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Abstract
This paper reports a study of the reflectance of the optical sensors based on graphene under uniform strain. Assuming the 
graphene layer is surrounded by two different semi-infinite dielectric media, the generalized Fresnel coefficients are derived 
as a function of usual quantities (e.g., dielectric constants, incident angles, and strain) and anisotropic optical conductiv-
ity. The strain not only changes the electronic band structure but also can be employed to tune the electronic collective 
excitations (plasmons) and thus the optical reflectance of graphene monolayers. One of the most common techniques for 
plasmon excitation is the Kretschmann configuration. It is based on the observation of a sharp minimum in the reflection 
coefficient versus the angle (or wavelength) curve. Because strain induces anisotropy in graphene optical conductivity the 
strain-dependent orientation plays an important role to manipulate the variation of graphene plasmon energy, which may be 
useful to synchronize graphene properties in plasmonic devices to enhance light-matter interactions.
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Introduction

Surface plasmons (SPs) are transverse magnetic (TM) polar-
ized electromagnetic waves coupled with charge density oscil-
lations (plasmons) traveling along the metal–dielectric inter-
face. The electric field associated with these oscillations decay 
exponentially into the dielectric medium making plasmons 
extremely sensitive to the refractive index of the medium. 
When the wave vector of the incident light matches the wave 
vector of the SP wave, the SP resonantly couples with the 
incident light, and a remarkable electric field enhancement 
can be realized, and the so-called SP resonance occurs. Usu-
ally, surface plasmons can be excited via evanescent waves 
in the Kretchmann configuration utilizing high-index prisms 
where the wavevector mismatch between vacuum and SP is 
compensated [1]. Once the SP is excited in the Kretchmann 
configuration, partially of the energy associated to the inci-
dent electromagnetic radiation will be transferred to the SP, 
and a sharp minimum is observed in the reflectance versus 

angle (or wavelength) curve. The ability of controlling strong 
light-matter interaction through surface plasmons in metals 
has driven the field of plasmonics. Additionally, increasing 
research has been carried out to investigate and manipulate 
SP for new sensing functionalities. Based on this principle, 
different architectures of plasmonic sensors involving metals 
have been designed in previous years [2, 3]. However, the 
major obstacle in developing plasmonic applications in metal-
lic devices is dissipative loss, which limits the propagation 
length of surface plasmons and broadens the bandwidth of 
surface plasmon resonances and their surfaces easily oxidize 
degrading their plasmonic characteristics [4]. To overwhelm 
these deficiencies, some new structures have been proposed 
to investigate surface plasmon resonances for new plasmonic 
materials; among them, graphene has emerged as an alter-
native, unique two- dimensional material able to extend the 
field of plasmonics for terahertz to mid-infrared applications 
[5–7]. Graphene is a two-dimensional material made of car-
bon atoms arranged in hexagonal lattice, graphene material 
has attracted tremendous attention due to electrical, optical, 
and chemical properties which can be tunable to external 
parameters, including voltage-induced doping, selective sub-
strate interactions, or strain engineering. Two-dimensional 
plasmons in graphene exhibit unique optoelectronic prop-
erties and mediate extraordinary light–matter interactions. 
Therefore, these exceptional properties make graphene a 
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promising candidate for innovative plasmonic devices and 
possible applications in photonics, optoelectronics, and in 
sensor technologies [8]. Due to the fundamental mismatch 
between the surface plasmon supported by a graphene mon-
olayer and that of wave vector of light, such coupling is basi-
cally weak and plasmonic crystals are required to enhance it to 
achieve adequate efficiency for practical device applications. 
Concerning this purpose, artificially engineering structures 
(or metamaterials) have been used as a platform for improving 
light-mater interaction in the last years. Hence, in the context 
of potential applications the exploration of graphene plasmons 
with metamaterials plays an important task in plasmonics and, 
studying the interactions of the plasmon modes in multilayer 
graphene structures with metallic or dielectric substrates offer 
new opportunities for applications and fundamental studies of 
collective electron excitations in plasmonic metamaterials for 
biological and chemical sensing [9–17], photodetectors [18] 
and optoelectronics [19, 20]. Additionally, plasmon proper-
ties in double-layer graphene and multilayer graphene systems 
considering the effects of temperature, spin-polarized in the 
presence of the external magnetic field, and applied electric 
field have been reported [21–25].

