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Abstract
In this study, surface plasmon resonance (SPR) technique has been utilized to characterize the optical properties of chitosan-
graphene quantum dots (CS-GQDs) thin film and dopamine (DA). Theoretical fitting of SPR dips yielded refractive indices 
of DA solutions and CS-GQDs thin films, as well as the thickness of the thin film. For DA solution, n and k values were 
the same as deionized water for all concentrations. The values of n and k for CS-GQDs thin film were 1.6990 and 0.1302 
respectively before contacting DA. The experimental SPR reflectance curves obtained using CS-GQDs thin film were shifted 
continuously to the right with increasing DA concentrations. After adsorption of DA molecules, both n and thickness of the 
CS-GQDs thin film increased, while the value of k decreased. This, in turns, enhanced the SPR sensitivity towards DA. The 
obtained results underscore the appropriate and sufficient potential of the used technique to measure refractive index varia-
tions in real-time when very low concentration was used (1 fM) with refractive index sensitivity of 10.186°/RIU.

Keywords Surface plasmon resonance · Optical characterization · Dopamine · Sensitivity enhancement · Graphene 
quantum dots · Refractive index sensing

Introduction

Optical properties of materials are an attractive object for 
researchers and describe the response of the material when 
it interacts with light. The measurements of the optical 
properties of materials require a high degree of accuracy 
and precision for the advancement of optical technology. 
They have made a change in the life of the whole world 
in the field of medicine, sensors, astronomy, manufac-
turing, communication, etc. Such measurements include 
reflectance, transmittance, emittance, absorptance, and 
index of refraction [1]. Any of these quantities depends 

on geometry and polarization. Refractive index is a fun-
damental optical property of the material [2–4]. Refractive 
index of the medium is dependent on its chemical compo-
sition, and significantly can be influenced by temperature 
[5, 6]. It plays a pivotal role in light propagation in the 
medium and its reflection at an interface. This dimension-
less constant is directly related to measurable quantities 
such as reflectance and absorption and defined as the ratio 
of the light speed in a vacuum to light phase velocity in the 
material. Among all the methods that were used to meas-
ure the refractive index, surface plasmon resonance (SPR) 
technique emerged and proved its efficiency in determin-
ing the refractive index value and detecting its local small 
changes in real time [7–16]. This is because the working 
principle of the SPR technique relies on the variation of 
the refractive index in the evanescent field at the sensing 
medium [17–23]. SPR as a refractive index–based sensing 
technique has attracted extensive attention over the past 
years due to its advantages of simplicity, cost effective-
ness, and real-time and label-free detection [24–34]. These 
important advantages of SPR technology make it desirable 
for medical applications [35–55], control and safety of 
food [56, 57], environmental protection [58–74], and other 
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uses. The refractive index is affected by the accumula-
tion of mass on the surface of the metallic thin layer. The 
adsorption of target molecules on the thin film induces 
the variation of the refractive index. The changes in the 
thin film optical properties shift the SPR dip, such that the 
SPR angular shifts and the refractive index variation could 
be measured. Also, the concentration changes could be 
detected and the binding affinity could be determined [75]. 
In this study, dopamine, the important neurotransmitter 
that controls the functions of the human body, will be the 
detected target and its refractive index will be determined. 
This will be conducted using the gold thin film only first. 
To ensure the adsorption efficiency of DA molecules and 
to improve the thin film sensitivity to the variations in 
refractive index, the gold thin film has to be modified 
using nanomaterials. In recent years, graphene quantum 
dots (GQDs) have captured the interest due to their distinc-
tive photoluminescence properties, remarkable physico-
chemical properties, good photostability, biocompatibility, 
and low toxicity [76–80]. The incorporation of GQDs with 
chitosan (CS) the biopolymer with many amine groups 
will increase DA adsorption on the thin film [48]. To the 
best of our knowledge, the utilization of SPR technique to 
study CS-GQDs thin film optical properties and determine 
its thickness before and after interaction with DA has not 
been conducted yet.

