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Abstract
An analytical and numerical study of hybrid photonic–plasmonic crystals is presented. The proposed theoretical model 
describes a system composed of a dielectric photonic crystal on a metallic thin film. To show the validity and usefulness of 
the model, four particular structures are analyzed: a one-dimensional crystal and three lattices of two-dimensional crystals. 
The model can calculate the photonic band structure of photonic–plasmonic crystals as a function of structural characteris-
tics, showing two partial bandgaps for a square lattice, and complete bandgaps for triangular lattices. Furthermore, using a 
particular high-symmetry path, a full bandgap emerges in rectangular lattices, even with a small refractive index contrast. 
Using the analytical model, a dataset is generated to train an artificial neural network to predict the center and width of the 
bandgap, that is, the forward design. In addition, an artificial neural network is trained to tune the optical response, that is, to 
perform the inverse design. The analytical results are consistent with the physics of the system studied and are supported by 
numerical simulations. Moreover, the prediction accuracy of the artificial neural networks is better than 95%. Overall, this 
paper reports a useful tool for tuning the optical properties of hybrid photonic–plasmonic crystals with potential applications 
in waveguides, nanocavities, mirrors, etc.

Keywords Nanophotonics · Plane-wave expansion · Machine learning · Artificial neural networks · Hybrid photonic–
plasmonic crystals

Introduction

Photonic crystals are media whose refractive index is peri-
odically modulated in space. This variation in the refractive 
index produces bandgaps in the photonic band structure, 
which physically results in the inhibition of light propagation 
in the medium for some frequencies ranges. Such an optical 
effect can be applied in various photonic devices, including 
filters, reflectors, and waveguides [1–3].

On the other hand, surface plasmon polaritons (SPPs) 
are electromagnetic excitations arising at a dielectric–metal 

interface. The optical properties of these electromagnetic 
excitations are of great interest, especially in technologies 
involving photonic devices [4].

As for waveguides based on photonic crystals, it is possi-
ble to use them in plasmonic devices. There is experimental 
evidence of an analogous photonic bandgap effect in peri-
odic arrays of gold nanoparticles [5]. In addition, there are 
experimental observations of waveguiding of SPPs through 
bent linear defects fabricated in periodic arrays of gold nano-
particles [6–8]. Similarly, these periodic arrays can be used 
as mirrors to modify the propagation of SPPs [9].

Furthermore, experimental studies have analyzed the 
influence of different characteristics of plasmonic crystals 
in the photonic bandgap. Such characteristics are the lattice 
period or lattice constant, filling fraction and crystal orien-
tation effect [10, 11]. These experimental results suggest 
that the propagation of SPPs can be controlled through the 
appropriate characteristics of the plasmonic crystal.

Metallic photonic crystals have proven to be efficient 
in producing bandgaps; however, this effect can also be 
achieved with dielectric photonic crystals. Numerical and 
experimental studies have shown the possibility of using 
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dielectric ridge stacks as one-dimensional plasmonic crys-
tals to open bandgaps in the SPPs dispersion relation [12]. 
The results of this last work suggest the application of these 
structures as a mechanism to control SPPs propagation.

In two-dimensional arrays, dielectric photonic crystals 
have been numerically analyzed to implement them as cavi-
ties [13, 14]. The results obtained from numerical studies 
show that these hybrid structures, photonic–plasmonic 
crystals, are capable of opening bandgaps in the dispersion 
relation. This suggests that they can be applied in a wide 
range of plasmonic devices such as nanocavities, nanolasers, 
reflectors or waveguides [13, 14].

On the other hand, several theoretical analyses have 
been developed for modeling the optical response of these 
plasmonic systems. Some of these studies are based on the 
multiple-scattering dipole approach [15], on the Lippmann-
Schwinger integral equation method [16], and on the homo-
geneous form of the reduced Rayleigh equation [17].

As for conventional photonic crystals, one way to know 
their optical properties is to calculate their photonic band 
structure. There are several methods to do so, where one of 
the most widely used is the plane-wave expansion method 
(PWEM). Although this method is effective for calculat-
ing the band structure of dielectric photonic crystals, it 
also works for calculating the band structure of frequency-
dependent media. For example, the PWEM has been applied 
to calculate the band structure of a silicon photonic crystal 
deposited over an aluminum film [18].

Another way to calculate the photonic band structure of 
these optical devices is based on the perturbation theory. 
From the band structure of a dielectric photonic crystal, 
perturbation theory is applied to analyze the effect of a 
frequency-dependent dielectric function [19]. However, 
this method is effective when the variation of the dielectric 
function is less than 1% [3].

In an opposite direction, the inverse design consists in 
the retrieval of the suitable structure for a particular desired 
optical response [20]. However, it sometimes requires a 
search for different system characteristics, starting from a 
random design, and comparing the result with the target 
response [21]. This search, called optimization, is performed 
iteratively and need being carried out too many times to 
achieve the desired result [21].

In contrast to the above, machine learning algorithms, 
such as artificial neural networks (ANNs), are efficient tools 
to design photonic structures [20, 21]. ANNs can be applied in 
two different ways. The first is to use the structural parameters 
to predict the optical response, to avoid the optimization loop, 
which can sometimes be computationally expensive. This pro-
cess is known as forward design [21]. The second approach 
to the ANNs is using the inverse design mentioned before. 
The aim is to predict the structural properties of the photonic 
system from the desired optical response [20, 21].

In this work, an analytical model based on PWEM is 
proposed to calculate the photonic band structure of hybrid 
photonic–plasmonic crystals (PhPl crystals). These hybrid 
structures are composed of a dielectric photonic crystal, 
whose dielectric function is not frequency-dependent, sup-
ported on a thin film of gold or silver. Since the dielectric 
functions of gold and silver are frequency-dependent, a non-
linear eigenvalue equation is needed to solve the correspond-
ing Helmholtz equation.

From the general model, the photonic band structure of 
four particular systems is studied to test the proposed model 
and show its usefulness. The analyzed photonic devices are 
experimentally feasible, since they are composed of a dielec-
tric photonic crystal formed by a periodic array of PMMA 
structures supported on a thin metallic film.

Using the analytical model, a dataset was constructed to 
train the machine learning algorithms. These algorithms are 
used to predict the optical response of a hybrid PhPl crystal 
without the need to run a computationally expensive code 
(forward design). Furthermore, the algorithms are useful to 
build a dataset larger than the first one to train a second ANN.

With the last dataset, this second ANN was trained to 
predict the structural parameters for a given specific opti-
cal response (inverse design); that is, this ANN is a use-
ful tool to tune the optical response. To validate the results 
obtained from this ANN, the predicted value is compared to 
the results obtained with the analytical model, and both are 
supported by numerical simulations.