When a graphene layer is subjected to mechanical strain, 
it does not break the lattice symmetry but somewhat the 
high-symmetrical points of the Brillouin zone are modi-
fied in such a way the Dirac cones located in graphene at 
points K and K´ move in opposite directions [26, 27]. It has 
been shown that monolayer graphene can tolerate stretching 
deformations as large as 20% without substantially destroy-
ing its crystal structure but opens a gap above this threshold.

This large elastic deformation affects substantially the 
graphene energy band structure and therefore, it is thermal, 
optical properties and other plasmonic properties [28–30]. On 
the other hand, the influence of the strain on several electronic 
properties produces also a significantly changes on the elec-
tronic polarizability and thereby collective electronic excita-
tions associated with anisotropic honeycomb lattice [31–33].

In this work, we theoretically investigate plasmon disper-
sion and optical reflectance of mono  graphene structures 
under uniform strain. For this purpose, we make use of the 
linear response theory and the Kubo formalism to calculate 
the induced charge density, related with the anisotropic opti-
cal conductivity through the charge conservation equation. 
We have found analytical and numerical results displaying 
the effect of strain on the electronic charge density excita-
tions in the long-wave limit by varying several parameters, 
as the angle given the direction of the applied strain, the 
separation of the layers, etc. It is worth noting that collec-
tive charge density excitations and optical reflectance can 
efficiently controlled by strain, and it is possible to over-
come the mismatch between the momentum of the surface 
plasmon and that of incident radiation and thereby improve 
the light-matter interaction. Usually, surface plasmon can 

be excited via evanescent waves using the Kretschmann 
configuration, Once, surface plasmon is excited in the 
Kretschmann configuration, a sharp minimum is observed 
in the reflection coefficient versus incident angle (or wave-
length) curve. Recently [34], a theoretical study of the dis-
persion of linearly polarized light between two dielectric 
media separated by an anisotropic graphene under oblique 
incidence has been reported considering the unstrained high-
frequency optical conductivity (equal to e2/4ħ for ħω > 2Ef 
where Ef is the Fermi energy), the optical response of gra-
phene is limited by the fine-structure constant α ≈ 1/137, 
which describes the coupling between light and relativistic 
electrons in quantum electrodynamics.

Additionally, plasmons at low frequencies in anisotropic 
Dirac systems have been theoretically studied [35], these 
authors showed that the strong anisotropy can be used to guide 
the plasmon modes with new properties in the field of plas-
monics. Also, plasmons modes in one and double-layer black 
phosphorous structures under uniaxial strain have been reported 
[36], they found that the strain-dependent orientation can be 
considered to control the variations of the plasmon energy.

Theoretically Model

In-plane graphene sheet under uniform strain appreciably 
modify its electronic band structure around the Fermi level, 
which induces anisotropy in the hoping parameters in the 
tight-band model. Our studied system, selecting the Carte-
sian system in the x-axis along the graphene zigzag direction 
of the lattice, the strain tensor reads

where ε is the strain modulus, θ denotes the angle between 
the applied tension and the x-axis, and ρ being the Poisson 
ratio. The shift of the Dirac cones under uniaxial strain can 
be explained and quantitatively described by a combination 
of a tight-binding approximation and linear elasticity theory 
[37]. The frequency-dependent conductivity tensor of gra-
phene under uniform strain can be written as [38]

where Δ = -β ⃖⃗�, β ~ 1.1 is the electron Gruneisen parameter, 
and �(�) is the optical conductivity which considers the con-
tribution of the intraband and interband electronic transitions 
in unstrained graphene,

and

(1)⃖⃗𝜀 = 𝜀

(
cos2𝜃 − 𝜌sin2𝜃 (1 + 𝜌)cos𝜃sin𝜃

(1 + 𝜌)cos𝜃sin𝜃 sin2𝜃 − 𝜌cos2𝜃

)

(2)�⃖�����⃗𝜎(𝜔) = 𝜎(𝜔)[I + 2Δ − Tr(Δ)]

(3)�intra =
2ie2 kBT

�(� + iΓ)
ln

[
2cosh

(
Ef

2kBT

)]
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Within the linear-response theory, plasmon modes can 
be described as the zeros of the dielectric function ε(q,ω), 
which depends on the density–density correlation func-
tion, i.e., the polarization of the non-interacting electron 
gas �(q,�) = 1 − VqΠ(q,�) and Vq = 2�e2∕�0q is the Fou-
rier transform of the two-dimensional Coulomb electron– 
electron interaction and ε0 the dielectric constant of the 
medium. Because we are interested in the linear-response 
function to smoothly varying external potential φext(q,ω), 
the charge density induced in the two-dimensional electron 
gas in graphene up first order approximation in φext(q,ω) is 
�ind(q,�) = e2Π(q,�)�ext(q,�) and satisfies the usual con-
tinuity equation of electrodynamics [39]

