmitters and etc.) [4–7]. Photonic 
crystals (PhCs) are optical based devices which are periodic 
in one, two or three dimensions. They are basically made of 
at least two individual media (i.e. air and a dielectric) in a 
periodic (circular, hexagonal, cubic, etc.) pattern. PhCs in 
most configurations are defined by periodic cells (rods) in 
the background made of air. All of the materials utilized in 
PhC based devices and generally in optical structures are 
defined by their refractive indices (RIs). In fact, refractive 
index is the main identification factor for materials used in 
the designation of optical integrated circuits (OICs). The 
periodicity of the PhC based structures can be defined by 
the lattice constant parameter, which indicates the distance 
between adjacent rods [8]. An important parameter defining 
the functionality of the PhC based structure is the photonic 
bandgap (PBG). In fact, PBG diagram is a spectrum which 
shows regions of frequency (wavelength), where light can 
be transmitted or not. As a matter of fact, these regions 
are denoted as the forbidden (non-guided) or permitted 
(guided) regions. For different PhC based structures, by 
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considering plane wave expansion (PWE) method, PBG 
can be obtained. In different applications, wavelengths (fre-
quencies) situated in the forbidden or permitted regions can 
be considered. Mostly, signals with permitted wavelengths 
would be propagated in the PhC structure and would be 
eventually dispersed. Finally, they would lose their ener-
gies. On the other hand, signals with forbidden wavelengths 
wouldn’t be propagated in the PhC structure. They would 
be reflected in the structure after hitting other opposite side 
rods (this happens along the waveguide). Therefore, in the 
latter case total internal reflection (TIR) effect can help the 
light wave propagate along the waveguide with very low 
losses [9–13]. PhC based structures can be designed for 
various OICs. Elements like logic gates, filters, splitters, 
receivers, biosensors, transmitters and etc. can be designed 
by PhCs. PhC-based structures can be specially considered 
in designation of various sensors. Gas and liquid sensors are 
among the most important categories of PhC- based sensors 
[14]. Optical biosensors have attracted attentions of many 
researchers due to their compact size, integrability, ease of 
fabrication and high speed and can be designed based on 
various configurations [15].

Bio-optoelectronic structures can also take advantage of 
the benefits of optical structures [16, 17]. PhC based devices 
can be configured as biosensors for detection of various bio-
logical elements in blood samples [18, 19]. For diagnosing 
diabetes, Glucose concentration in blood samples should be 
considered (high levels of Glucose increase the risk of diabe-
tes). In order to diagnose kidney failure, creatinine concen-
tration should be measured (high levels of Creatinine may 
cause kidney failure) [20–22]. As stated, many researchers 
have reported their works on optical biosensors. In a research 
[23], a PhC- based biosensor with the sensitivity and limit 
of detection of 260 nm/RIU and 0.001 RIU, respectively, 
was proposed. In [24], ring resonators based on PhC struc-
tures were reported for detection of cancer cells. In another 
research [25], by considering layers of metal/defect/metal in 
the photonic crystal configuration, a biosensor for diagnosis 
of malaria was proposed. In [26], by considering irregular 
defects in the PhC structure, a biosensor for detection of 
blood plasma was suggested. Recently [27], a PhC based 
biosensor was considered and analyzed for diagnosing bio-
molecules in urine and blood. In another work [28], 2-D PhC 
based biosensor was considered for diagnosis of DNA. In 
[29], by using Ti3C2Tx MXene material in a D-shaped PhC 
fiber, a sensitive biosensor was designed. In [30], by detect-
ing plasma, platelets, red blood cell and uric acid in blood 
samples, chikunguniya virus was detected. The proposed 
biosensor was based on 2-D PhC structures [30]. In another 
research [31], a biosensor based on photonic crystal fiber in 
the shape of rectangular core was proposed which could diag-
nose red blood cell (RBC), white blood cell (WBC), plasma, 
water and Hemoglobin. This research proposes a simple, easy 

fabricated, integrable and functional biosensor by consider-
ing 2D PhCs. The proposed structure is utilized for detection 
of Glucose and Creatinine concentrations in blood samples 
(diagnosing diabetes and kidney failure). The PBG diagram 
and field distribution at the two individual output ports are 
considered. Eventually, the structure is considered as biosen-
sors for detection of Glucose and Creatinine at outputs 1 and 
2, respectively. In the following parts, first the methodology 
and design section (the proposed biosensor and its functional-
ity), then the simulations and results (considering filed dis-
tribution and transmission-wavelength spectrum for various 
Glucose and Creatinine concentrations at outputs 1 and 2) 
and finally the conclusion section are presented.

Methodology and Design

In this work, a 30*20 biosensor based on PhCs is being 
designed and investigated. For investigating the function-
alities of the proposed structure, PBG diagram and field 
distributions should be studied which can be conducted by 
considering Maxwell’s equations.

where E, H, D, B and J indicate the electric field, magnetic 
field, electric displacement, magnetic induction fields and 
electric-charge current density, respectively.

