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Abstract
This paper presents a performance signature of a surface plasmon resonance (SPR) sensor for infected red blood cells (RBCs) 
detection using titanium dioxide ( TiO

2
)-2D nanomaterial-based structure. There is a substantial deviation between RBCs 

with and without Plasmodium falciparum infection, which can be represented in refractive indices showing the disease’s 
diagnosis. For the detection process, the proposed structure is made up by Kretschmann setup with silver (Ag), TiO

2
 , and 

2D nanomaterials. Here, Ag excites the surface plasmons on prism surface as well as provide sharp resonance dip that lead 
to better resolution and quality. Likewise, TiO

2
 has admirable electronic and optical properties, including high photocata-

lytic activity and chemical stability, and is placed between Ag and 2D nanomaterial s for increased sensitivity. Different 
nanomaterials, MXene, graphene, black phosphorus, and molybdenum disulfide ( MoS

2
 ), are used to improve the sensor’s 

efficiency. Sensing parameters are measured by exploiting the transfer matrix method. Initially, an impact of TiO
2
 in the SPR  

sensor is presented, concluding that 18% of sensitivity is improved after adding TiO
2
 to the conventional structure. Moreover, 

utilization of 2D nanomaterial in the proposed sensor is observed, resulting that the respected 2D materials are improved 
the sensitivity by 11%, 4%, 10%, and 34% compared to the TiO

2
-based sensor. The maximum achieved parameters are a 

sensitivity of 475.71°/RIU, a quality factor of 236.67 RIU−1 , and detection accuracy of 5.95, which are improved extremely 
compared to existing works.
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Introduction

Malaria caused by the Plasmodium parasite, has become a 
problematic illness that severely affects human beings. It is 
also a main cause of the high death rate in pervasive nations 
among both children and adults. In addition, 44% of indi-
viduals on the earth are at risk of contracting the disease 
[1]. Infections of “Falciparum, ovale, malariae, vivax, and 
knowlesi” are several Plasmodium that can cause malaria. 
Among these, P. falciparum infections are the main con-
tributor to mortality from malaria. Mosquitoes transmit 
the parasite Plasmodium. Because they often bite between 
sunset and daybreak, these mosquitoes are referred to as 
“night-biting” mosquitoes. The parasite enters the blood-
stream and moves to the liver when an infected mosquito 

bites a person. Before returning to circulation, it grows in 
the liver for several days to weeks. At this stage, symptoms 
start to appear, necessitating immediate medical attention 
[2–5]. After the hepatocytes are injured, the parasites enter 
the bloodstream as merozoites, attacking the red blood cells 
(RBCs), and then begin an intraerythrocytic cycle [6–9]. 
This cycle results in structural and metabolic changes to 
RBCs. The ring phase that initiates this cycle is triggered by 
merozoites interacting with RBCs and is followed by mono-
nuclear trophozoites. Moreover, trophozoites can transform 
into schizonts, which are multinucleated cells, when hemo-
globin is broken down, and hemozoin is generated [10]. In 
the “intraerythrocytic series,” healthy erythrocytes display 
a homogeneous distribution of refractive index across the 
cell’s cytoplasm compared to rotting erythrocytes [11]. 
There is a significant difference in refractive index between 
infected and uninfected red blood cells, and it can be used as 
a critical indicator when diagnosing malaria [12]. An optical Extended author information available on the last page of the article
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microscope analysis of a blood smear is the primary method 
to determine whether a patient has malaria. The operation 
requires a skilled and experienced laboratory professional, 
and it takes time for the results to be returned [13]. The other 
two diagnostic techniques available exist for malaria deter-
mination, and they are “polymerase chain reaction (PCR) 
and rapid diagnostic testing (RDT).” Due to many problems 
with their sensitivity, specificity, and more expensive, these 
approaches are less effective [14]. As a result, a simple and 
accurate diagnosis system is required for controlling and 
treating the disease and avoiding hitches and transience [15].