Finally, from Eqs. (8)–(10) and at low energy approxi-
mation such that ω <  < 2Ef the interband part Eq. (10) is 
negligible comparing to the intraband part. Therefore, in the 
low energy approximation range, the optical conductivity is 
well described by the Drude-like surface conductivity. For 
Ef >  > kBT the optical conductivity depends linearly on the 
Fermi energy

where q = q(cosφ, sinφ) is the wave vector associated with 
the charge fluctuations induced in the strained graphene. 
Thus, it follows that the electron polarizability for graphene 
under uniaxial strain results in (ω >  > Γ)

As can be observed, in linear response theory, the 
deformed graphene presents an anisotropic optical response 
given by Eq. (2) and as a consequence, the non-interacting 
graphene electron polarizability depends on the strain modu-
lus and the direction of the applied uniform strain. It is worth 
to noting that in the absence of strain, i.e., ε = 0, the graphene 
electron polarizability at long wavelength approximation is 
recovered [40]. One thus finds, that at low frequencies with 
the graphene electron polarizability, Eq. (7), and equaling the 
dielectric function ε(q,ω) = 1 – Vq Π(q,�) to zero, we arrive 
at the following equation for the surface plasmon of graphene 
under uniform strain

(4)�inter =
e2

4

[
1

2
+

1

�
+ arctan

(
� − Ef

2kBT

)
−

i

2�
ln

(
� + Ef

)2
(
� − Ef

)2
+ (2kBT)

2

]

(5)i�Π(q,�) − q����(�)q� = 0

(6)�g(�) =
e2Ef

�

i

� + iΓ
(1 −

�2

4E2

f

)

(7)

Π(q,�) =
Ef

�

q2

�2

(
1 −

�2

4E2

f

)
[1 − 2�(1 + �)� cos (2� − 2�)]

It can be seen the plasmon energy remains the dependence 
of q1/2 which is a characteristic of the two-dimension electron 
gas system, and it is maximum when it propagates perpendic-
ular to the applied strain and minimum for θ = φ. These latter 
properties of the graphene plasmon modes allow us to manip-
ulate the plasmon energy and enhance light-matter interac-
tions in plasmonic metamaterials. In Fig. 2a, the optical plas-
mon modes are depicted as a function of the wave vector for 
different values of the stretching in the amchair direction (θ 
– φ = 0), as it is shown the plasmon energy decreases for large 
values of the applied strain in this particular direction. On the 
other hand, the dependence of optical plasmons as a function 
of the plasmon wave vector is shown in Fig. 2b for different 
directions of the applied strain. As can be observed, the opti-
cal plasmon energy is free landau damping in the long wave 
limit and it increase with increasing values of the direction of 
the applied stretching and reach its maximum value when the 
plasmon wave vector and the applied strain are orthogonal to 
each other (θ-φ = π/2). However, as q increases, it is expected 
that the plasmon dispersion relation of the graphene layer 
under strain decay into the continuum of the interband single 
particle excitation region.

Generalized Fresnel Equations

To investigate the reflection of a linearly polarized electromag-
netic wave through two semi-infinite dielectric media with die-
lectric constants ɛ1 and ɛ2 separated by a deformed graphene 
layer located at z = 0, whose optical conductivity is character-
ized by the second-order symmetric tensor given by Eq. (2). 
As depicted in Fig. 1, if the x–y plane is the interface plane, 
for wave propagation in the x direction, the magnetic field 
for p polarization, the magnetic field is polarized along the 
y-direction and can be written in the form H = (0, Aeiqz + Be−iqz, 
0)eiκx − iωt = (0, Φp, 0) and the electric field associated with this 
electromagnetic wave is E = −c∕i��s(−�zΦp, 0, �xΦp) with 
qs = (εs ω2/c2-κ2)1/2 (s = 1,2) and c the light velocity in vacuum. 
Furthermore, for s polarization the electric filed is polarized 
along the y-direction, i.e., E = (0, Ceiqz + De−iqz, 0)eiκx−iωt = (0, 
Φs, 0) and H = c∕i��(−�zΦs, 0, �xΦs) with � = 1 , the mag-
netic permittivity.