Materials and Methods

Preparation of Chemicals

Dopamine hydrochloride, GQDs (1 mg/ml), CS and acetic 
acid (assay ≥ 99.7%) were purchased from Sigma-Aldrich. 
Firstly, 200 mg of chitosan was taken and dissolved in 25 ml 
of 1% acetic acid, stirred and left at room temperature over-
night to obtain a homogeneous CS solution [29]. After that, 
2 ml of pure GQDs was added into 10 ml of CS solution 
with stirring to form CS-GQDs solution. Then, deionized 
water (DW) was utilized to dilute 1 M solution of DA to 
get very low levels down to 1 fM using the dilution formula 
(M1V1 = M2V2).

Preparation of Thin Films

The gold thin films were deposited on clean glass substrates 
of dimensions (24 mm × 24 mm × 0.1 mm) using SC7640 
Sputter Coater. Then, the surface of gold thin layer on the 
glass substrate was uniformly covered by 0.5 ml of CS-
GQDs mixture. And CS-GQDs thin films were deposited 
using spin coating technique at 2000 rpm during 30 s.

SPR Setup

To characterize the optical properties of the used solu-
tion and thin films, a custom-built SPR spectroscopy in 
Kretschmann configuration has been used. This home-
made setup as shown in Fig. 1 contains a He–Ne laser at 
the wavelength (632.8 nm), a light chopper, a linear polar-
izer, a small pinhole, a prism (refractive index 1.77861), an 
optical rotating stage, a photodetector, and lock-in amplifier. 
SPR experiments were carried out for the gold thin film 
and CS-GQDs thin film that contact deionized water and 
DA with different concentrations. To record the reference 
signal, deionized water was inserted into the flow cell to be 
in contact with the gold thin film and then with the sensing 
layer one by one. After that, various levels of DA solution 
ranging from 1 to 1000 fM were inserted separately into 
the flow cell one after one to carry out the measurements 
by recording the intensity of the reflected laser light as a 
function of the incident angle.

Fitting of Experimental Results to Theoretical

When plasmonic resonance occurs, and the partial trans-
fer of the pumping light energy to the electron packages 
on the metal film takes place, surface plasmon wave with 
a transversally magnetic (TM) mode propagates freely 
along the metal thin film-dielectric interface. Its propaga-
tion depends strongly on the real and imaginary parts of 
the dielectric constants of these two media. The electric 
field component, E, is parallel to the incidence plane and 
perpendicular to the metal–dielectric interface while the 
magnetic field component, B, is perpendicular to incidence 
plane and lies in the plane of metal–dielectric interface [81]. 
Fresnel theory was used to investigate the interaction of the 
light and surface plasmons. In this work, the gold thin film 
and the sensor layer (CS-GQDs thin film) were sandwiched 
between the prism and the dielectric medium (DA solution) 
in Kretschmann configuration.

The magnitudes of the magnetic field and the electric 
field are related as shown in the following expression [82] :

where V  is the wave speed and related to the speed of light 
in a vacuum c and the refractive index n by:

The constant c can be written as:

(1)B =
E

V

(2)V =
c

n

(3)c =
1

√

�0�0
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where �0 and �0 are the permittivity and permeability of free 
space, respectively.

By combining Eqs. (1), (2), and (3), the magnitude of 
B can be written as:

By using Eq. (4) and based on Fig. 2 where the bound-
ary conditions are satisfied at the both interfaces, the mag-
netic and electric fields are related as follows:

(4)B =
E

V
=

n

c
E = n

√

�0�0E

(5)B
a
= n0

√

�0�0

�

E0 + E
r1

�

= n1

√

�0�0

�

E
t1 + E

i1

�

where Er1 denotes the sum of all the multiple reflected 
beams from the thin film at the interface (a) as shown in 
Fig. 2, while Ei2 denoted the sum of all the multiple beams 
incident on the glass substrate at the interface (b), and so on.

