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Abstract
For noble metal core–shell nanomaterials with gaps, inserting Raman reporter molecules into the gaps allows for great 
Raman enhancement and has found promising applications in molecular analysis, bioimaging, and other fields. Herein, 
we synthesized Au/AgAu core–shell nanostructures with rhodamine B molecules encapsulated in the nanogap. Au/AgAu 
heterostructures have magnetic plasmon resonance by selecting gold nanocups as the substrate and tunable gap width by 
adjusting the molar ratio between Au and Ag during growing the shell. The strong and adjustable plasmon coupling between 
the core and the shell results in prominent electromagnetic field enhancement. Under the synergistic effect of electromagnetic 
plasmon resonance and plasmon coupling, the Au/AgAu heterostructures show excellent surface Raman scattering signal. 
Au/AgAu core–shell nanostructures with ~ 3.2 nm nanogap width display the highest Raman intensity. As the gap width is 
further reduced, the Raman signal gradually decreases, which may be due to the fact that the thicker alloy shell weakens the 
light penetration and scattering. Our findings can provide the inspiration for synthesize gap-enhanced Raman tags based on 
magnetic plasmon coupling.
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Introduction

Raman scattering spectroscopy can offer the information of 
molecular vibration and rotation, and it is a qualitative and 
quantitative analysis method that can be widely used in vari-
ous scientific fields and daily life [1–5]. However, the signal 
of Raman scattering is too weak to be observed [6], and peo-
ple have been exploring various ways to enhance the Raman 
scattering signal. The methods of enhancing Raman scat-
tering mainly include surface-enhanced resonance Raman 
scattering (SERRS), coherent anti-Stokes Raman scattering 
(CARS), and surface-enhanced Raman scattering (SERS) 
[7–14]. SERS is a phenomenon associated with significant 

amplification of the Raman signals of analytes located near 
the surface of signal-enhancing materials, and people usu-
ally improve Raman performance by combining the plas-
mon coupling of noble metal nanomaterials. SERS based 
on noble metal nanomaterials can be applied in molecular 
analysis, material characterization, and other fields [15–19]. 
Various forms of Raman signal enhancement can be eas-
ily achieved by changing the plasmon properties, and the 
plasmon characteristics are controllable by changing the 
morphology, size, structure, and composition of noble metal 
nanomaterials [20–26].

For SERS based on plasmon coupling of noble metal 
nanomaterials, the main enhanced physical mechanism is 
the local electric field enhancement due to plasmon coupling 
and hot spots [13, 27–31]. Therefore, the design and prepa-
ration of noble metal nanostructures with strong electro-
magnetic fields and abundant hot spots is the key to achieve 
surface Raman enhancement [32–38]. Ding’s research 
group et al. reported that gold nanorods with tunable sur-
face roughness were obtained with all-surround hot spots to 
achieve SERS [32]. Lin et al. reported an Au@Ag core–shell 
nanocube with fine-tuned edge length as SERS substrate for 
Raman enhancement [33]. Ye et al. reported that a kind of 
Au–Ag hybrid multi-shell nanoparticles enhanced the SERS 
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performance of the NPs [34]. Furthermore, researchers have 
found that the nanogap in the interior can make Raman mol-
ecules almost not be affected by the external environment, as 
well as Raman molecules will be subjected to uniform and 
stably enhanced electromagnetic fields in the interior of the 
nanogap [39–46]. Ma’s team reported that Au/AgAu hybrids 
with adjustable gap width and counts were synthesized by 
controllable galvanic replacement based on Au nanospheres 
and achieved outstanding SERS response [39]. Zhang’s 
research group prepared Au/AgAu core–shell nanorods with 
Raman reporters embedded in the nanogap, which generated 
strongly enhanced and stable Raman signals [40]. Zhao et al. 
reported gap-tethered SERS-active Au@AgAu nanoparticles 
serving as Raman tags for the detection of MC-LR at a very 
low concentration [41].

However, in previous work, most nanostructures only 
exhibit electric field enhancement, and there are few reports 
of magnetic field enhancements. In this work, Au/AgAu 
core–shell nanostructures have not only electric but also 
magnetic plasmon resonance by selecting gold nanocups 
as the substrate. The gap width between the core and shell 
is tunable by adjusting the molar ratio of Au to Ag dur-
ing growing the shell. The prepared Au/AgAu core–shell 
nanostructures have tunable plasmon resonance and strong 
electromagnetic field, which yield Au/AgAu core–shell 
nanostructures with improved and controllable SERS sig-
nals. Subsequently, the physical mechanism of Raman signal 
enhancement is discussed.

