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Abstract
In this paper, half-cylindrical-shaped rods are arranged in a row in order to form hemoglobin concentration sensors. The 
proposed structures can effectively detect hemoglobin concentrations in blood samples. Five individual structures based on 
graphene-plasmonic combinations are proposed and investigated. The proposed structures are made of different layers of Au, 
Ag, SiO2, and graphene. Different plates and cylindrical-shaped graphene layers are introduced in the structures to improve 
the functionality (absorption peak value and wavelength) of the absorber (sensor). Adding more Au layers strengthens the 
confinement of the incident electromagnetic waves and improves the absorption factor. Also, in the proposed structures, for 
improving the results, the effects of the chemical potential of graphene layers and “G” (graphene layer thicknesses) on the 
absorption peak and wavelength are considered. The final suggested structure indicates unity absorption peak and thus can be 
utilized in wide ranges of applications. As a refractive index bio-sensor, the structure is considered for detecting hemoglobin 
concentrations in blood samples which indicates a reasonable sensitivity factor of 570 nm/RIU.
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Introduction

Nowadays, optical bio-sensors have attracted excessive atten-
tions. Optical bio-sensors indicate much impressive function-
alities compared to the traditional ones. They acquire the 
advantages of higher sensitivity, lower cost, smaller sizes, 
and higher sensitivity precisions [1]. These sensors can spe-
cifically be applied in healthcare systems, biotechnology 
labs, and other scientific regions [2]. Optical bio-sensors 
can be the result of the graphene-plasmonic combinations 
[3]. Plasmonic-graphene nano-structures can operate based 
on surface plasmon resonances (SPR) [4–6]. Graphene-
plasmonic combinations contain interesting specifications 

including high optical confinement [3], very low losses, and 
electromagnetic (EM) tunability, which make them great 
candidates for sensors in THz spectral range [7]. Plasmonic 
nano-structures are made of the combinations of metals and 
dielectrics, while graphene contains layers of carbon atoms 
being arranged in two-dimensional lattices [7, 8]. Surface 
plasmon resonance (SPR), which is the interaction between 
free electrons of a metal and the EM light wave, can conquer 
the limitations of light caused by the diffraction of light in 
nano-scaled dimensions (lower than the propagating wave-
lengths). As a result, structures made of graphene-plasmonic 
can effectively be used as absorbers [9, 10], refractive index 
and temperature sensors [11], or bio-sensors for detection of 
important elements like hemoglobin [8] and glucose [12]. 
Graphene-plasmonic-based nano-structures can be fabri-
cated based on different techniques [13, 14]. The plasmonic-
graphene-based sensors can be designed based on different 
approaches. Refractive index (RI)–based structures are good 
candidates for designing accurate and sensitive biosensors 
[15, 16]. Interesting researches were reported considering dif-
ferent configurations of plasmonic-graphene nanostructures. 
As an example, optical properties of plasmonic materials in 
the shape of gold nano-rods were investigated by consid-
ering the finite element method (FEM) [17]. The spatially 
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oscillatory patterns were observed on the surface as a result 
of plasmon-mode wave functions [17]. In another research 
[18], numerical investigations of tunable SPRs and diploe 
cavity plasmon modes of the scattering cross-section (SCS) 
on different configurations of nano-rods were considered by 
utilizing the FEM method. Considering the different proper-
ties of these structures, the solid-gold/gold-shell nano-rods  
can be tuned and controlled for producing specific wave-
lengths [18]. In another work, a sensor based on the  
plasmonic-dielectric combinations with different dielectric 
core plasmonic metamaterial was proposed and investigated 
[19]. The proposed structure functions based on the combina-
tion of lattice resonance, localized SPR, and cavity plasmon 
resonance modes and indicated very interesting and func-
tional results [19].