Due to its characteristics, including reflectance, light 
wave absorption, and transmittance, which fluctuate accord-
ing to the environment, optical biosensors currently domi-
nate the rapidly advancing technology. Also, the sensors can 
accurately detect various ailments using various biomedi-
cal devices [16]. They also provide superior sensitivity and 
precision in relation to the medium RI. In recent years, sur-
face plasmon resonance (SPR)-based sensors have become 
famous and emergent compared to other sensors for optical 
sensing due to their remarkable progress in manufacturing 
expertise [17]. It is utilized to identify variations in the RI 
of biological samples and chemical analytes that are directly 
related to the structure of the sensor [18]. The SPR sensor 
operates under the attenuated total reflection (ATR) method 
that is also used to observe changes in a layer’s RI. Also, 
the ATR approach makes use of the total internal reflection 
(TIR) principle, which creates the surface plasmon wave 
(SPW) on the metal–dielectric interface [19]. At the very 
least, the incident light that travels through the ATR crystal 
is reflected off while the inside surface makes contact with 
the detecting zone. In order to produce a transient electro-
magnetic wave that propagates along the metal and dielectric 
contact, SPR needs optical excitation [20]. The chemical 
reaction does the changes in the biomolecules’ concentra-
tion and the sensing RI that lead to changes in the SPW’s 
propagation constant. Consequently, corresponding changes 
occur in the SPR resonance angle [21].

Hence, this method can be used to perceive different 
analyte features in the sensing zone. For a long time, gold 
(Au) and silver (Ag) are primarily used as metallic layers, 
which are coated over the prism’s surface to excite surface 
plasmons due to optical properties like high sensitivity, 
SPR ratio, and less optical damping. However, Ag offers a 
sharp resonance dip that leads to good precision and reso-
lution, whereas Au struggles with a broader curve and has 
poor molecule binding capabilities [4, 22]. Tough Ag pro-
vides a sharp resonance dip but suffers more susceptible to 
oxidation; therefore, to overcome the oxidation problem, 
the nanostructured semiconductor metal oxide titanium 
dioxide ( TiO

2
 ) is placed ahead of Ag metal film because 

of its exceptional properties like a broadband gap (3.2 eV 
for anatase and 3.0 eV for rutile), a strong absorbability, 

excellent chemical stability, and a high RI (i.e., 2.5 for 
anatase and 2.7 for rutile). Due to the aforementioned 
traits, the TiO

2
 layer is added to the interface to produce 

field confinement and enhancement, which is advanta-
geous for sensitivity improvement [4–6, 23]. Furthermore, 
two-dimensional (2D) nanomaterial is considered over 
the TiO

2
 to enhance the sensor’s accuracy and efficiency. 

MXene, graphene, black phosphorus (BP), and molybde-
num disulfide (MoS

2
) are popular 2D family nanomaterials. 

A wide range of applications has been made possible by the 
combination of properties that make MXenes unique [7–9]. 
These properties include high electrical conductivity, the 
mechanical properties of transition metal carbides/nitrides, 
functionalized surfaces that make MXenes’ hydrophilic and 
prepared to bond to different species, high negative zeta-
potential, which enables stable colloidal solutions in water, 
and effective absorption of electromagnetic waves [9, 24]. A 
substance made of  sp2 carbon layers with an atomically thin 
structure and a honeycomb lattice is known as graphene. 
Graphene has received the most research attention in the 
2D family over the past 10 years due to its many remarkable 
properties, including its large surface area, high charge-
carrier mobility, high thermal conductivity, high optical 
activity, high mechanical strength, and low Young’s modu-
lus [25]. It’s fascinating to note that 2D black phosphorus 
has a distinctive wrinkled structure, a high hole mobility of 
up to 1000  cm2  V−1  s−1, excellent mechanical properties, 
tunable band structures, and anisotropic thermal, electrical, 
and optical properties, all of which contribute to its fantastic 
prospects in device applications [26]. MoS

2
 has two char-

acteristics as a result of its model: a hexagonal structure 
made up of covalently bound S-Mo-S atomic layers and a 
“van der Waals” contact between adjacent layers that can be 
used for gas sensing. It also has a thermal conductivity of 
131  Wm−1  k−1 at ambient temperature [6–8, 26]. Therefore, 
this study considers the proposed novel structure that is 
comprised of six layers, such as BK7, Ag, TiO

2
 , 2D nano-

material, and sensing medium, for the detection of infected 
red cells. The reason for this is that there is a substantial 
deviation between RBCs with and without Plasmodium fal-
ciparum infection, which can be represented in refractive 
indices showing the disease’s diagnosis.