Material and Methods

Materials

Cetyltrimethylammonium bromide (CTAB, 99.0%) and 
N-hexadecyltrimethylammonium chloride (CTAC, 99.0%) 
were obtained from Aladdin. Thioacetamide (TAA, 99.0%), 
lead acetate (Pb(Ac)2, 99.5%), L-ascorbic acid (AA, 99.7%), 
chloroauric acid (HAuCl4⋅4H2O, 99.0%), and silver nitrate 
(AgNO3, 99.5%) were bought from Sinopharm Chemical 
Reagent Co. Ltd. (Shanghai, China). Deionized water with 
a resistivity of about 18.2 MΩ⋅cm was used as the solvent 
in all experiments.

Synthesis of Rhodamine B (RhB)‑Modified Gold 
Nanocups with Ag Shell (Au/Ag Nanocrystals)

Gold nanocups were prepared by selective growth of gold 
on PbS nanooctahedra and subsequent selective dissolution 
of the PbS component [47]. The as-prepared gold nanocups 
(2 mL) were mixed with RhB aqueous solution (2 × 10−4 M, 
2 mL) and shaken for 4 h. The RhB-modified gold nano-
cups were centrifuged at 4500 rpm for 5 min and redispersed 

in deionized water (2 mL). Subsequently, CTAC (0.3 mL, 
0.2 M) and CTAB (0.2 mL, 0.2 M) were added to 2 mL RhB-
modified gold nanocups and heated with magnetic stirring 
at 60 °C for 10 min. Afterwards, the pre-prepared solution 
A (AgNO3 (0.08 mL, 0.01 M) and deionized water (1 mL)) 
and solution B (CTAC (0.2 mL, 0.2 M), AA (0.3 mL, 0.1 M) 
and deionized water (0.5 mL)) were slowly and alternately 
injected into the pre-warmed solution and stirred at 60 °C for 
4 h. The resulting product was then centrifuged at 4500 rpm 
for 6 min, and the precipitate was redispersed in deionized 
water (2 mL).

Synthesis of Gap‑Tunable and RhB‑Modified Au/
AuAg Core–Shell Nanostructures

The Ag of the Au/Ag core–shell nanostructures was replaced 
with Au by galvanic replacement and overgrowth process, 
and a nanogap of tunable width was created between the 
gold nanocups and the AuAg alloy shell. The prepared Au/
Ag core–shell sample (2 mL) and CTAB (0.7 mL, 0.2 M) 
were mixed and heated with magnetic stirring at 60 °C for 
10 min. Afterwards, the pre-prepared solution A (HAuCl4 
(0.08 mL, 0.01 M) and deionized water (1 mL)) and solution 
B (CTAC (0.2 mL, 0.2 M), AA (0.3 mL, 0.1 M) and deion-
ized water (0.5 mL)) were slowly and alternately injected 
into the pre-warmed solution and stirred at 60 °C for 4 h. 
The resulting product was then centrifuged at 4500 rpm for 
6 min, and the precipitate was redispersed in deionized water 
(4 mL). The width of the nanogap was tuned by adjusting the 
amount of the HAuCl4 from 0.02 to 0.32 mL.

Sample Characterization

The transmission electron microscopy (TEM) images were 
obtained with a JEOL 2010 operating at 200 kV. Scanning 
electron microscopy (SEM) observations were performed 
on a Zeiss Sigma FE-SEM operated at an accelerating volt-
age of 20 kV. The extinction spectra were measured on a 
TU-1810 UV–Vis spectrophotometer. The SERS spectra 
were acquired with the laser source with a wavelength of 
633 nm (1 mW) for 10 s of illumination on a HORIBA 
XploRA Plus Raman microscope.