Analytical Model

The PWEM is a widely used tool to solve the wave equa-
tion for photonic crystals. In this method, both the electric 
field and the inverse of dielectric functions are expressed as 
Fourier series

where E�n(�) and �(�) are the Fourier coefficients of the 
expansion [1–3]. Inserting both equations into the Helmholtz 
one, the master equation for photonic crystals is obtained for 
a TM polarized electromagnetic wave

where � and �′ are the reciprocal vectors, � is the wave vec-
tor, and ��n are the eigenfrequencies [1, 2].

(1)�(�) =
∑
�

E�n(�)ei(�+�)⋅� ,

(2)
1
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This equation can be expressed as a matrix equation as 
follows:

where �̂�′ is a matrix constructed with the coefficients � , �̂ 
is a matrix formed by the vectors � and � , and E is a vector 
constructed with the coefficients E�n . The last equation is an 
eigenvalue equation and can be considered as solved when 
the eigenvalues of the matrix �̂ are found [1–3].

When the dielectric function is non-dependent on the fre-
quency, the eigenfrequencies are obtained by solving Eq. (4). 
However, if the dielectric function is frequency-dependent, as 
it is the case for SPPs, solving the equation is not straightfor-
ward since it is a nonlinear eigenvalue equation.

The analytical model is based on the PWEM; however, 
the problem to be solved is a nonlinear eigenvalue equation. 
The key to solving this equation is to find how the inverse of 
the dielectric function depends on the frequency over a given 
range of wavelengths. The above allows to convert the non-
linear eigenvalue problem into a linear eigenvalue problem to 
solve Eq. (4).

Let be a dielectric–metal interface that supports typical SPP 
propagation. The effective refractive index is defined as [4]

so that the inverse of the dielectric function is

(4)�̂�
�
�̂�E = �̂�E =

𝜔2

c2
E,

(5)neff =

√
�d�m

�d + �m
,

(6)
1

�eff (�)
=

�d + �m

�d�m
,

where �d and �m are the dielectric functions of dielectric and 
metallic media, respectively.

The system under analysis is a photonic crystal made up 
of two dielectrics: one with permittivity �a and the other with 
permittivity �b . Both dielectric functions are considered to be 
non-dependent on the frequency. This photonic crystal is sup-
ported on a metallic thin film as shown in Fig. 1, so there are 
two interfaces in a unit cell. In this work, the base is the repeat-
ing element; that is, the interface formed by the dielectric b 
and the metallic thin film.

Figure 2 shows a unit cell of a rectangular lattice with three 
different bases for one of the dielectrics: an arbitrary shape, a 
rectangular shape, and a circular shape base.

For the interface represented by the white zone in the 
unit cell, the effective dielectric function is described by 
�1 = �a�m∕(�a + �m) , while for the interface represented by 
the gray zone, the effective dielectric function is described by 
�2 = �b�m∕(�b + �m) . In general, the inverse of the effective 
dielectric function throughout the unit cell is given by

with F(�) = 1 , if � is within the gray zone, and F(�) = 0 
otherwise. It is important to note that the quantity Δ� in the 
second term does not depend on the frequency.

This way, the Fourier coefficients � are given by

1

�eff (�)
=

1

�1(�)
+

[
1

�2(�)
−

1

�1(�)

]
F(�)

=
1

�1(�)
+ Δ�F(�),

(7)�(�) =
1

�1(�)
�2(�) +

1

A0

Δ�F(�),

Fig. 1  Physical system composed of a dielectric photonic crystal supported on a gold or silver thin film
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where A0 is the unit cell area, and F(�) is the Fourier trans-
form of F(�) . The coefficient depends on the geometry of 
the base and the symmetry of the crystal lattice, since � is 
defined by the crystal lattice vectors.

Thus, the matrix �̂��(�) in Eq. (4) has two terms: one fre-
quency-dependent and one frequency-independent, so that it 
can be written as

where �̂� is constructed by terms of 1
A0

Δ�F(�) and �̂�0(�) is 
given by

Considering this, Eq. (4) becomes

The inverse of the dielectric function described by Eq. 
(6) for dielectric–gold or dielectric–silver interfaces can be 
approximated, over a suitable frequency range, by a function 
given as follows:

where parameters �i and b are determined as a function of the 
dielectric constants �d and �m . With the change of variable 
� = �∕c − b , the inverse of the dielectric functions 1∕�1(�) 
and 1∕�2(�) are

(8)�̂�
�(�) = �̂�0(�) + �̂�,

(9)�̂�0(�) =
1

�1(�)
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1

�1(�)
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1 0 ⋯ 0
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⋮ ⋮ ⋱ ⋮
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⎞⎟⎟⎟⎠
,

(10)
(

1
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)
�̂�E =
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E.

(11)

1
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1
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(
�

c
− b

)−2

+ �2

(
�

c
− b

)−1

+ �3

(
�

c
− b

)
,

As an example, Fig. 3 shows the inverse of dielectric 
function data for an air–gold interface (black circles), and 
for a PMMA–gold interface (black squares), in the range of 
wavelengths 548.6-1937 nm. In both cases, the inverse of the 
dielectric function was calculated using Johnson & Christy 
data of permittivity for gold [22]. The continuous lines are 
the data fitted to the Eq. (11).

This way, Eq. (10) is expressed by

ordering the terms

With �̂� = �1�̂� , �̂� = �2�̂� , �̂� = (
1

�a
�̂� + �̂�)�̂� − b2�̂� and 

�̂� = �3�̂� − 2b�̂� , Eq. (15) is rewritten as

Now, the problem has become a nonlinear eigenvalue 
equation. However, it can be solved with an extended matrix 
�̂�ext to treat it as a linear eigenvalue problem [23, 24]. This 
extended matrix acts over an extended vector Eext as follows:

(12)
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Fig. 2  Rectangular lattice with 
an arbitrary shape base (left), 
rectangular base (center) and 
circular base (right)
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To obtain the eigenfrequencies � , it is sufficient to find 
the eigenvalues of the matrix �̂�ext , simplifying enormously 
the mathematical problem.

Particular Structures

The proposed dielectric photonic crystal consists of PMMA 
pillars of either rectangular or elliptical cross sections 
immersed in air. It is worth mentioning that square and cir-
cular cross sections are considered particular cases of rec-
tangular and elliptical cross sections. The refractive index 
of PMMA has small variations in the 550-2000 nm range 
and does not represent a significant change in the PMMA-
gold dispersion relation if its dielectric function is assumed 
to be constant.