Fabrication Process

The BK7 prism must first be thoroughly cleaned with a pira-
nha solution for 1 h at 80 °C to get rid of any impurities or  
flaws. After that, it needs to be air-dried and rinsed with 
distilled water. The prism must then be placed within the 
electron beam evaporator with a fundamental vacuum of 
6 × 10

−6 Torr. Then, a thin coating (1 or 2 nm) of chro-
mium (99.95% purity) must be coated over the prism surface 
by electron beam evaporation in order to increase the Ag 
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adhesion on the prism surface. Then, the conditions can be 
tuned to be voltage of 8.5 kV, current of 45 mA, and deposi-
tion rate of 0.5 Ȧ∕s for creating an Ag (99.99% purity) layer 
[27]. A quartz crystal monitor is capable of controlling the 
layer thickness and deposition rate. The TiO

2
 layer can then 

be placed on top of the Au film. TiO
2
 can be created by 

dissolving 0.1 N of titanium tetra isopropoxide in 20 ml of 
ethanol solution after 30 min of constant stirring. After that, 
we add a few drops of distilled water to form the dispersion 
medium. Twenty minutes was spent with the object in the 
ultrasonic bath [28]. It is then necessary to place a layer of 
2D nanomaterial on top of the TiO

2
 . Researchers in [29] 

have a thorough discussion and provide specific informa-
tion about the synthesis of all 2D nanomaterials. In order to 
identify red blood cells, a sensor chip is lastly placed on the 
rotating stage of the experiment setup [30].

Theory and Methodology

The current section presents the design parameters, 
mathematical models, and equations to measure the sen-
sor’s performance.

Design Parameters

Figure 1 shows the schematic structure of the proposed sen-
sor for red blood cell detection. The structure is made up of 
the Kretschmann configuration, which has the advantage of 
high spectral signal-to-noise ratio by allowing the measure-
ment of directional Raman signals from thin metal films 
[30]. BK7 glass is utilized for light-coupling with a refrac-
tive index (RI) of 1.515 at 633 nm wavelength ( � ), where it 
can provide the least amount of Kerr effect [31]. To excite 

surface plasmons (SPs) at the prism-metal interface, a metal 
film of silver (Ag) is placed over the prism’s surface with an 
RI of 0.059 + 4.243i [32]. Furthermore, TiO

2
 is comprised 

over the Ag layer to improve the capability of molecular 
binding, having the RI of 2.5836 [33]. Moreover, 2D nano-
material is paced on the TiO

2
 to preclude the susceptibil-

ity to oxidization and improve sensor’s efficiency. For this 
study, different 2D nanomaterials are considered such as 
MXene, graphene, BP, and MoS

2
 with RI of 2.38 + 1.33i 

[34], 3 + 1.1491i [35], 3.5 + 0.01i [36], and 5.0947 + 1.2327i 
[37], and thickness of 0.993, 0.34, 0.53, and 0.65 nm, respec-
tively. Finally, the sensing region that consists of red blood 
cells concentration is comprised over 2D nanomaterial. Four 
RBCs are considered for this study, and they are normal 
RBC (NRBC), ring RBC (RRBC), trophozoite phase RBC 
(TRBC), and schizont phase RBC (SRBC) with RI of 1.402, 
1.395, 1.383, and 1.373, respectively [38].