In another research, an SPR biosensor for detection of 
blood glucose concentrations in the range of 25–175 mg/dl 
with RI range of 1 to 1.0007 was proposed [20]. The pro-
posed sensor exhibited an appropriate sensitivity amount of 
275.15˚/RIU. In recent researches, considering the COVID-
19 pandemic, graphene-based biosensors were suggested for 
virus detection as they were more economic, accurate, and 
fast [20]. In another study, a graphene-plasmonic biosensor 
was suggested and analyzed. The structure was based on 
the combination of silver nanoparticles and graphene film 
layers. Considering the graphene thickness of 9 nm in the 
structure, the 304.6% gain in sensitivity compared to non-
graphene structure was obtained [21]. Also, plasmonic nano-
structures with different shapes (of sphere, cubic, cylindri-
cal) were proposed for hemoglobin concentration sensing 
[22]. The results indicated different resonance wavelengths 
for the three nano-particle shapes. It is declared that, by 
managing and engineering tunable properties of graphene-
based nano-structures, they can be effectively used as bio-
sensors for different applications [23]. In another research, 
graphene-gold combination structure is proposed for detect-
ing bio-molecules and biological cells like blood, glucose, 
and other elements, considering their refractive indices [24].

In all of the mentioned reports, the applications of gra-
phene-plasmonic nano-structures in sensors and especially 
biosensors were stated and considered. In this work, novel 
sensitive biosensors based on graphene-plasmonic combina-
tions are proposed.

Geometry, Theoretical Model, and Numerical 
Method

The first proposed structure is a combination of graphene, 
Au, Ag, and SiO2 layers as depicted in Fig. 1.

The structure is consisted of the periodic pattern of half-
cylindrical-shaped arrays of Au rods placed above Ag, gra-
phene, and SiO2 layers. The geometric parameters of Fig. 1 
are tabulated in Table 1.

Numerical simulations were conducted by using two-
dimensional finite element-based (FE) software (COMSOL 
Multiphysics 5.5). As the length of the half-cylindrical nano-
rods is much longer than their diameters, the 3-D model can 
be replaced by a 2-D model (with approximately the same 
results) [25, 26]. These simplifications were done for reduc-
ing the time and decreasing the computer resources needed 
for simulations [25, 26].

In the structure as shown in Fig. 1a, a plane wave polar-
ized in z-axis with 1-W power is applied as the incident 
field. The periodic boundary condition is considered in 
x-direction.

Considering the finite element (FEM) method, the field 
distributions at resonance wavelength of 1053 nm, in Fig. 2a; 
non-resonance wavelength of 1040 nm, in Fig. 2b; and the 

Fig. 1   a Schematic of the first 
proposed structure. b View of 
the single array of the structure

Table 1   Geometric parameters 
of Fig. 1

Parameter Value (nm)

R 650
t 20
d 1400
g 0.34
p 750
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absorption and reflection spectrum, in Fig. 2c, are simulated 
and shown.

A simple equation can show the relation between the 
transmission, absorption, and reflection fields [16, 27]:

Considering T(ω) = 0, then from (1) it is clear that 
A(ω) = 1 − R(ω).

As it is considered to achieve the perfect absorption 
parameter (to have the proper sensor), the reflection param-
eter R(ω) should equal zero which leads to unity value for 
absorption (A(ω)). As a result, the incident light wave would 
be thoroughly absorbed leading to the increment of the 
absorption peak value.

The surface conductivity of a graphene layer can be con-
sidered by the Kubo formula [16, 28]:

where ɷ, μc, Γ, and T indicate the operation frequency, the 
chemical potential, the phenomenological scattering rate, 
and the absolute temperature, respectively.

(1)A(�) = 1 − R(�) − T(�)

(2)�g
(
�,�c,Γ,T

)
= �g−real + j�g−imag = �int ral + �int er

The intra-band and inter-band electro-photon scattering 
parameters can also be described as [16, 28]:

where kB, T, and e are Boltzmann constant, temperature, and 
electron charge, respectively.

Drude model can introduce the dielectric function of the 
metals as [29–31]:

where ε∞ = 3.7 (dielectric constant at infinite frequency), 
γ = 0.018 eV (collision plasma angular frequency), and 
ωp = 9.1 eV (bulk plasma angular frequency) [29–31].