The electric and magnetic fields at the interface can be 
related by the following boundary conditions

(8)�2(q) =
4e2Ef

�1 + �2
q[1 − 2�(1 + �)� cos(2� − 2�)]
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where n is the unit vector normal to the surface and J is the 
surface current density of the graphene under uniform strain, 
and is given by J = σE, namely

with σij being the components of the graphene tensor con-
ductivity. Applying the boundary condition from Eq. (9), the 
field coefficients in the medium 1 can be related with the 
field coefficients of the medium 2 as follows [34, 41, 42], 

Here, D represents the transfer matrix connecting the coef-
ficients at adjacent monolayer graphene and it is given by

n x (E
2
- E

1
)z= 0

= 0

(9)n x (H
2
-H

1
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=J
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As can be observed from these equations, in general, in 
the reflected waves the polarization of the incident wave is 
not conserved due to the anisotropy of the tensor conductivity 
associated to the graphene under uniform strain. In addition, 
the transmitted waves also include both s and p polarization 
waves. Namely, the incident s or p light polarization is only 
preserved if �xy = 0 . With the transfer matrix, we can easily 
calculate the optical spectra such as reflection, transmission, 
and absorption for the deformed graphene. Assuming that the 
incident light is p-polarized, Eq. (11) reduces to [42]

in terms of the elements of the transfer matrix D, the reflec-
tion and transmission coefficients can be written as

where the first and second terms on the right size of Eq. (14) 
represent the contribution of the reflectance and transmis-
sion of p and s waves, respectively. It is worth mention 
that when the strain vanishes (ɛ = 0) thus �xy = 0 , and the 
reflection and transmission coefficient for a single graphene 
layer embedded in dielectric constants ɛ1 and ɛ2 are like that 
obtained in Ref. [43].

Numerical Results

As we mentioned before, the zeros of the dielectric constant 
of monolayer graphene under uniform strain give the relation 
dispersion of the plasmon modes given by Eq. (8) which in 
general, will depend on the graphene parameters and the 
applied strain. Graphene plasmon excitations exist and are 
free landau damping into the intraband and interband single 
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Fig. 1  Schematic representation of the scattering geometry for oblique 
incidence with incident angle θi between two different dielectric media 
with strained graphene separating them
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particle excitations where 𝜔 > 𝛾q and 2Ef − 𝛾q > 𝜔 and the 
electron polarizability Π(q,�) is real In Fig. 2a, the optical 
plasmon modes are depicted as a function of the wave vec-
tor for different values of the stretching in the direction such 
that θ – φ = 0, as it is shown the plasmon energy decreases 
for large values of the applied strain along the plasmon 
propagation. On the other hand, the dependence of optical 
plasmons as function of the plasmon wave vector for fixed 
applied strain is shown in Fig. 2b for different directions 
of the applied strain. As can be observed, the optical plas-
mon energy is free landau damping in the long wave limit 
and it increase with increasing the direction of the applied 
stretching and reach its maximum value when the plasmon 

wave vector and the applied strain are orthogonal to each 
other (θ-φ = π/2). However, as q increases, it is expected 
that the plasmon dispersion relation of the graphene layer 
under strain decay into the continuum of the interband single 
particle excitation region. Because strain induces anisotropy 
in graphene optical conductivity, the strain-dependent orien-
tation plays an important role to manipulate the variations 
of the graphene plasmon energy, which may be useful to 
tune graphene properties in plasmonic devices to manipulate 
light-matter interaction.

Usually, surface plasmon can be excited via evanescent 
waves in the Kretschmann configuration, utilizing high-index 
prisms, where the wave vector matching between incident 

Fig. 2  a Plasmon dispersion 
relation for graphene for differ-
ent applied uniform strain along 
the plasmon wave propagation, 
i.e., θ – φ = 0, ε1 = ε2 = 1 and 
Fermi energy Ef = 0.5 eV. ɛ = 0.0 
(Green), ɛ = 0.05 (Black), ɛ = 0.1 
(Red), ɛ = 0.15 (Purple). b Simi-
lar to panel (a) but for different 
directions of the uniaxial strain 
of magnitude ɛ = 0.1. θ – φ = 0 
(Blue), θ – φ = π/6 (Cyan), 
θ-φ = π/3 (Red), θ – φ = π/2 
(Green)
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light and surface plasmon is compensated. Once surface plas-
mon is excited in the Kretschmann configuration, a sharp 
minimum is observed in the reflection coefficient versus inci-
dent angle (or wavelength) curve. Figure 3 shows the varia-
tions of the reflectance with the incident angle for different 
directions of the applied strain and taking the plasmon propa-
gation angle φ = 0. As can be seen, when the angle of the 
applied strain increases, there is a shift of the resonance peak 
to lower incident angle and a reduction in the amplitude of 
the resonance dip. The dip of the surface plasmon resonance 
curve corresponds to the partial absorption of energy from 
the incident light to surface plasmons. Thus, it indicates that 
a greater depth of the dip is better the efficiency of resonance, 
and this occurs when the applied strain is perpendicular to the 
direction of the plasmon propagation. In Fig. 4, the reflec-
tance of the monolayer graphene under strain is depicted as 
a function of the angle of p-polarized incident radiation. One 