Methodology

This study has investigated the sensor’s performance by 
employing the transfer matrix method (TMM) with Fresnel 
model analysis of multilayer reflection theory. In this event,  
the minimum reflectance intensity ( R

min
 ) of SPR curve 

occurs at the resonance condition, while the propagation 
constant (PC) of electromagnetic wave ( k

x
 ) is equal to PC 

of the wave vector of surface plasmons ( k
spw

 ). The equal-
ing mathematical expressions are mentioned in Eqs. (1) 
and (2) [39]. Furthermore, the resonance angle ( θ

SPR
 ), 

which is an angle where R
min

 is attained, can be evalu-
ated through Eq. (3) [40], where n

p
 , n

Au
 , n

TiO2
 , and n

S
 are 

represented the RIs of the prism, Ag,TiO
2
 , and sensing 

medium, respectively.

Fig. 1  Schematic structure of 
the proposed sensor for red 
blood cell detection
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Moreover, the study analyzes reflectance intensity for the 
SPR sensor by exploiting the angular interrogation technique, 
where reflectance measures with respect to an angle. There-
fore, the SR curve for the study plots between the reflectance 
intensity (R

p
) and the incidence angle. The mathematical rep-

resentations for measuring the R
p
 and reflection coefficient 

( r
p
 ) are made known in Eqs. (4) and (5), respectively [41].

where m
N

 represents a description of the transverse RI for 
the corresponding Nth layer, and numerically calculate by 
using Eq. (6) [42].

Furthermore, Eq.  (7) demonstrates the properties 
matrix of the SPR sensor combined structure ( Z

if
 ) for 

P-polarized incident light [32], where β
k
 represents the 

arbitrary stage constant for kth layer and numerically 
expressive in Eq. (8) [43].

Here, z
k
 and θ

k
 express the wave impedance and input 

angle, at kth layer, respectively, and mathematically pre-
sented in Eqs. (9) and (10), respectively [44], where ε

k
 , μ

k
 , 

and d
k
 are represented the permittivity, permeability, and 

thickness of kth layer, respectively.
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The obtained mathematical expression for calculating the 
reflectivity of the suggested sensor, which includes five layers 
of structures, is displayed below Eq. (11), obtained after all 
the defined parameters have been substituted in Eq. (4) [45].

where r
12

 , r
23

, r
34

 , and r
45

 are well defined the reflected 
amplitudes from 1–2, 2–3, 3–4, and 4–5 layers, respectively, 
and d

m
 denotes thickness of each layer (m = 2, 3, 4, 5).

Sensing Performance Parameters

In this study, we measure three basic and important sensing 
parameters, such as sensitivity, quality factor (QF), and detec-
tion accuracy (DA), to showing the impact of the proposed 
SPR sensor. Sensitivity refers to the ratio of change in the reso-
nance angle ( ∇θ

res
 ) to the change in the RI ( ∇n ). The enhanced 

sensitivity of an SPR sensor for a minute amount of biomol-
ecule concentration variation, it demonstrates shows that it can 
incredibly detect minute structural alterations. Similarly, QF 
refers as the ratio of sensitivity to full-width-half-maximum 
(FWHM), where FWHM is the SPR curve’s width at 50% of  
maximum reflectance intensity. Finally, DA refers as the ratio 
of ∇θ

res
 to FWHM. The improved performance of QF and DA 

demonstrates product quality, noise influence, and sensor accu-
racy. The mathematical expressions to compute the defined  
parameters are shown in Eqs. (12)–(14) [31, 43].
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Results and Discussions

In the first part, the impact of TiO
2
 in the structure is shown 

by comparing the performance between conventional (prism-
Ag-sensing) and TiO

2
-based (prism-Ag-TiO

2
-sensing) struc-

tures. Figure 2a, b show the reflectance curves with respect 
to an angle for normal and infected RBCs using conventional 
and TiO

2
-based structures, respectively. For Fig. 2a, we have 

considered to Ag thickness of 40 nm because < 40 nm is 
not generated the SPR curve, whereas TiO