As can be seen from Fig. 2 (c), the absorption peak of 
0.8 at 1053 nm is obtained. To improve the absorption peak 

(3)
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Fig. 2   a Field distribution at 
λ = 1053 nm. b Field distribu-
tion at λ = 1040 nm. c Sche-
matic of the absorption and 
reflection spectrum
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and functionality of the structure, other combinations of gra-
phene and plasmonic layers would be presented.

Results and Discussion

In this section, 4 different structures based on the combi-
nations of graphene-plasmonic layers in the shape of half-
cylindrical arrays are presented. It is important to notice that 
considering more layers of graphene and Au can affect the 
characteristics of the structures and increase their absorption 
peaks [27, 32]. Therefore, their effects on the absorption 
spectrum will be discussed. The first structure was consid-
ered and evaluated in Fig. 1. The absorption peak value of 
0.8 at wavelength of 1053 nm was achieved. The following 
proposed structures are proposed in order to improve the 
functionality of the structure by enhancing the absorption 
peak.

Second Structure

The second proposed structure is shown in Fig. 3. In this 
structure, a graphene layer is considered above the half-
cylindrical arrays.

In this structure, another layer of graphene is coated 
above the Au half-cylindrical-shaped layers. The height of 
“h” equals 495 nm. The thickness of the added graphene 
layer is the denoted by “g” and equals to 0.34 nm.

By considering different values for the chemical poten-
tial from 0.3 to 1.5 eV, the absorption spectrum would be 
achieved as shown in Fig. 4.

Comparing Fig. 4 with Fig. 2c, the absorption peak value 
is increased from 0.8 to 0.88. Increment of the absorption 
peak by adding a graphene layer can be the result of low-
ering the losses and enhancing the confinement of light. 
In fact, adding more graphene and plasmonic layers can 
increase the confinement of light and decrease the losses, 
which leads to higher peak values; this phenomenon con-
tinues until N becomes more than 3, where N indicates the 
number of graphene layers. For N > 3, the absorption peak 
would be decreased. In this condition, the graphene loss 
surpasses the metal loss; therefore, more energy can pass to 
outer layers and causes the absorption peak to descend [3, 
32]. As a result, maximum 3 graphene layers are considered 
in the following structures.

As can be seen from Fig. 4, by increasing µc, the absorp-
tion peak wavelength is shifted to the lower values. This 
result can be described by the circuit theory. In the circuit 

Fig. 3   a Schematic of the 
second proposed structure. b 
View of the single array of the 
structure

Fig. 4   Schematic of the absorp-
tion spectrum versus wave-
length for different values of µc
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theory, graphene is characterized as a shunt admittance 
which can be varied by the geometrical parameters g, p, and 
chemical potential µc [16, 33]. Thus, altering µc can change 
the absorption peak wavelength according to [16, 33, 34]:

where c, L, and C are the speed of the light in vacuum, 
capacitance, and inductance of the circuit respectively. As 
can be concluded, increasing µc would decrease L [35], 
which would decrease the absorption peak wavelength. 
By varying µc from 0.3 to 1.5 eV, the wavelength would be 
shifted from 1053 to 10,495 nm. Therefore, by selecting the 
appropriate µc, different resonance wavelengths for different 
applications can be achieved.

In this structure, by adding another layer of graphene, 
the absorption peak is improved. This happens due to the 

(6)� = 2�c
√
LC

decrease of the Au loss and excessive confinement of the 
light in the Au layer.

Third Structure

The third proposed structure is shown in Fig. 5.
In this structure, a layer of Au is coated above the gra-

phene layer with the thickness of “G.” As discussed in the 
previous sections, adding an Au layer leads to the increased 
confinement of light which increases the absorption peak 
[3, 32]. To discuss the effects of the added Au layer, its 
effects on the absorption spectrum are studied. The simula-
tion results are plotted in Fig. 6.