Figure 4 shows the SPPs dispersion relation for a PMMA-
gold interface. The dashed line is the dispersion relation con-
sidering a frequency-dependent PMMA dielectric function, 
as in reference [25]. The solid gray line is the dispersion 
relation considering a constant PMMA dielectric function. 
The value of the dielectric functions is �PMMA = �b = 2.2 
for PMMA, taking the value of PMMA dielectric function 
at � = 633 nm [25], and �air = �a = 1 for air, such that the 
dielectric constants contrast is �b∕�a = 2.2.

As an example, Fig. 5 shows the inverse of dielectric 
function data for an air–gold interface, represented by 

black circles, and for a PMMA–gold interface, represented 
by black squares, in the wavelength range 548.6-1937 nm. 
The black diamonds and black triangles are the inverse of 
dielectric function data for an air–silver and a PMMA–silver 
interfaces, respectively, in the range of wavelengths from 
331.50 to 1937 nm. For all the interfaces, the inverse of the 
dielectric function is calculated using Johnson & Christy 
data of permittivity for gold and silver [22]. The solid and 

Fig. 3  Inverse of dielectric 
function for two different 
dielectric–gold interfaces

Fig. 4  SPPs dispersion relation for a PMMA-gold interface
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dashed lines are the inverse of dielectric function data fitted 
to Eq. (11).

The wavelength ranges for data fitting were chosen to 
avoid the maximum value of the effective refractive index, 
since, near that value, SPPs propagation is considerably 
attenuated. The maximum value of the effective refractive 
index for a dielectric–gold interface is located at approxi-
mately 520 nm, while for a dielectric–silver interface it 
occurs approximately at 340 nm.

The data fit parameters for the dielectric–gold inter-
face are �1 = 0.115218 , �2 = 0.266632 , �3 = −0.002649 
and b = 12.368228 . For the dielectric–silver interface, 
the data fit parameters are �1 = 0.153906 , �2 = 0.901489 , 
�3 = −0.003654 and b = 19.361642.

In the case of a dielectric–gold interface, the fit of the 
data of the inverse of the effective refractive index has an 
asymptotic behavior at b = 12.368228 , which is equivalent 
to a wavelength of approximately 508 nm. For a dielec-
tric–silver interface, the asymptotic behavior is found at 
b = 19.361642 , corresponding to a wavelength of approxi-
mately 324 nm.

To solve Eq. (17) for the four chosen different crystal lat-
tices as a function of the lattice length and base size for two 
bases with different geometries, a python code was written.

Machine Learning Algorithms

Various machine learning algorithms were trained to predict 
bandgap properties (optical properties) as a function of crys-
tal parameters (forward design) and to determine the struc-
tural features for a target optical response (inverse design). 
These algorithms were linear and polynomial regression, 

k-nearest neighbors (KNN), decision tree and artificial neu-
ral networks (ANN). The polynomial regression, KNN and 
decision tree algorithms were implemented using scikit-
learn library [26].

For forward design, all the algorithms perform optimally 
predicting the optical response with high accuracy. However, 
the best results in predicting the physical characteristics of 
the PhPl crystal from a target optical response were obtained 
using ANN for triangular and rectangular lattices.

The datasets necessary to train the algorithms were gener-
ated using the analytical model. To calculate the photonic 
band structure as a function of the lattice and the base sizes, 
these quantities were varied as shown in Table 1. With the 
band structure information, the bandgap width Δ� , and the 
bandgap center �c , were calculated for all the parameters.

The filling fractions fx and fy , in x and y directions, 
respectively, are defined as fx = dx∕a and fy = dy∕a , for the 
square and triangular lattices, and fx = dx∕ax and fy = dy∕ay 
for the rectangular lattice. The parameters dx and dy are the 
characteristic sizes of the base. For a rectangular base, they 
are the lengths of the sides in x and y directions, and for 
an elliptical base, they are the lengths of the axes of the 
ellipse in x and y directions, respectively, as shown in Fig. 6. 
As mentioned above, the square and circular bases are par-
ticular cases of the rectangular and elliptical bases, when 
dx = dy = d.

For the square lattice, the lattice size is varied in steps 
of 50 nm. The step of the filling fraction variation was 0.05 
for the elliptical base and 0.1 for the rectangular base. On 
the other hand, for the triangular lattice, the variation of the 
lattice size is the same as the square lattice, 50 nm. The vari-
ation of the filling fraction for the elliptical base was 0.043. 
For a rectangular base, the step of variation was 0.036. In the 
case of the rectangular lattice, the lattice size in x-direction 
is varied in steps of 50 nm, while the size in y-direction 
is varied in steps of 0.1, from 1.2ax to 1.8ax . The step of 
the filling fraction for both the elliptical and the rectangular 
bases was 0.05.

Fig. 5  Inverse of dielectric function for four different dielectric-gold 
and dielectric-silver interfaces

Table 1  Parameters to generate data for the three lattices and two 
bases

Crystal Lattice

parameters Square Triangular Rectangular

a [nm] 200 - 700 300 - 700 -
ax [nm] - - 200 - 700
ay [nm] - - 1.2ax - 1.8ax

fx Rectangular 0 - 1 0 - ( 
√
3 − 1) 0 - 1

Elliptical 0 - 1 0 - 1 0 - 1
fy Rectangular 0 - 1 0 - ( 

√
3 − 1) 0 - 1

Elliptical 0 - 1 0 - 1 0 - 1

1506 Plasmonics (2022) 17:1501–1525
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To train the algorithms, polynomial regression from 1 
to 15 degrees was tested, KNN was used with a range of 
nearest neighbors from 1 to 30, the decision tree algorithm 
was used with a maximum depth of 1 to 30, and ANN was 
implemented by testing various architectures.

On the other hand, for triangular and rectangular lattices, 
an ANN was trained to predict the optical response ( Δ� and 
�c ) as a function of the lattice size (a), and base size ( dx and 
dy ). This ANN architecture is shown in Fig. 7.

This ANN has five hidden layers, where the first and fifth 
layers have 100 neurons, the second and fourth layers have 
200 neurons and the third layer has 300 neurons.

The ANN was trained with 12486 samples, 70% of 
which were used to training, 15% to testing, and 15% 
was used for cross-validation. The optimizer used was 
Adam, with a learning rate of 0.004, the loss function 
used was mean square error, and the metric used was 
accuracy. In addition, a batch size of 6000 and 200 
epochs were used.

For the rectangular lattice, the input features are ax , ay , 
dx and dy . Figure 8 shows the ANN architecture for the 
rectangular lattice.

The architecture of the hidden layers of this ANN is the 
same as for the previous case.