When different layers are used, after light passes through 
them the phase changes. Taking this into consideration gives:

The relationships between E1, B1 and E2, B2 can be obtained 
as follows using Euler identities:

Equations (10) and (11) can be combined in matrix form as:

(6)B
b
= n1

√

�0�0

�

E
i2 + E

r2

�

= n2

√

�0�0Et1

(7)E
a
=
(

E0 − E
r1

)

cos (�0) =
(

E
t1 − E

i1

)

cos (�
t1)

(8)E
b
=
(

E
i2 − E

r2

)

cos (�
t1) = E

t2 cos (�t2)

(9)E
i1 = E

r2e
−i�

,E
i2 = E

t1e
−i�

B
i1 = B

r2e
−i�

,B
i2 = B

t1e
−i�

(10)E
a
= cos(�)E

b
−

i sin(�)

�1
B
b

(11)B
a
= −�1i sin (�)Eb

+ cos(�)B
b

(12)where �1 =
n1

cos (�
t1)

√

�0�0

Fig. 1  SPR setup

Fig. 2  Light reflection from a single layer with thickness d [84]
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Thus, in the case of single layer with thickness d, the trans-
fer matrix will be as follows:

where � represents the phase shift when the light passes 
through multilayers:

When different layers are used, the glass substrate at bound-
ary b will be replaced by the interface of the thin film added. 
In this case, Eq. (13) is still valid but second transfer matrix 
is needed to relate Eb and Bb to Ec and Bc at the rear bound-
ary of the second thin film. Thus, for a multilayer film with N 
number of layers,

(13)
[

E
a

B
a

]

=

[

cos(�) −
i sin(�)

�1

−�1i sin (�) cos(�)

]

[

E
b

B
b

]

(14)M1 =

[

cos (�) −
i sin (�)

�1

−�1i sin (�) cos (�)

]

(15)� =
2�

�
d n1 cos (�t1)

For the entire multilayer films, the inclusive transfer matrix 
MT can be represented by:

where m11, m12, m21, and m22 denote the elements of the 
transfer matrix.

Using Eqs. (5), (6), (7), (8), and (16), we get

By simplifying the previous equations and using the reflec-
tion coefficient r that defined as

(16)
�

E
a

B
a

�

=

∏N

i=1
M

N

�

E
N

B
N

�

(17)M
T
=

[

m11 m21

m12 m22

]

(18)
� �

E0 − E
r1

�

cos (�0)

n0

√

�0�0

�

E0 + E
r1

�

�

=

�

m11 m21

m12 m22

��

E
t2 cos (�t2)

n2

√

�0�0Et1

�

(19)r =
E
r1

E0

Fig. 3  Fitted reflectance curves of three gold thin films exposed to DW
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the reflection coefficient will be written in the following 
formula

whereby the reflectivity R is

All reflectance curves obtained using the gold thin films 
were analyzed using a developed fitting program based on 
the equations explained above to evaluate the optical prop-
erties and the thickness of the gold thin film as well as the 
optical properties of DA solution. This information then was 
used for a subsequent mathematical processing and analyz-
ing of the optical properties and thickness of CS-GQDs thin 
film before and after interaction with DA solution of differ-
ent concentrations based on the mentioned matrix method 
[83–87].

(20)r =
m21 + m22�2 − m11�0 − m12�2�0

m21 + m22�2 + m11�0 + m12�2�0

(21)R = rr
∗

Results and Discussion

Characterization the Optical Properties of Gold Thin 
Film

At the first stage, the prefatory SPR experiment was con-
ducted for gold thin films in contact with DW in order to 
determine the optical properties of the gold thin layer (the 
real and imaginary parts of refractive index, n and k respec-
tively; in addition to the thickness of the thin film, d). The 
optical properties of the three gold layers used were obtained 
by fitting the reflectance curve as shown in Fig. 3. Accord-
ing to the fitted SPR signal, the refractive index values, n 
and k, for the first gold thin layer were (0.2164 ± 0.0001) 
and (3.6867 ± 0.0001) respectively, where the thickness, d, 
was determined as (53.67 ± 0.01) nm. The refractive index 
for DW water in room temperature is 1.3333 [88]. The opti-
cal properties of the other gold thin films used are listed in 
Table 1.