important note from this plot is the shift to lower incident 
angles of the resonance dip in the reflectance when the strain 
increases for θ-φ = π/2, i.e., an applied strain perpendicular 
to the direction of the plasmon propagation. Surface plasmon 
resonance can be also used to detect biological molecules. 
This feature is used to design optical biosensors that can 
measure the refractive index when the biomolecules become 
adsorbed on the graphene surface and create a layer of refrac-
tive index higher than that of the air (ε2 in Fig. 1), resulting in 
a change in the resonance angle. Figure 5 plots the theoretical 
reflectance against the resonance angle for different refrac-
tive index of the sensing medium for uniaxial strain with 
the same magnitude ɛ = 0.1, at θ-φ = π/2 and for fixed Fermi 
energy Ef = 0.5 eV. As can be seen, there is a reduction on the 
amplitude and a shift on the resonance angle of the minimum 
of the reflectance curve with increasing refractive index of 
the sensing medium. Therefore, this plasmonic metamaterials 

Fig. 3  Dependence of the p-polarization reflectance on the incident 
angle for ɛ1 = 2.25, ɛ2 = 1, frequency of the incident radiation ω = 6.2832 
Thz for different directions of the applied uniaxial strain with ɛ = 0.1, 
Ef = 0.5 eV and φ = 0 

Fig. 4  Dependence of the p-polarization reflectance on the incident 
angle for ɛ1 = 2.25, ɛ2 = 1, frequency of the incident radiation ω = 6.2832 
Thz for different uniaxial strain perpendicular to plasmon propagation, 
i.e., θ – φ = 90° and Ef = 0.5 eV 

Fig. 5  Dependence of the p-polarization reflectance on the incident angle 
for ɛ1 = 2.25, applied strain ɛ = 0.1, θ – φ = 90°, Ef = 0.5  eV, ω = 6.2832 
Thz, for different dielectric constant of the sensing medium ɛ2

Fig. 6  Shows the dependence of the p-polarization reflectance on the 
incident angle for different frequencies of the incident radiation for 
ɛ = 0.1, θ – φ = 90°, ɛ1 = 2.25, ɛ2 = 1 and, Ef = 0.5 eV 
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are very sensitive to the changes of refractive index of the 
dielectric media in the vicinity of the graphene layer. On 
the other hand, Fig. 6 illustrates the reflectance intensity for 
uniaxial strain with the same magnitude ɛ = 0.1 for differ-
ent frequencies of the incident radiation at θ-φ = π/2 and for 
fixed Fermi energy Ef = 0.5 eV. The reflectance exhibits a 
maximum dip ω = 2πTHz as compared with ω = 3πTHz and 
ω = 4πTHz, respectively. These important features indicate 
that the surface plasmon resonances dip with better excitation 
corresponds to lower frequencies.

Conclusions

In this study, the collective electronic excitations in monolayer 
graphene structure were investigated under uniaxial strain. 
Long-range Coulomb interactions in the deformed graphene 
lead new set of spectra of surface plasmons, which depend 
on a certain characteristic parameter of the applied strain. 
These charge density fluctuations can be excited by light 
using the Kretchmann configuration. Under this configura-
tion, we derived the Fresnel coefficients for oblique incidence 
of linearly p-polarized light through two dielectric media with 
anisotropic graphene layer at the interface. Based on these 
generalized coefficients it was demonstrated that the light 
scattering problem cannot be decoupled in pure p-polarized 
waves. In other words, whenever the nondiagonal conductiv-
ity component σxy is not zero, the incident polarization is not 
conserved. To illustrate our findings, we consider the uniaxial 
strain monolayer graphene. The strain effects on the reflec-
tance were estimated as a function either of the magnitude or 
the strain direction. This opens new possibilities for control-
ling light-matter interaction on graphene structures.
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