Fig. 6  Three two-dimensional lattices with rectangular and elliptical bases

1507Plasmonics (2022) 17:1501–1525



1 3

This ANN was trained with 10416 samples, split into 
70%, 15%, and 15% for training, testing, and cross-validation, 
respectively. In this case, the same optimizer was used, but 
with a learning rate of 0.01. Again, the loss function was 

mean square error, and the metric used was accuracy. The 
batch size was 500, and the number of epochs was 500.

Using both ANNs, more datasets of optical response data 
were generated as a function of crystal characteristics. With 

Fig. 7  ANN architecture to predict the optical response of triangular lattice

Fig. 8  ANN architecture to predict the optical response for the rectangular lattice
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the new datasets, further ANNs were trained to develop the 
inverse design of the PhPl crystals. With the above, the crys-
tal characteristics were predicted from the optical response. 
In this case, the input features are the optical response Δ� 
and �c . The output are the characteristics of the PhPl crystal, 
a and f for the triangular lattice, and ax , ay and f for rectan-
gular lattice.

The ANNs architectures for predicting crystal parameters 
from the optical response of the triangular and rectangu-
lar lattices are shown in Figs. 9 and 10, respectively. Both 
ANNs have 15 hidden layers, each with 500 neurons.

To train the ANN for the triangular lattice, 12126 sam-
ples, split into 70%, 15%, and 15%, were used for training, 
testing, and cross-validation, respectively. In addition, an 
Adam optimizer with a learning rate of 0.003 was used. The 
loss function and metric used were mean square error and 

cosine similarity, respectively. In this case, a batch size of 
4000 and 400 epochs were used to train the algorithm.

On the other hand, the ANN for the rectangular lattice 
was trained with 308050 samples, split in 90%, 5%, and 5%, 
for train, test, and cross-validation, respectively. The opti-
mizer used was Adam with a learning rate of 0.0015. As 
above, the loss function and metric used were mean square 
error and cosine similarity, respectively. Finally, a batch size 
of 10,000 and 100 epochs were used.

The ANNs were implemented using Keras with the 
TensorFlow backend. All hyperparameters were chosen to 
obtain a maximum accuracy. Also, to avoid underfitting 
and improve the ANN training performance, it was noted 
that the only geometry needed to be considered was bases 
with circular and square shapes, for the triangular lattice; 
and elliptical and rectangular shapes, for the rectangular 
lattice.

Results

One‑dimensional PhPl Crystal

The one-dimensional PhPl crystal formed by layers of air 
and PMMA on a gold or silver thin film, as shown in Fig. 11

Figure 12 shows the band structure of a one-dimensional 
dielectric–gold PhPl crystal.

The lattice constant is a = 300 nm and the filling fraction 
is f = 0.5 . With these parameters, it has a bandgap with 
width Δ� = 179.74 nm and centered at �c = 787.22 nm. 
The bandgap is represented with a gray fringe in the band 
structure.

To test the validity of the model, the band structure of a 
one-dimensional PhPl crystal with two different filling frac-
tions was calculated. The first value is f = 0 , which corre-
sponds to a pure air–gold interface.

The agreement shown in Fig.  13 between the band 
structure of the PhPl crystal for f = 0 , represented by blue 
and red lines, and the dispersion relation of the SPPs in 
an air–gold interface, represented by the black circles, is 
evident.

On the contrary, for f = 1 , the physical system is a 
PMMA–gold interface, since the unit cell is completely cov-
ered by the PMMA layer. Figure 14 shows the corresponding 
band structure. As above, the blue and red lines are the band 
structure of the PhPl crystal, while the black circles are the 
dispersion relation of the SPPs in a PMMA-gold interface. 
Again, there is a total agreement between the band structure 
and the dispersion relation.

For a PhPl crystal with a lattice constant of a = 300 nm 
and a filling fraction f = 0.5 , but composed of a PMMA 
structure supported on a silver thin film, the photonic band 
structure is shown in Fig. 15.

Fig. 9  ANN architecture to predict the crystal parameters of a trian-
gular lattice

Fig. 10  ANN architecture to predict the crystal parameters of a rec-
tangular lattice
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In this case, the center and width of the bandgap are 
� = 782.09 nm and Δ� = 181.78 , respectively.

Comparing the dielectric–silver PhPl crystal with the 
dielectric–gold PhPl crystal one, there is a small difference 
between the bandgap characteristics of both when using the 
same parameters. This is because the effective refractive 
indexes of a dielectric–gold interface and a dielectric–silver 
interface are similar in the electromagnetic spectrum where 
the bandgap arises.

To understand how the optical response is modified as a 
function of crystal parameters, the band structure was cal-
culated for different lattice constants and filling fractions for 
a dielectric-gold PhPl crystal.

Figure 16 shows the behavior of the bandgap center as 
a function of lattice constant and filling fraction. As it is 
shown in the plot, the bandgap center increases monotoni-
cally as the lattice constant and filling fraction do too. This 
result is consistent with the one reported in reference [12], 
where it is observed that the center of the bandgap is red 
shifted as the filling fraction increases.

On the other hand, the bandgap width as a function of 
the lattice constant and filling fraction is shown in Fig. 17. 
In this case, Δ� increases as the lattice constant does. How-
ever, as a function of the filling fraction, it increases until 
it reaches a maximum near f = 0.44 , and then it decreases 
to zero. This result is consistent with the one reported in 

Fig. 11  The one-dimensional PhPl crystal formed by stacks of air and PMMA on a thin metallic film

Fig. 12  Band structure of a one-dimensional PhPl crystal for a = 300 
nm and f = 0.5 . Au case

Fig. 13  Band structure of a one-dimensional PhPl crystal for a = 300 
nm and f = 0 . Au case
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reference [12], where it is concluded that the maximum 
width of the bandgap is close to f = 0.42 for SiO2 ridges.

Two‑dimensional PhPl Crystals

As it was mentioned above, three different two-dimensional 
lattices were analyzed. For each case, the optical response 
(the bandgap width Δ� and center �c ) was studied as a 

function of the lattice constant a, and the base sizes dx and 
dy . Then, an ANN was trained to predict the PhPl crystal 
parameters for the desired optical response. For all the cases, 
numerical simulations were obtained to corroborate the ana-
lytical results. The simulations are shown only for the trian-
gular and the rectangular lattices.

Square Lattice

For a square lattice with a 300-nm lattice constant and an 
elliptical base with 165 nm for the major axis, and 132 nm 
for the minor one, the band structure is shown in Fig. 18.

In this case, the major axis is in the x-direction, while 
the minor axis is in the y-direction. For the square lattice, 
there are two partial bandgaps. The first is on the Γ − X 
orientation, which has a width of 90.30 nm and is centered 
at 696.19 nm. The second is on the M− Γ orientation, with 
a width of 72.55 nm and center at 573.64 nm.