Characterization of DA Optical Properties

The SPR experiments were also conducted for all concen-
trations (ranging from 1 to 1000 fM) of DA solutions con-
tacting the second gold thin film to determine the refrac-
tive index of the solutions. The experimental SPR curves 
were not shifted from the reference curve with increasing 
the DA level as shown in Fig. 4. These experimental curves 
were fitted with theoretical data for gold thin film in contact 
with DA solutions as shown in Fig. 5. Using the obtained 

Table 1  Refractive index and thickness of the gold thin films exposed 
to DA

Gold layer Refractive index of Au layer Thickness 
d (nm)
(± 0.01)Real part, n 

(± 0.0001)
Imaginary 
part, k
(± 0.0001)

1 0.2164 3.6867 53.67
2 0.2758 3.8798 63.26
3 0.1205 3.6920 59.40

Fig. 4  The experimental SPR 
curves of the gold thin film 
exposed to different levels of 
DA
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thickness and refractive index of the second gold layer d 
(63.26) nm, n (0.2758), and k (3.8798), the fitting yielded 
the real part, n, and imaginary part, k, of DA solutions which 
were the same as the refractive index of DW as illustrated 
in Table 2. Also, the n, k, and d values of the bare gold film 
were not changed with increasing DA levels. These find-
ings (Δθ = 0, and Δn = 0) confirmed that the adsorption of 
DA molecules on the film surface did not take place, and 
demonstrated the insensitivity of Au-based sensor towards 
DA. The dependence of the complex index of refraction on 
the concentration at room temperature was not obvious for 
the used concentrations of DA transparent solution. Here, 
because the analyte concentrations are sufficiently low (1 
fM to 1000 fM), the refractive index remained constant [89].

Fig. 5  Experimental and fitted reflectance curves related to the gold thin film exposed to DA solution for a  1 fM, b  10 fM, c  100 fM, and 
d 1000fM

Table 2  Refractive index of both the gold film and DA solution after 
contact

DA  
concentration 
(fM)

Refractive index of gold 
film

Refractive index of DA 
solution

Real part, 
n
(± 0.0001)

Imaginary 
part, k
(± 0.0001)

Real part, 
n
(± 0.0001)

Imaginary 
part, k
(± 0.0001)

0 0.2758 3.8798 1.3333 0.0000
1 0.2758 3.8798 1.3333 0.0000
10 0.2758 3.8798 1.3333 0.0000
100 0.2758 3.8798 1.3333 0.0000
1000 0.2758 3.8798 1.3333 0.0000
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Fig. 6  The experimental and fitted reflectance curves of the CS-GQDs thin layer exposed to DA solution for a 0 fM, b 1 fM, c 10 fM, d 100 fM, 
and e 1000 fM
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Characterization of CS‑GQDs Optical Properties

To investigate and determine the optical properties of the CS-
GQDs thin film, the prepared thin film was placed on one of 
the sides of the prism in the SPR spectroscopy. Above all, 
the SPR measurement was conducted by injecting deionized 
water into the flow cell to contact the CS-GQDs thin film. 
After recording the reflected beam, the results showed that 
when this sensing layer was used and contacted the DW, the 
plasmonic resonance occurred at higher angle compared with 
the case of the gold thin film, and the SPR dip was shifted 
significantly to the right. This is due to the difference in 
refractive index value and the thickness of the CS-GQDs thin 
film compared to the third gold thin film used. The refrac-
tive index values for both gold thin film and DA solution as 
well as the thickness of the gold thin film obtained were used 
to analyze the optical properties of the CS-GQDs thin film. 

After fitting the experimental reflectance curve using the 
obtained refractive index and thickness of the third gold layer 
n (0.1205), k (3.6920), and d (59.4) nm as shown in Fig. 6, the 
values of refractive index, n and k, for the sensing layer were 
(1.6990 ± 0.0001) and (0.1302 ± 0.0001) respectively, where 
the thickness, d, was determined (6.36 ± 0.01) nm. After that, 
the SPR experiment was continued with DA solutions. The 
inserted sample of DA into the system with concentration of 
1 fM led to increase the resonance angle and shifted the SPR 
dip to the right remarkably as shown in Fig. 7. Continuing to 
gradually increase the concentration of DA up to 1000 fM 
gave the opportunity for more DA molecules to attach to the 
surface of CS-GQDS thin film and change its optical proper-
ties, and all this, in turn, led to more angular shift of the SPR 
signals to the right. The fitting showed that the real part n of 
the refractive index of CS-GQDs has increased from 1.6990 to 
1.6999 and the thickness became 7.26 nm. The results showed 