Plane wave expansion (PWE) and finite difference time 
domain (FDTD) methods can be considered for extracting 
the PBG and field distribution diagrams, respectively [32, 
33]. There are some important parameters which should be 
calculated and analyzed for defining the functionality of 
a biosensor. Quality factor (Q) is one of these parameters 
which is presented in the following equation [7, 34].

in which λ0 and ΔλFWHM, stand for the resonant wavelength 
and spectral with of half maximum for the central transmis-
sion spectrum, respectively. Sensitivity (S) is another impor-
tant parameter defining the least possible detectable changes 
in the refractive index of the sensing medium.

where Δλ and Δn define the transmission spectrum displace-
ment and changes of the RI, respectively. Its unit is mostly 
stated as “nm/RIU”. Detection limit (DL) is another impor-
tant parameter which is defined as below:
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In which λ, S and Q stand for the resonant wavelength, 
sensitivity and quality factor, respectively.

Figure of merit (FOM) is also another important param-
eter presented in Eq. (6).

where S, Q and λ stand for sensitivity, quality factor and 
resonant wavelength, respectively [7, 34].

The proposed 2-D PhC based biosensor can be seen in 
Fig. 1.

As can be seen in Fig. 1, the proposed structure is con-
sisted of 30*20 Si rods in the background of air. In order to 
make the structure functional and simple (designation and 
fabrication), only linear rods were considered. Line defects 
(omitting rods to form the Input, Output1 and Output2 
pathways) and point defects (dark blue and dark green rods) 
were considered in the structure for ease of functionality. 
Dark blue rods act as the confining sensing media (reflect-
ing rods) and are in contact with the tested materials (the 

(5)DL =
�

10SQ
(RIU)

(6)FOM =
SQ

�
(RIU−1)

hexagon shaped ring help filter the operating resonance 
frequency). Dark green rods function as the coupling rods 
filter the appropriate wavelengths for the Output2 port. The 
structural parameters of Fig. 1 are tabulated in Table. 1.

In the first step of a 2-D PhC based biosensor designation, 
the PBG diagram should be presented. PBG spectrum of the 
proposed biosensor can be seen in Fig. 2.

As seen in Fig. 2, TE and TM modes were extracted 
for the proposed biosensor. TE modes are obtained in 
the wavelength ranges of 1.14  μm < λ < 1.895  μm and 
0.813 μm < λ < 0.93 μm. TM modes are also achieved in the 
wavelength range of 0.75 μm < λ < 0.935 μm.

TE mode is considered for further simulations due to 
its wider and more dominant wavelength range. In the TE 
mode range, the light wave can be propagated through 

Fig. 1   The proposed biosensor 
based on 2-D PhCs

Table 1   Structural parameters of Fig. 1

Parameter Value

Red rod’s radius 0.1 μm
Dark blue rod’s radius 0.125 μm
Dark green rod’s radius 0.8 μm
Lattice constant (a) 0.45 μm
Refractive index of rods 3.5

Fig. 2   View of the PBG of the proposed biosensor
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the structure (without being dispersed) by considering 
the total internal reflection effect (TIR). As a result, for 
the following simulations, the wavelengths situated in the 
PBG range would be considered as the input wavelength 
(for having the TIR effect). In order to have biosensors 
with the ability of detecting Creatinine and Glucose at 
individual output ports, various simulations with different 
input central wavelengths should be conducted.

In the following parts, first, field distributions at 
λ = 1550 nm and λ = 1290 nm for Outputs 1 and 2 are 
obtained. Then, by considering different concentrations 
of Creatinine and Glucose, their effects on the resonant 
wavelength are considered (transmission-wavelength for 
different RIs were depicted). Finally, Q, S, DL and FOM 
parameters are calculated.

Simulations and Results

In this part by considering the incident field at different 
wavelengths (in the TE range), field distributions and trans-
mission-wavelength spectra are obtained.

Output 1 (λ = 1550 nm)

In this section, by considering λ = 1550 nm, the light wave 
would be transmitted to Output1 as shown in Fig. 3.

As seen, most of the incident light wave would be 
transmitted to Output1 at λ = 1550 nm. In this section, by 
considering different concentrations of Glucose in blood 
samples (by their RIs), transmission spectrum versus wave-
length would be obtained. Diabetes can be diagnosed by 

Fig. 3   Field distribution at λ = 1550 nm 

Fig. 4   Transmission spectrum 
vs. wavelength for various 
Glucose concentrations

Fig. 5   Field distribution at λ = 1290 nm 
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considering the obtained results (for people with different 
genders, ages and etc., specific values of Glucose concen-
trations can lead to diabetes). The following figure indi-
cates the evolutions of the resonant wavelength by consid-
ering various concentrations of Glucose (defined by RIs) 
in blood samples.