Note that bands 2 and 3 (black and red curves, respec-
tively) coincide at the Γ point with a value of 0.57, which is 
equivalent to a wavelength of about 526.32 nm. Moreover, 
the upper bands cluster near this same value, that is, near the 
fitting parameter b of Eqs. (12) and (13) for a dielectric–gold 
interface. This means that the bandgap is within the wave-
length range in which the data fitting was made.

Using the same parameters as above, the band structure 
of a dielectric-silver PhPl crystal is shown in Fig. 19. The 
bandgap in the Γ − X orientation is centered at 689.94 nm 
and has a width of 92.37 nm. The bandgap in the M− Γ 
orientation is centered at 549.22 nm and has a width of 
84.26 nm.

In this case, the characteristics of the bandgap in the 
Γ − X orientation are similar to the dielectric–gold PhPl 
crystal. However, characteristics of both bandgaps in the 
M− Γ orientation are remarkably different. This is due to 
the difference of the effective refractive indexes in that range 
of the electromagnetic spectrum.

As in the previous case, for a dielectric-silver PhPl crys-
tal, the upper bands cluster near parameter b of the fitting 
equation. This means that the dielectric-silver PhPl crystal 
can be used over a wider range of wavelengths.

On the other hand, one of the reasons of the existence 
of two partial bandgaps for both cases is a low contrast of 
dielectric constants. For example, in a PhPl crystal with the 
same dimensions but with a dielectric constants contrast of 
�b∕�a = 9 , there are two complete bandgaps, as it is shown 
in Fig. 20.

In this case, one of the bandgaps has a width of 
Δ� = 243.76 nm and is centered at �c = 966.93 nm. The 
other bandgap has a width of Δ� = 38.22 nm and is centered 
at �c = 711.9 nm. In addition, as the contrast of the dielectric 
constants increases, the width and center of the bandgap 
also increase.

Fig. 14  Band structure of a one-dimensional PhPl crystal for a = 300 
nm and f = 1 . Au case

Fig. 15  Band structure of a one-dimensional PhPl crystal for a = 300 
nm and f = 0.5 . Ag case
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As in the one-dimensional case, the center and width of 
the bandgap were calculated for a square lattice with rec-
tangular and elliptical bases. Furthermore, the geometry 
of the base cross section does not represent a significant 

difference in the structure of the band, the key parameter 
being the filling fraction.

Figures  21 and 22 show heat maps of the center 
and width of the bandgap in the Γ − X orientation, 

Fig. 16  Bandgap center as a 
function of a and f for one-
dimensional dielectric-gold 
PhPl crystal

Fig. 17  Bandgap width as a 
function of a and f for one-
dimensional dielectric–gold 
PhPl crystal
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respectively, as a function of the lattice constant a and 
filling fraction f. As in the one-dimensional case, the 
center of bandgap is an increasing function of the lat-
tice constant and the filling fraction. Furthermore, the 
bandgap width increases up to a maximum near f = 0.38 , 
decreasing after that.

Having the above into account, to tune the bandgap center 
and width for a square lattice, it is necessary adjusting both 

the lattice constant and filling fraction. However, the rela-
tionship to tune the optical response from the structural 
properties is not obvious; therefore, machine learning algo-
rithms were necessary to be used. Furthermore, it is possi-
ble obtaining a complete bandgap by varying the dielectric 
constants contrast.

Regarding the machine learning algorithms, the optimal 
results for the forward design were obtained for polynomial 
regression of degree 6, for 4 nearest neighbors and, in the 
case of the decision tree algorithm, for a maximum depth 
of 15. In all three cases, the prediction accuracy is greater 
than 99%.

On the contrary, for the inverse design, the best per-
formances were obtained for a polynomial regression of 
degree 13, for 30 nearest neighbors in the case of the KNN 
algorithm, and a maximum depth of 7 for the decision tree 
algorithm. In this case, the prediction accuracy is not as 
high as in forward design, since the accuracy is less than 
78%.

Table 2 shows the performance results of the machine 
learning algorithms for the square lattice. Within it, the 
performance of the algorithms can be compared, being 
observed that the polynomial regression generalizes better 
the predictions for the forward design, while KNN does bet-
ter for the inverse design.

The algorithms results were tested using a lattice constant 
a = 300, and base sizes dx = 100 nm and dy = 150 nm. With 
these parameters, the partial bandgap in Γ − X orientation is 
centered at �c = 674.446 nm and has a width of Δ� = 82.113 
nm.

Fig. 18  Band structure of a dielectric-gold PhPl crystal for a square 
lattice with an elliptical base. This band structure corresponds to a 
lattice constant of a = 300 nm, with dx = 165 nm and dy = 132 nm

Fig. 19  Band structure of a dielectric–silver PhPl crystal for a square 
lattice with an elliptical base. This band structure corresponds to a 
lattice constant of a = 300 nm, dx = 165 nm and dy = 132 nm

Fig. 20  Band structure of a square lattice with an elliptical base. 
This band structure corresponds to a lattice constant of a = 300 nm, 
dx = 165 nm and dy = 132 nm, but with a dielectric constants contrast 
of �b∕�a = 9
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The results obtained with machine learning algorithms 
are shown in Table 3. As it can be seen, the machine learning 
algorithms predict correctly the optical properties as a func-
tion of crystal parameters, where the minimum discrepancy 

between results is obtained with KNN for both bandgap 
center and bandgap width.

This means that the algorithms are able to understand 
the relationship between the structural parameters and the 

Fig. 21  Bandgap center as a 
function of a and f for square 
lattice and with an elliptical 
base

Fig. 22  Bandgap width as a 
function of a and f for square 
lattice and with an elliptical 
base
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optical response, with which it is possible to calculate the 
properties of the bandgap without the need to calculate the 
complete band structure.

Triangular Lattice

Unlike the square lattice, the triangular lattice presents a 
complete bandgap even at low dielectric constants contrast, 
as it is shown in Fig. 23.

This band structure corresponds to a lattice constant 
of 330 nm, with an elliptical base whose major axis is 
dx = 130 nm, while the minor axis is dy = 100 nm. The 
bandgap has a width of 42.82 nm and is centered at 
�c = 631.33 nm.

To compare the results provided by the model with exper-
imental results, the bandgap properties were calculated for a 
triangular lattice with a lattice constant a = 400 nm and with 
a base diameter d = 200 nm, as in reference [6]. In that case, 
the base corresponds to a circular gold structure.