2
 thickness of 

1 nm is taken between Ag and sensing layer for Fig. 2b; 
the asymmetrical property is observed in Fig. 2, due to 
fluctuations in the SPW’s penetration length and damping 
effect [33, 36]. Figure 2a generates the resonance angles of 
77.80, 76.6, 74.6, and 73.09° for NRBC, RRBC, TRBC, and 
SRBC, respectively. Sensitivity is measured using Eq. (12) 
and obtained sensitivities are 171.43, 168.42, and 162.41°/
RIU for infected cells of RRBC, TRBC, and SRBC, respec-
tively. Similarly, Fig. 2b shows the resonance angles of 
79.1, 77.68, 75.53, and 73.96° for NRBC, RRBC, TRBC, 
and SRBC, respectively. Obtained sensitivities are 202.86, 
187.89, and 177.24°/RIU for infected cells of RRBC, TRBC, 
and SRBC, respectively. The impact of TiO

2
-based sensor 

is that it improves the sensitivity by 18% compared to the 

conventional sensor. Figure 3 presents the graphical rep-
resentation of obtained resonance angles for conventional 
and TiO

2
-based sensors. It demonstrates how the desired 

direction of the SPR resonance shift moves, proving that the 
suggested sensor satisfies the SPR property [35].

The literature identified that the sensitivity and efficiency 
of the sensor can be improved by adding 2D nanomaterial to 
an SPR structure. Therefore, in the second part, the impact of 
2D nanomaterial is presented by calculating and comparing 

Fig. 2  Measuring reflectance 
with respect to an angle for nor-
mal and infected RBCs using 
a conventional, b TiO

2
-based 

structures

Fig. 3  Obtained resonance angles with respect to a sensing RI for 
conventional and TiO

2
-based sensors
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the performance of different 2D materials. Four 2D nanomate-
rials, such as MXene, graphene, BP, and MoS

2
 , are considered 

for the study. Figure 4 presents the reflectance curves for nor-
mal and infected RBCs using the considered nanomaterials, 
whereas Fig. 4a for MXene, Fig. 4b for graphene, Fig. 4c for 
BP, and Fig. 4a for MoS

2
 . In Fig. 4, the SPR curves’ width are 

increased when compared to the TiO
2
-based sensor because 

of the damping effect that increases by depositing several 
layers to the sensor [29]. The obtained resonance angles for 
respected normal and infected RBCs are 80.41, 78.84, 76.52, 
and 74.83° using MXene, 79.62, 78.14, 75.94, and 74.31 
using graphene, 80.20, 78.64, 76.34, and 74.69° using BP, 
and 82.58, 80.67, 78.03, and 76.17° using MoS

2
 . For better 

understanding, the obtained resonance angles are reported 
in Table 1. Sensitivity for Fig. 4 is measured by applying 
Eq. (12) and reported in Table 2. The maximum sensitivity 
of 224.29, 211.43, 222.86, and 272.86°/RIU for respected, 
considered 2D materials improved the sensitivity of 11%, 4%, 

10%, and 34%, respectively, compared to TiO
2
-based sensor. 

This improvement happens as a result of their outstanding 
mechanical, optoelectrical, and penetration depth (PD) qual-
ities [29]. The PD monitors the SPs’ contact length in the 
transverse direction, which is sensitive because biomolecules 
are bonded to the sensing surface in order to detect the RI 
shift of the sensing medium [31]. The MoS

2
 provided maxi-

mum sensitivity of 272.86°/RIU, which is 1.21, 1.29, and 1.22 
times higher than MXene, graphene, and BP 2D materials, 
respectively. Therefore, with this study, we concluded that the 
prism-Ag-TiO

2
-MoS

2
-sensing structure, which is used for fur-

ther investigation of the sensor, provides better performance 
compared to other 2D materials.