Results and Discussion

We prepared RhB-mediated Au/AuAg core–shell nano-
structures based on gold nanocups by a controlled galvanic 
replacement and overgrowth process. Due to the excel-
lent magnetic plasma properties of gold nanocups, Au/
AgAu core–shell nanostructures have tunable plasmon 
resonance peaks and different widths of nanogaps, and 
their SERS properties are dependent on the gap width and 
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the thickness of the alloy shell. The detailed preparation 
process is shown in Fig. 1a. First, we used gold nanocups 
(Fig. 1b) that were obtained by selective growth of Au 
on PbS nanooctahedra and subsequent selective dissolu-
tion of the PbS component) as a starting substrate. Au/Ag 
core–shell nanostructures were synthesized by adding the 
precursor AgNO3 and the reducing agent AA. Figure 1c 
shows the SEM image of Au/Ag core–shell nanostructures 
with 0.08 mL AgNO3 added. As the amount of AgNO3 
added increased, the opening in the gold nanocups was 
gradually filled by Ag, and the Ag shell layer on the out-
side of the gold nanocups becomes thicker. RhB-mediated 
Au/Ag core–shell nanostructures which were added with 
the amount of AgNO3 of 0.08 mL were chosen as the sub-
strate. Then, Au/AgAu core–shell nanostructures with the 
RhB molecules embedded in the nanogap were obtained 

via a galvanic replacement and overgrowth process by add-
ing HAuCl4 and the reducing agent AA. Figure 1d shows 
the SEM image of Au/AgAu core–shell nanostructures 
when the molar ratio of Au to Ag is 4:1. In Fig. 1(e), the 
EDS energy spectrum of Au/AgAu core-shell nanostruc-
tures with the molar ratio of 1:1 between Au and Ag.

In order to clearly observe the change regular of the 
gap widths with a different molar ratio of Au to Ag, Fig. 2 
shows a set of representative TEM images of Au/AgAu 
core–shell nanostructures with different gap widths. The 
amount of HAuCl4 added was controlled by regulating 
the molar ratio of Au to Ag (HAuCl4: AgNO3), replac-
ing the Ag shell with Au to form an AuAg alloy shell 
and nanogap. In particular, the gap widths were turned 
from ~ 7.4 to ~ 3.2 nm by increasing the molar ratio of Au 
to Ag from 1:2 to 2:1 (insets in Fig. 2a–c).

Fig. 1   a Schematic illustration of the synthesis process of RhB-medi-
ated Au/AgAu core–shell nanostructures. b–d SEM images of gold 
nanocups, Au/Ag core–shell nanostructures with 0.08  mL AgNO3, 

and Au/AuAg core–shell nanostructures with the molar ratio of 4:1 
between Au and Ag. e EDS energy spectrum of Au/AgAu core–shell 
nanostructures with the molar ratio of 1:1 between Au and Ag
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When the molar ratio of Au to Ag is greater than 2:1, the 
nanogap could hardly be observed due to the large thick-
ness of the alloy shell (Fig. 2d). These Au/AgAu core–shell 
nanostructures with adjustable gap widths provided a good 
platform for gap-enhanced SERS based on magnetic plas-
mon coupling.

The plasmon resonance of Au/AgAu core–shell nano-
structures was studied by extinction spectra. Figure 3a shows 
the extinction spectra of gold nanocups, RhB-mediated Au/
Ag core–shell nanostructures, and RhB-mediated Au/Ag 
core–shell nanostructures at the same particle concentration. 
The initial gold nanocups have a magnetic dipole plasmon 
peak located at 610 nm and the plasmon resonance peak 
of the RhB-mediated Au/Ag core–shell nanostructures blue 
shift to 560 nm with 0.08 mL AgNO3 added. The Ag shell 
layer significantly changed the plasmon resonance mode of 
gold nanocups. As the amount of AgNO3 added increased 
from 0.01 to 0.15 mL, the plasma peak blue shifted from 593 
to 553 nm, and a new peak gradually appeared at 425 nm, 
which was attributed to the effect of the Ag shell on the die-
lectric constant of the Au core. When excessive amounts of 
AgNO3 were added, no more Ag could be deposited on the 
surface of gold nanocups, and the remaining Ag nucleated 
itself in solution to form Ag nanospheres. The extinction 
spectra of the RhB-mediated Au/AgAu core–shell nano-
structures with different molar ratios of Au to Ag are shown 
in Fig. 3b. As the molar ratio of Au to Ag increased from 1:4 
to 4:1, the plasmon resonance peak of the RhB-mediated Au/
AgAu core–shell nanostructures was red-shifted from 580 to 
721 nm, and a shoulder peak appeared at 550 nm to the left 
of the main plasmon resonance peak when the molar ratio 

of Au to Ag was greater than 1:1, with a gradual increase 
in intensity and a slight red-shift as the molar ratio of Au 
to Ag increased. During the galvanic replacement process, 
the AuAg alloy shell thickness gradually becomes thicker 
and the gap width gradually becomes smaller of Au/AgAu 
core–shell nanostructures as the molar ratio of Au to Ag 
continued to increase. A strong plasma coupling could be 
induced in the nanogap, resulting in a strong local electro-
magnetic field. These Au/AgAu core–shell nanostructures 
with tunable plasmon resonance peak offer the possibility 
to enhance the Raman signals.