In the experimental data of Bozhevolnyi et al., a high 
reflectivity is reported at � = 782 nm, suggesting that this 
wavelength is within the bandgap. In addition, it is men-
tioned that the intensity of the reflected SPPs practically 
vanishes at � = 815 nm; that is, this wavelength does not 
belong to the bandgap. With the same parameters, the model 
calculates a bandgap centered at �c = 774.041 nm with a 
width of Δ� = 52.141 nm. Although it is not the same physi-
cal system, the results are consistent.

The photonic band structure of a dielectric–silver PhPl 
crystal with the same lattice constant and base size is shown 
in Fig. 24. The bandgap is centered at �c = 620.16 nm with a 
width of Δ� = 40.98 nm. Comparing this PhPl crystal with 
a dielectric–gold PhPl crystal, the significant change is in 
the bandgap center. The difference between both bandgap 
centers is about 11 nm.

The experimental results reported by Kitson, Barnes and 
Sambles, show the existence of a bandgap in a triangular 

Table 2  Machine learning 
algorithms results for square 
lattice

Forward design Inverse design

Algorithm Train accuracy Test accuracy Train accuracy Test accuracy

Regression 0.9982 0.9983 0.7457 0.7505
KNN 0.9984 0.9976 0.7722 0.7612
Decision tree 0.9999 0.9944 0.7605 0.7363

Table 3  Results comparison between theoretical model and machine 
learning algorithms

Bandgap Theoretical Polynomial KNN Decision tree
properties model regression

Center ( �c ) [nm] 674.446 672.876 673.241 676.822
Width ( Δ� ) [nm] 82.113 84.104 80.503 84.930

Fig. 23  Band structure of a dielectric–gold PhPl crystal for a triangu-
lar lattice with an elliptical base, with a = 330 nm, dx = 130 nm and 
dy = 100 nm

Fig. 24  Band structure of a dielectric–silver PhPl crystal for a trian-
gular lattice with an elliptical base, with a = 330 nm, dx = 130 nm 
and dy = 100 nm
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array of circular silver structures on a film of the same mate-
rial. This triangular lattice has a period a = 300 nm and 
the structures have a diameter d = 200 nm. The reported 
bandgap is centered at �c = 634.527 nm and has a width 
Δ� = 29.211 nm [5].

Using these same parameters in the theoretical model, 
the calculated bandgap is centered at �c = 638.626 nm and 
has a width Δ� = 41.285 nm. Although the bases are differ-
ent in composition, the calculated theoretical result is con-
sistent with that reported experimentally in reference [5], 
showing that the lattice constant and the size of the base are 
determining parameters in the properties of the bandgap.

As in the previous cases, the center of the bandgap is 
red shifted when the lattice constant and the filling fraction 
are increased. On the other hand, Fig. 25 shows the band-
gap width as a function of lattice size and filling fraction. 
In this case, a complete bandgap arises for filling fractions 
larger than 0.3 and less than 0.85 and reaches its maxi-
mum near f = 0.44 . Furthermore, the bandgap width is a 

monotonically increasing function of the lattice constant. 
For the wavelength interval used, the maximum width is 
Δ� = 99.56 nm.

This behavior of the bandgap properties is consistent with 
the results reported in references [10, 11]. In that case, the 
PhPl crystals consist of gold columns in a triangular array 
on a thin film of the same material, and it is experimentally 
verified that the bandgap broadens and is red-shifted when 
the filling fraction increases.

Regarding the algorithms used in the forward design, for 
polynomial regression the best performance was obtained 
with degree 5, for KNN it was obtained with 6 nearest neigh-
bors, and for the decision tree, it was obtained with a maxi-
mum depth of 15. With respect to the ANN, an accuracy of 
1 is obtained to predict the optical response as a function 
of plasmonic crystal characteristics with the architecture 
described above.

Table 4 shows the performance results of the machine 
learning algorithms for the triangular lattice. As in the 

Fig. 25  Bandgap width as a 
function of a and f for triangular 
lattice and with an elliptical 
base

Table 4  Machine learning 
algorithms results for triangular 
lattice

Forward design Inverse design

Algorithm Train accuracy Test accuracy Train accuracy Test accuracy

Polynomial regression 0.9992 0.9993 0.7712 0.7715
KNN 0.9983 0.9981 0.8317 0.8017
Decision tree 0.9999 0.9836 0.8402 0.8239
ANN 1 1 0.9853 0.9848
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previous lattice, for the accuracy reported in the table, the 
algorithms are more accurate in the forward design than in 
the inverse design.

ANNs exhibit high precision in obtaining the structural 
properties for a target optical response. This means that this 
algorithm adequately learns the relationship between the 
optical response and the structural properties, which allows 
tuning the optical response of the PhPl crystals.

For triangular lattices, the optical response was predicted 
using the algorithms with the same crystal parameters: a 
lattice constant a = 300 nm, and a base with major axis 
dx = 100 nm and minor axis dy = 150 nm. The analytical 
model with these parameters predicts a bandgap centered 
at �c = 588.724 nm, with a width of Δ� = 25.198 nm. The 
prediction and comparison of the machine learning algo-
rithms are given in Table 5. As it can be seen, the prediction 
of the optical response for all the algorithms is close to the 
calculations using the analytical model, which is consistent 
with the accuracy reported above.

For the inverse design, the best performance was obtained 
with ANN, where the cosine similarity is greater than 0.98 
to predict the PhPl crystal characteristics for a particular 
optical response. As an example, for a bandgap width of 
Δ� = 20 nm, centered at �c = 633 nm, the algorithms pre-
dicts the parameters shown in Table 6.

As it can be seen from the data provided for the ANN, 
the bandgap width is Δ� = 19.505 nm and is centered at 
�c = 620.884 nm. Figure 26 shows the photonic band struc-
ture of this crystal. In this case, the difference between the 
predicted and the actual bandgap width is 0.495 nm. Con-
cerning the bandgap centers, the difference between pre-
dicted and the actual ones is 12.12 nm.

To support both the results obtained with the analyti-
cal model and those obtained with the ANNs, numerical 

simulations were performed using the COMSOL Multiphys-
ics ® software. It is worth mentioning that the numerical 
simulations were performed for all orientations; however, 
for illustrative purposes, only the numerical simulations for 
the PhPl crystal in the Γ −M orientation are shown. The 
PhPl crystal has a lattice constant of a = 329.968 nm, a 
base diameter d = 126.149 nm and is oriented in the Γ −M 
orientation.

Figure 27 shows a numerical simulation of an incident 
SPPs at � = 605 nm in a dielectric–gold PhPl crystal. This 
wavelength corresponds to an allowed frequency. Figure 28 
shows a numerical simulation of an incident electric field at 
� = 633 nm in a PhPl crystal, that is, at a frequency within 
the photonic bandgap.