Considering Fig. 4, the utilized RIs of 1.365, 1.375, 
1.382, 1.394 and 1.405 are related to various Glucose 
concentrations in blood samples (n = 1.365 for 75 mg/dl, 
n = 1.375 for 100 mg/dl, n = 1.382 for 125 mg/dl, n = 1.394 
for 150md/dl and n = 1.405 for 175 mg/dl [35]). As seen 
in Fig. 4, increasing RI would lead the transmission’s peak 
wavelength to higher values (red-shift) [18, 36].

By considering Fig.  4 and Eqs.  (3–6), the following 
parameters for the biosensor at Output1 can be obtained. 
Quality factor (Q): (163.6—169.8), Sensitivity (S): 1400 nm/
RIU, detection limit (DL): (6.6e-4—6.8e-4) RIU, Figure of 
merit (FOM): (150.4–152.6) RIU−1.

Finally, by considering wavelengths in the range of 
1522 nm < λ < 1578 nm, the mentioned concentrations of 

Glucose in blood samples can be detected. This can help in 
diagnosis of diabetes. In the following part, by considering 
incident field with λ = 1290 nm, various concentrations of 
Creatinine in blood samples at Output2 would be diagnosed.

Output 2 (λ = 1290 nm)

In this section, by considering λ = 1290 nm, the light wave 
would be transmitted to Output2 as shown in Fig. 5.

As shown in Fig. 5, most of the incident light wave was 
transferred to Output2 at λ = 1290 nm. In this part, by con-
sidering various concentrations of Creatinine in blood sam-
ples (by their RIs), transmission spectrum versus wavelength 
could be obtained. Kidney failure diseases can be diagnosed 
by considering the obtained results (for people with different 
genders, ages and etc., specific values of Creatinine concen-
trations can lead to kidney failure). The following diagram 
indicates the evolutions of the resonant wavelength by con-
sidering various concentrations of Creatinine (defined by 
RIs) in blood samples.

The utilized RIs of Fig. 6, are related to various Cre-
atinine concentrations in blood samples (n = 2.565 for 
85.28 μmol/L, n = 2.589 for 84.07 μmol/L, n = 2.610 for 
83.3 μmol/L and n = 2.639 for 82.3 μmol/L [21]). It is obvi-
ous from Fig. 6, that increasing RI would move the trans-
mission’s peak wavelength to higher amounts [18, 36]. By 
considering Fig. 6 and Eqs. (3–6), the following parameters 
for the biosensor at Output2 can be obtained. Quality fac-
tor (Q): (53.5—58), Sensitivity (S): 795 nm/RIU, detection 
limit (DL): (0.0029—0.0030) RIU, Figure of merit (FOM): 
(33.07—34.56) RIU−1. Therefore, by considering wave-
lengths in the range of 1286 nm < λ < 1344 nm, the men-
tioned concentrations of Creatinine in blood samples can 
be detected. This can help in diagnosis of kidney failure 
diseases. Results of the propped sensor were compared with 
previous published works and are tabulated in Table 2.

Fig. 6   Transmission spectrum vs. wavelength for various Creatinine 
concentrations

Table 2   Comparison of our 
suggested biosensor with 
published works

References Sensitivity 
(nm/RIU)

FOM (RIU−1) DL (RIU) Q-Factor

Creatinine sensor [21] 306
Creatinine sensor [37] 42
Creatinine sensor [38] 637 10.3 0.001
Creatinine sensor [39] 75 26
Proposed Creatinine sensor 795 33.07—34.56 0.0029—0.0030 53.5–58
Glucose sensor [3] 1278 105
Glucose sensor [40] 225 20.45
Proposed Glucose sensor 1400 150.4—152.6 6.6e-4—6.8e-4 163.6—169.8
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Conclusion

An efficient and compact biosensor based on 2-D PhCs was 
presented. The structure was designed based on 30*20 Si rods 
in the air background. For ease of fabrication and designation, 
only linear materials were considered. Various defect rods (dark 
blue and dark green rods) were responsible for the interfer-
ence and scattering phenomena. They also confined light wave 
in the sensing medium. Application of the proposed structure 
was studied through PWE (extracting the PBG spectrum) and 
FDTD (extracting filed distribution diagram) methods. Out-
put1 (operating at λ = 1550 nm) was considered for detection of 
Glucose concentrations in blood samples. The remarkable S, Q, 
FOM and DL of 1400 nm/RIU, (163.6–169.8), (150.4–152.6) 
RIU−1 and (6.6e-4–6.8e-4) RIU were achieved for Glucose 
concentration biosensor, respectively. In Output2 (operating 
at λ = 1290 nm), Creatinine concentrations were detected with 
S, Q, FOM and DL of 795 nm/RIU, (53.5–58), (33.07–34.56) 
RIU−1 and (0.0029–0.0030) RIU, respectively. Finally, by 
obtaining Glucose and Creatinine concentrations in blood sam-
ples, diabetes and kidney failure diseases can be diagnosed. The 
proposed biosensor can be a remarkable candidate for utiliza-
tion in bio-optical integrated circuits.
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