As can be seen, by increasing “G,” the absorption peak 
wavelength is shifted to the higher values. This happens 
due to the fact that increasing “G” would increase the 

Fig. 5   a Schematic of the third proposed structure. b View of the single array of the structure

Fig. 6   Schematic of the 
absorption spectrum versus 
wavelength for different values 
of “G”
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capacitance; thus, according to (6), the wavelength would 
be shifted to the higher values [16, 33].

Fourth Structure

The fourth proposed structure is shown in Fig. 7.
In this structure, another layer of graphene is covered 

above the Au layer with the thickness of “g” (all the gra-
phene layers’ thickness equal “g”). For this structure, by 
changing the chemical potential, the absorption spectrum 
can be depicted in Fig. 8.

As can be seen, increasing µc would increase the absorp-
tion peak value and decrease the absorption peak wave-
length. It was stated in the previous sections that increasing 
µc would decrease the inductance amount (L) as the shunt 
admittance of the circuit theory [16, 34]. Therefore, the 
absorption peak value would be about 0.98 for µc = 1.5 eV 
at λ = 1057.5 nm.

Fifth Structure

The last proposed structure is shown in Fig. 9.
In this structure, another layer of graphene is positioned 

under the Au-graphene half-cylindrical-shaped arrays with 

the thickness of “g.” The effects of “µc” on the absorp-
tion spectrum for the last proposed structure are plotted in 
Fig. 10.

As previously mentioned, “µc” affects the equivalent induct-
ance “L” of the circuit theory (increasing “µc” decreases “L”), 
which leads to the blue shift of the absorption peak wavelength 
(shifts the wavelength to lower amounts). In the last structure, 
the absorption peak reaches unity. As a result, this structure 
can be considered the bio-sensor for detecting hemoglobin 
concentrations.

To consider the structure as the biosensor, the absorption 
spectrum for different concentrations of hemoglobin with vari-
ous refractive indices is shown in Fig. 11.

These refractive indices of 1.335, 1.34, 1.36, and 1.38 are 
related to different hemoglobin concentrations in blood sam-
ples (n = 1.335 for 3.5 g/dl, n = 1.34 for 10.6 g/dl, n = 1.36 for 
16.5 g/dl, n = 1.385 for 28.7 g/dl [15, 36]).

As can be seen in Fig. 11, increasing RI would shift 
the absorption peak wavelength to higher amounts [3, 
16, 37]. Considering the sensitivity relation [Δλ/Δn 
(nm/RIU)], the sensitivity value of 570 nm/RIU can be 
achieved for this sensor. Table 2 indicates the compari-
son between our proposed sensors with some previously 
published works.

Fig. 7   a Schematic of the fourth 
proposed structure. b View of 
the single array of the structure

Fig. 8   Schematic of the 
absorption spectrum versus 
wavelength for different values 
of “µc”
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Fig. 9   a Schematic of the last 
proposed structure. b View of 
the single array of the structure

Fig. 10   Schematic of the 
absorption spectrum versus 
wavelength for different values 
of “μc”

Fig. 11   Absorption spectrum 
versus wavelength for different 
hemoglobin concentrations
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Conclusion

Five different configurations based on graphene-plasmonic 
nano-structures were considered for bio-sensing applica-
tions. These structures were made of half-cylindrical-
shaped rods of graphene and Au which were organized 
on different layers of Ag, SiO2, and graphene. In order 
to improve the functionality of the structures, effects of 
chemical potential and graphene layer’s thicknesses on 
the absorption peak and wavelength were also studied. By 
applying more cylindrical-shaped layers of Au and gra-
phene, the absorption peaks experienced higher values. 
The final suggested structure, which showed unity absorp-
tion peak, was considered the refractive index sensor for 
detecting hemoglobin concentrations in blood samples. By 
considering RI values of n = 1.335 for 3.5 g/dl, n = 1.34 for 
10.6 g/dl, n = 1.36 for 16.5 g/dl, n = 1.385 for 28.7 g/dl, the 
acceptable sensitivity factor of 570 nm/RIU was achieved. 
As a result, the proposed structures can be interesting and 
great candidates for the detection of different bio-elements 
and tissues and can be appropriate bio-sensors.
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