Figure 29 shows a numerical simulation of an incident 
electric field at � = 690 nm in a PhPl crystal. This wave-
length corresponds to an allowed frequency in the partial 
photonic bandgap in the Γ −M orientation.

The normalized absolute value of the electric field at 
� = 633 nm, that is, within the bandgap, is compared to 
the normalized absolute value of the electric field at the 
two allowed wavelengths in the Γ −M orientation, 605 
and 690 nm. This is shown in Fig. 30, where the blue line 

Table 5  Results comparison 
between theoretical model and 
machine learning algorithms 
of triangular lattice for forward 
design

Bandgap Theoretical Polynomial KNN Decision tree ANN
properties model regression

Center ( �c ) [nm] 588.724 587.060 595.989 588.613 586.659
Width ( Δ� ) [nm] 25.198 27.745 24.181 25.130 24.846

Table 6  Results comparison between theoretical model and machine 
learning algorithms of triangular lattice for inverse design

Algorithm Structural parameters Calculated optical 
response

(a) [nm] d [nm] (�c ) [nm] (Δ� ) [nm]

Polynomial regression 322.365 155.267 637.423 42.868
KNN 337.833 128.130 635.456 22.428
Decision tree 343.333 124.007 639.395 16.953
ANN 329.968 126.149 620.884 19.505

Fig. 26  Band structure of a dielectric–gold PhPl crystal for a triangu-
lar lattice with a circular base, with a = 329.968 nm and d = 126.149 
nm
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corresponds to 605 nm, the black line corresponds to 633 
nm, and the red line corresponds to 690 nm. The vertical 
dashed gray line marks where the PhPl crystal begins.

For all the three wavelengths, before entering to the 
PhPl crystal, the field intensity increases due to reflec-
tions on the PhPl crystal. After that, for all the three 

wavelengths, the electric field intensity decreases as 
it enters the PhPl crystal, since SPPs intensity decays 
exponentially, as it is shown in the graph. However, the 
electric field corresponding to the wavelength within 
the bandgap, 633 nm, decreases faster than the other 
wavelengths.

Fig. 27  Numerical simulation 
of incident electric field at 
� = 605 nm in a PhPl crystal, at 
an allowed frequency

Fig. 28  Numerical simulation 
of incident electric field at 
� = 633 nm in a PhPl crystal, at 
a frequency within the bandgap

1518 Plasmonics (2022) 17:1501–1525



1 3

The imaginary part of the effective refractive index is 
larger at 605 nm than at the other two wavelengths, then 
larger attenuation would be expected. However, the PhPl 
crystal is tuned to have a bandgap centered at 633 nm; thus, 
the field intensity decreases faster for this case, corroborat-
ing the physics behind the proposed analytical model.

Rectangular Lattice

In this case, the theoretical model was used to analyze the 
band structures of dielectric–gold and dielectric–silver PhPl 
crystals in a rectangular lattice, with elliptical and rectan-
gular bases.

Fig. 29  Numerical simulation 
of incident electric field at 
� = 690 nm in a PhPl crystal, at 
an allowed frequency

Fig. 30  Comparison of the nor-
malized absolute value of the 
electric field for three different 
wavelengths
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Figure 31 shows the photonic band structure of a dielec-
tric–gold PhPl crystal in a rectangular lattice with a circular 
base, where this base is considered a particular case of an 
elliptical base. The lattice constant in x-direction is ax = 300 
nm, in y-direction is ay = 480 nm and the diameter of the 
cross section is d = 235 nm.

Using the same parameters, the band structure of a dielectric 
–silver PhPl crystal was calculated; it is shown in Fig. 32.

In both cases, two partial bandgaps arise in the fitting 
range: one in Γ − X orientation and the other in the Y − Γ 
orientation. The former has a width of Δ� = 90.95 nm and 
is centered at �c = 747.09 nm, while the latter has a width  
of Δ� = 222.11 nm and is centered at �

c
= 1242.28. nm.

In addition, the first band of the band structure of both 
PhPl crystals is similar because the effective refractive 
indexes are similar in that frequency range. The above 
means that the dielectric–gold and dielectric–silver PhPl 
crystals have almost the same optical response in that range 
of the electromagnetic spectrum. However, the third band 
presents significant differences, since the inverse of the 
effective refractive index has a wider fitting range. Besides, 
the dielectric–silver PhPl crystal can operate over a wider 
frequency range.

On the other hand, as shown above, for a square lattice 
with a low contrast of dielectric constants (in particular 
�b∕�a = 2.2), there were no complete bandgaps. How-
ever, using the theoretical model to analyze a rectangular 
lattice, and considering an analogous orientation to the 
square lattice (in this case Γ − X − S − Γ ), a complete 
bandgap can be found for some ratios ay∕ax and filling 
fractions f.

Figure 33 shows the photonic band structure of a rec-
tangular PhPl crystal with ax = 300 nm, ay = 465 nm and 
d = 230 nm. For these parameters, the bandgap center and 
width are �c = 714.12 nm and Δ� = 36.49 nm, respectively. 
With this lattice, it is possible to have a complete bandgap 
even with a small refractive index contrast considering a 
Γ − X − S − Γ path.

To get a clearer picture of the bandgap formation, a 
heat map of the bandgap width as a function of the lattice

Fig. 31  Band structure of a dielectric–gold PhPl crystal in a rectangu-
lar lattice with ax = 300 nm, ay = 480 nm and d = 235 nm

Fig. 32  Band structure of a dielectric–silver PhPl crystal in a rectan-
gular lattice with ax = 300 nm, ay = 480 nm and d = 235 nm

Fig. 33  Band structure of a rectangular plasmonic crystal with 
ax = 300 nm, ay = 465 nm and d = 230 nm
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side ratio ra = ay∕ax and the filling fraction f is shown 
in Fig. 34. This graph corresponds to a lattice constant of 
ax = 300 nm, with a variation of the lattice constant ay . 
This variation was between 20% to 180% of the lattice 
constant ax.

In the heat map, it is possible to observe that the band-
gap appears when the ratio ra = ay∕ax is between 1.26 and 
1.8. In addition to this, to have a complete bandgap, the 
filling fraction must have values between 0.1 and 0.6. In 
this particular case, the maximum width, Δ� = 59.79 nm, 
is obtained for ra = 1.5 and f = 0.33.

As in previous lattices, machine learning algorithms 
help in establishing the relationship between structural 
features and optical response. The optimal performance 
of the machine learning algorithms for forward design was 
obtained with a polynomial of degree 12, for the KNN 
algorithm with 3 nearest neighbors, and a maximum depth 
equal to 30 for the decision tree algorithm.