Fig. 7  The experimental SPR 
curves of the CS-GQDs thin 
film exposed to different levels 
of DA

Table 3  The real and imaginary 
parts of refractive index and 
the thickness of CS-GQDs thin 
film, Δθ, and Δn, for different 
levels of DA solutions

DA  
concentration 
(fM)

Refractive index of CS-GQDs 
layer exposed to DA

Thickness of CS-GQDs 
layer d (nm)
(± 0.01)

Δn Δθ

Real part, n 
(± 0.0001)

Imaginary 
part, k
(± 0.0001)

0 1.6990 0.1302 6.36 0.0000 0.00000
1 1.6999 0.1301 7.26 0.0009 0.27831
10 1.7590 0.1300 7.60 0.0600 0.55855
100 1.7750 0.1290 8.61 0.0760 0.83678
1000 1.7820 0.1140 8.64 0.0830 0.83734
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that the values of n of the sensing layer CS-GQDs increased 
from 1.6990 to 1.7820 as the level of DA solutions increased 
from 0 to 1000 fM, while the k values decreased from 0.1302 
to 0.1140. The thickness of the proposed active layer increased 
from 6.36 to 8.64 nm using this range of DA concentrations as 
shown in Table 3. These changes in the values of the refractive 
index and the enhancement of the sensor sensitivity towards 
DA might be due to the electrostatic interactions, hydrogen 
bonding, and strong π-π interaction of DA with the functional 
groups of the GQDs, and what reinforced this interaction is the 
electrostatic attraction between CS and DA [77, 90]. During 
these interactions, more molecules of DA were captured on the 
CS-GQDs thin layer and led to changes in its refractive index 
and thickness. This, in turn, shifted the SPR dips significantly 
to the right because the SPR signal is very sensitive towards 
any change in the surrounding thin films.

Refractive Index Sensitivity of the SPR/CS‑GQDs 
System

It is very important to evaluate the sensitivity of the utilized 
SPR technique. The refractive index sensitivity is defined as 
the ratio between the change of resonance angle, Δθ, and the 
variation of the real part refractive index, Δn [91–95] :

The ∆θ was calculated as the difference between the 
resonance angle of different concentrations of DA solution 
contacted CS-GQDs thin layer and the resonance angle of 
DW as shown in Table 3. The variation of real part refractive 
index, Δn, was calculated for CS-GQDs thin film that was 

(22)S = Δ�∕Δn

exposed to all concentrations of DA. It is clear from Fig. 8(a) 
that both Δθ and Δn Increased gradually as a level of DA 
solution increased. This is because the binding of DA with 
different levels (0 to 1000 fM) to the surface of CS-GQDs 
thin film changed the refractive index of the film and this 
caused shifting of the SPR signals. As shown from Fig. 8(b), 
slope sensitivity of 10.186°/RIU (refractive index unit) was 
observed with a correlation coefficient, R2 of 0.973. These 
results demonstrated the high potential and efficiency of SPR 
technique to monitor the changes in refractive index of CS-
GQDs thin film when it contacts 1 fM of DA.

Conclusion

In the present study, SPR technique has been successfully 
developed and used to characterize the optical properties 
of DA solutions, gold thin films, and CS-GQDs thin films 
by theoretical fitting of the experimental SPR signals. 
The real part of the refractive index, n, and the imaginary 
part of the refractive index, k, for all gold thin films used 
were good as in agreement with the previous studies. The 
n and k values of DA solution for all concentrations were 
the same as deionized water. The values of n of the sens-
ing layer CS-GQDs increased from 1.6990 to 1.7820 as 
the concentration of DA solutions increased, while the k 
values decreased from 0.1302 to 0.1140. The thickness 
of the proposed sensing layer increased from 6.36 nm to 
8.64 nm. The results showed that the CS-GQDs thin layer 
has improved the sensitivity of the SPR sensor towards 
DA and the achieved sensitivity was 10.186°/RIU.

Fig. 8  a The variation of Δθ and Δn with DA concentrations, and b the refractive index sensitivity of the CS-GQDs thin film for DA sensing
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