Furthermore, optimization of Ag thickness is obtained 
in this section using the iteration method. In this study, Ag 
thickness of 40 to 60 nm is varied with an interval of 5 nm 
while maintaining the constant thicknesses of TiO

2
 and 

MoS
2
 at 1 nm and 0.65 nm, respectively. The SPR property 

Fig. 4  Reflectance curves for normal and infected RBCs using different nanomaterial a MXene, b graphene, c BP, and d MoS
2

Table 1  Measured resonance angles for considered 2D nanomaterials

Structure Resonance angle (°)

MXene Graphene BP MoS
2

NRBC 80.41 79.62 80.2 82.58
RRBC 78.84 78.14 78.64 80.67
TRBC 76.52 75.94 76.34 78.03
SRBC 74.83 74.31 74.69 76.17

Table 2  Measured sensitivities for considered 2D nanomaterials

Structure Resonance angle (°)

MXene Graphene BP MoS
2

NRBC - - - -
RRBC 224.29 211.43 222.86 272.86
TRBC 204.74 193.68 203.16 239.47
SRBC 192.41 183.10 190.00 221.03
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is not satisfied at an Ag thickness of > 60 nm. In the previ-
ous study, the maximum sensitivity is accomplished for the 
detection of RRBC. Therefore, we calculate the sensitivity 
for the detection of RRBC to optimize the Ag thickness. The 
obtained sensitivities are 272.86, 311.43, 344.29, 368.57, 
and 385.71 ◦∕RIU for Ag thickness of 40, 45, 50, 55, and 
60 nm, respectively. Figure 5 shows the graphical represen-
tation of obtained sensitivities with respect to Ag thickness, 
whereas Table 3 reported the resonance angles and sensi-
tivity for NRBC and RRBC. Therefore, since it provides 
the maximum sensitivity, we concluded that the optimized 
thickness of Ag is 60 nm, which is used for further analysis 
of the study for the proposed SPR sensor.

Similarly, the optimization of TiO
2
 thickness is pre-

sented in this section. For the event, TiO
2
 thickness is var-

ied from 0.5 to 1.5 nm with an interval of 0.5 nm, while 
keeping the constant thickness of Ag and MoS

2
 at 60 and 

0.65 nm, respectively. The SPR property is not satisfied at 
TiO

2
 thickness of > 1.5 nm. The achieved sensitivities are 

327.14, 385.71, and 475.71 ◦∕RIU for TiO
2
 thickness of 0.5, 

1, and 1.5 nm, respectively. Figure 6 shows that obtained 
sensitivities with respect to TiO

2
 thickness, whereas Table 4 

noted the resonance angles and corresponding sensitivities. 
Therefore, this study witnessed that the optimized thickness 

of TiO
2
 is 1.5 nm, where it achieves the maximum sensitiv-

ity, and the same thickness is used for further investigation.
Moreover, optimization of MoS

2
 thickness for the pro-

posed sensor is exhibited. Here, we consider MoS
2
 thickness 

is S × 0.325, while keeping the constant thickness of Ag and 
TiO

2
 at 60 and 1.5 nm, respectively, where S is number of 

MoS
2
 layers that varied from 1 to 2.5 with an interval of 0.5. 

The SPR property is not satisfied at MoS
2
 layers of > 2.5. 

The sensitivities of 320, 381.43, 475.71, and 294.29 ◦∕RIU 
are achieved for MoS

2
 layers of 1, 1.5, 2, and 2.5, respec-

tively. The maximum sensitivity is furnished at S = 2; there-
fore, this study confirmed that the optimized thickness of 
MoS

2
 is 0.65 nm. The graphical representation of furnished 

sensitivities are depicted in Fig. 7, whereas Table 5 noted the 
resonance angles and corresponding sensitivities.

After optimizing the thickness of Ag, TiO
2
 , and MoS

2
 

at 60, 1.5, and 0.65 nm, respectively, the SPR reflectance 
curves with respect to an angle are clarified for respected 
RBCs; the obtained resonance angles and sensing param-
eters, such as sensitivity, QF, and DA that are calculated 
using Eqs. (12)–(14) are reported in Table 5. The resonance 
angle of Fig. 8 is satisfied the SPR property.