For the inverse design, the best performances were 
obtained for a polynomial regression of degree 14, the KNN 
algorithm with 30 neighbors, and a maximum depth of 10 
for the decision tree algorithm. However, the accuracy of 
the prediction did not reach 70%. On the other hand, ANNs 
performed best with the architectures described above. The 
accuracy of the machine learning algorithms for the rectan-
gular lattice is shown in Table 7.

As in the previous lattice, the optical response was pre-
dicted with the same crystal parameters for all four algo-
rithms: lattice constants ax = 300 nm, ay = 480 nm, dx = 100 
nm and dy = 240 nm. The analytical model with these 
parameters calculates a bandgap centered at �c = 655.245 
nm and width Δ� = 26.011 nm. The prediction and compari-
son of the machine learning algorithms are given in Table 8.

The four algorithms predict an optical response very simi-
lar to the one calculated by the theoretical model, which was 
an expected fact since they all exhibit high precision for the 

Fig. 34  Bandgap width as a 
function of a and f for rectangu-
lar lattice and with an elliptical 
base

Table 7  Machine learning 
algorithms results for 
rectangular lattice

Forward design Inverse design

Algorithm Train accuracy Test accuracy Train accuracy Test accuracy

Polynomial regression 0.9993 0.9986 0.6390 0.6375
K-nearest neighbors 0.9668 0.9430 0.6947 0.6702
Decision tree 1 0.9679 0.6713 0.6589
ANN 1 1 0.9546 0.9540
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forward design; however, with KNN and ANN the predic-
tions are more accurate with the mentioned parameters.

The algorithms were applied to predict the structural 
parameters from a target bandgap centered at �c = 633 
nm and with width Δ� = 20 nm. The results are shown in 
Table 9. The predictions of the polynomial regression, KNN 
and ANN algorithms are very similar to each other. Further-
more, the properties of the bandgap calculated from the pre-
dictions are very close to those of the target optical response, 
where the discrepancy is larger in the width of the bandgap.

The results obtained with the analytical model are con-
sistent with the results obtained with the ANNs. Both results 
are supported by numerical simulations. As for the previ-
ous case, the numerical simulations were performed for all 

orientations; however, for illustrative purposes, only the 
numerical simulations for the PhPl crystal in a particular 
orientation are shown, in this case in the Γ − X orientation.

The simulated PhPl crystal has lattice constants 
ax = 279.96 nm and ay = 339.85 nm in x and y directions, 
while the base is an ellipse with axes dx = 173.28 nm and 
dy = 206.72 nm. With these structural parameters, the band-
gap center and width calculated with the analytical model 
are �c = 640.88 nm and Δ� = 10.09 nm, respectively.

Figure 35 shows the electric field intensity of SPPs inci-
dent at � = 620 nm, that is, at an allowed frequency. On the 
contrary, Fig. 36 shows the electric field intensity of SPPs 
incident at � = 670 nm, a frequency within the bandgap in 
the Γ − X orientation.

Table 8  Results comparison 
between theoretical model and 
machine learning algorithms of 
rectangular lattice for forward 
design

Bandgap Theoretical Polynomial KNN Decision tree ANN
properties model regression

Center ( �c ) [nm] 655.245 652.154 655.653 651.866 652.340
Width ( Δ� ) [nm] 26.011 34.872 24.594 33.859 21.678

Table 9  Results comparison 
between theoretical model and 
machine learning algorithms of 
rectangular lattice for inverse 
design

Algorithm Structural parameters Calculated optical 
response

(ax ) [nm] (ay ) [nm] dx [nm] dy [nm] (�c ) [nm] (Δ� ) [nm]

Polynomial regression 256.403 383.173 179.228 267.842 636.673 41.391
KNN 257 391.840 176.082 268.467 636.406 46.064
Decision Tree 271.527 407.885 178.480 268.111 656.410 49.051
ANN 258.906 388.033 171.963 257.729 633.919 45.964

Fig. 35  Numerical simulation of 
incident electric field at � = 620 
nm in a rectangular PhPl crys-
tal, at an allowed frequency
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Additionally, Fig. 37 shows the electric field intensity 
of SPPs incident at � = 750 nm, that is, at an allowed fre-
quency, in the same orientation.

As in the triangular lattice, the SPPs are reflected in the 
PhPl crystal, causing the electric field intensity to increase 
before penetrating into the array. In Fig. 36, the extinction 

of SPPs electric field is evident when impinging at a fre-
quency within the bandgap. For other wavelengths, the SPPs 
impinge on the PhPl crystal, propagate through it and decay 
exponentially, as expected. To show clearly this fact, the 
normalized electric field intensities of SPPs for the three 
wavelengths are compared in Fig. 38.

Fig. 36  Numerical simula-
tion of incident electric field 
at � = 670 nm in a rectangular 
PhPl crystal, at a frequency 
within the bandgap

Fig. 37  Numerical simulation of 
incident electric field at � = 750 
nm in a rectangular PhPl crys-
tal, at an allowed frequency
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From the plot, it is clear that the electric field intensity 
for the wavelength within the bandgap decreases faster than 
the electric field intensities for the allowed wavelengths. The 
curves in Fig. 38 reveal the field enhancement due to reflec-
tions in the PhPl crystal and the exponential decay of the 
electric field as it propagates into it. The above reinforces 
the consistent agreement between the obtained results with 
the analytical model and those obtained using the ANNs.

Conclusions

A general theoretical model based on PWEM is proposed to 
study and calculate the photonic band structure of dielectric-
gold and dielectric-silver PhPl crystals. The validity and use-
fulness of the model are shown for several particular struc-
tures in one and two dimensions, from which the theoretical 
results allow to infer that the dielectric-gold and dielectric-
silver crystals respond quite similarly in the approximate 
range of 600-2000 nm. However, for wavelengths below 550 
nm, the dielectric-silver PhPl crystal is a better choice, since 
it exhibits less propagation attenuation than the dielectric-
gold PhPl crystal.

In addition to the theoretical model, computational 
tools, based mainly on ANNs, are developed to calculate 
the center and width of the bandgap of these hybrid PhPl 
systems. These tools are useful in tuning the optical response 
since they are able to find and learn the relationship between 

structural features and bandgap properties. Also, with the 
above it is possible to avoid the execution of codes that can 
be computationally expensive, which would imply making 
the design and fabrication process of these structures more 
efficient.

Both the results obtained with the analytical model and 
those obtained with the computational tools are consistent 
with the physics inherent to the systems studied, both are 
supported by numerical simulations, and both are success-
fully compared, when possible, to experimental results from 
the literature. In general, the tools proposed in this work are 
integrated together to study systems that could be imple-
mented experimentally and applied in new PhPl devices.
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