The SERS properties of RhB-embedded Au/AgAu 
core–shell nanostructures with different molar ratios of Au 
to Ag were tested under excitation at 633 nm which matched 
well with the magnetic plasmon resonance peak, and the 
results are shown in Fig. 4a. The Raman spectra of the RhB 
molecules can be clearly observed, indicating that the RhB 
molecules were well embedded in the nanogaps. The SERS 
peaks at 1360 cm−1 and 1647 cm−1 are referred to as the C–C 
stretching mode. It is noteworthy that the Raman intensity of 
the Au/AgAu core–shell nanostructures increases dramatically 
as the Au–Ag molar ratio increases from 1:4 to 2:1 but then 
decreases dramatically when the Au–Ag molar ratio reaches 
4:1. The characteristic peaks at 1350 cm−1 and 1275 cm−1 are 
used as the standard peaks for comparing the SERS perfor-
mance of the Au/AgAu core–shell nanostructures. As shown 
in Fig. 4b, the Au/AgAu core–shell nanostructures with the 
molar ratio of 2:1 between Au and Ag have the highest Raman 
intensity, which is ~ 12 times higher than Au/AgAu core–shell 
nanostructures with the molar ratio is 1:4, of Au to Ag at 
1350 cm−1, and ~ 11 times at 1275 cm−1, respectively. The gap 

Fig. 2   TEM images of Au/
AgAu core–shell nano-
structures with different gap 
widths: ~ 7.4 nm (a), ~ 4.1 nm 
(b), ~ 3.2 nm (c), and unmeasur-
able (d). The corresponding 
molar ratio of Au to Ag is 1:2, 
1:1, 2:1, and 4:1
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width of Au/Ag core–shell nanostructures decreased with the 
molar ratio of Au to Ag increased. When the molar ratio of Au 
to Ag was 2:1, the gap width was extremely small relative to 
the alloy shell thickness, and the Raman excitation wavelength 

(633 nm) was well matched to the magnetic plasma resonance 
peak position of Au/Ag core–shell nanostructures; therefore, 
the highest Raman signals were obtained. When the molar 
ratio of Au to Ag is greater than 2:1, the alloy shell has become 
thicker to reduce the penetration and scattering of light, caus-
ing the Raman signals strength to drop sharply. The results 
offer potential strategies for enhancing the SERS performance.

Conclusions

In summary, RhB-embedded Au/AgAu core–shell nano-
structures with tunable gap widths were synthesized via 
controlled galvanic replacement and overgrowth process 
based on gold nanocups, to achieve tunable amplified Raman 
signals with different gap widths. The RhB molecules could 
be coupled to gold nanocups which had strong magnetic 

Fig. 3   a Experimental extinction spectra of gold nanocups, Au/Ag 
core–shell nanostructures with 0.08 mL AgNO3 added, and Au/AgAu 
core–shell nanostructures with the molar ratio of 2:1 between Au and 
Ag. b Experimental extinction spectra of Au/AgAu core–shell nano-
structures with different molar ratios of Au to Ag

Fig. 4   a Raman spectra of Au/AgAu core–shell nanostructures with 
different molar ratios of Au to Ag. b Raman intensity at 1360  cm−1 
and 1275  cm−1 of RhB-embedded Au/AgAu core–shell nanostruc-
tures with different molar ratios of Au to Ag
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plasmon properties by soaking the gold nanocups in an 
aqueous RhB solution. Au/AgAu core–shell nanostructures 
showed prominent plasmon absorption and strong local 
electromagnetic field enhancement owing to the synergistic 
effect of electromagnetic plasmon resonance and plasmon 
coupling. In particular, Au/AgAu core–shell nanostructures 
with the molar ratio is 2:1 of Au to Ag show the highest 
SERS activity; this may be due to the plasmon resonance 
peak position of the sample matches well with the Raman 
excitation wavelength (633  nm), and the width of the 
nanogap is small enough to result in strong electromagnetic 
coupling. And when the molar ratio of Au to Ag is greater 
than 2:1, the shielding effect of the thicker alloy shell will 
weaken the Raman signals considerably. Our findings pro-
vide a new possibility for synthesize gap-enhanced Raman 
tags based on magnetic plasma coupling for enhancing the 
Raman performance.
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