The obtained resonance angles are 86.76, 83.43, 79.41, 
and 77.42° for respected RBCs. The obtained sensitivities 
are 475.71, 371.05, and 322.07; QF are 236.82, 210.82, 
and 205.14; DA are 1.66, 4.01, and 5.95 for infected 
RRBC, TRBC, and SRBC, respectively, where FWHM 

Fig. 5  Measured sensitivities with respect to Ag thickness for opti-
mizing the layer thickness

Table 3  Resonance angle and sensitivity vs Ag thickness

Ag  
thickness 
(nm)

Resonance angle (°) ∇�
res

(°) Sensitivity (°/RIU)

NRBC RRBC

40 82.58 80.67 1.91 272.86
45 83.34 81.16 2.18 311.43
50 83.98 81.57 2.41 344.29
55 84.44 81.86 2.58 368.57
60 84.79 82.09 2.71 385.71

Fig. 6  Measured sensitivities with respect to TiO
2
 thickness for opti-

mizing the layer thickness

Table 4  Resonance angle and sensitivity vs TiO
2
 thickness

TiO
2
  

thickness 
(nm)

Resonance angle (°) ∇�
res

(°) Sensitivity (°/RIU)

NRBC RRBC

0.5 83.25 80.96 2.29 327.14
1 84.79 82.09 2.7 385.71
1.5 86.76 83.43 3.33 475.71
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values for infected RBCs are 2.01, 1.76, and 1.57°. The 
highest sensitivity, QF, and DA for the proposed sensor are 
475.71, 236.82, and 5.95, respectively, which are enhanced 
very highly as compared to the performances of existing 
works, shown in Table 6.

Conclusion

The performance signature of the titanium dioxide ( TiO
2
)-2D  

nanomaterial-based surface plasmon resonance (SPR) sensor  
for detection of infected red blood cells (IRBCs) with Plas-
modium falciparum is presented in this paper. The proposed 
structure consists of five layers, such as prism, silver (Ag), 
TiO

2
 , 2D nanomaterial, and sensing medium. Initially, an 

impact of TiO
2
 in the SPR sensor is shown, demonstrating 

that 18% of sensitivity is improved with a TiO
2
-based sen-

sor (prism-Ag-TiO
2
-sensing) compared to a conventional  

sensor. Moreover, the influence of 2D nanomaterials, such 
as MXene, graphene, BP, and MoS

2
 is observed, resulting 

that MoS
2
 is provided the maximum sensitivity compared 

to others. The respected 2D materials are improved the sen-
sitivity by 11%, 4%, 10%, and 34% compared to the TiO

2
- 

based sensor. Furthermore, the optimization of Ag, TiO
2
 , and 

MoS
2
 thicknesses is presented by observing the maximum 

sensitivity. By using the optimized structure, we plotted the 
SPR curves and measured the sensitivity, quality factor (QF), 
and detection accuracy (DA) for the detection of IRBCs. The 
highest attained parameters are sensitivity of 475.71 ◦∕RIU , 
QF of 236.67 RIU−1 and DA of 5.95 for the proposed sen-
sor, which are far greater than performance of existing work. 
Therefore, the proposed SPR sensor can be utilized as high-
performance carrier for IRBC detection, and accomplishes a 
new way for efficient photodetectors in the biomolecular field.
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Fig. 7  Measured sensitivities with respect to MoS
2
 thickness for opti-

mizing the layer thickness

Table 5  Resonance angle and sensitivity vs MoS
2
 thickness

TiO
2
  

thickness (nm)
Resonance angle (°) ∇�

res
(°) Sensitivity (°/RIU)

NRBC RRBC

1 83.08 80.84 2.24 320
1.5 84.67 82 2.67 385.71
2 86.76 83.43 3.33 475.71
2.5 87.32 85.26 2.06 294.29

Fig. 8  Reflectance curves for normal and infected blood cells using 
the proposed structure

Table 6  Performance comparison between proposed and existing work
References Sensitivity (°/RIU) QF ( RIU−1) DA

Jia et al. [39] 165 - -
Pal et al. [40] 156.33 - 0.64
Taya et al. [41] 103 - -
Mudgal el al. [42] 194.12 16.04 0.27
Pal and Jha [43] 280 - -
Uniyal et al. [44] 258.28 35.5 0.14
Kumar et al. [45] 264.59 - 0.12
Daher [38] 461.43 - -
This work 475.71 236.67 5.95
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